
MLF with Graphs

Didier Rémy and Boris Yakobowski - INRIA Rocquencourt

February 13, 2006

Abstract

MLF is a type system that generalizes ML with first-
class polymorphism as in System F. Building on it,
we propose a new syntax for types, based on graphs.
The new syntax is expected to be more intuitive for
the user. It also greatly simplifies the presentation
of the system; for example, equivalence on types is
greatly simplified. We present a set of rules based
on graphs for instantiation, which are sufficient to
derive all equivalent rules on syntaxic type. We then
propose a new unification algorithm, and prove that
it is correct and complete.

1 Syntaxic presentation of MLF

MLF[LB04, LBR03] is a type system that generalizes
ML with first-class polymorphism as in System F.
Expressions may contain second-order type annota-
tions. Every typable expression admits a principal
type, which however depends on type annotations.
Principal types capture all other types that can be ob-
tained by implicit type instantiation and they can be
inferred. All expressions of ML are well-typed with-
out any annotations. All expressions of System F can
be mechanically encoded into MLF by dropping all
type abstractions and type applications, and injecting
types of lambda-abstractions into MLF types. More-
over, only parameters of lambda-abstractions that are
used polymorphically need to remain annotated. As
a result, MLF is a good compromise between the free-
dom offered by ML type inference and the full power
of System F first-class polymorphism.

τ ::= α | C τ1 .. τn Monotypes
σ ::= τ | ⊥ | ∀ (α > σ) σ | ∀ (α = σ) σ Polytypes

Figure 1: Syntax of types

For reference, types in MLFare presented in Fig 1.
Type are viewed under contexts Q, which are used to
bind type variables present in the scope. Three rela-
tions on them are defined (namely equivalence (≡),
abstraction (⊏−) and instance (⊑)). One of the dif-

ficulties in understanding MLF stems from its rich
equivalence relation, which comprises 8 rules. For
examples, ∀ (α > ⊥) ∀ (β > ∀ (γ > ⊥) γ→α) α→β,
the type of the function K = λx.λy.x, is equivalent
to ∀(α > ⊥)∀(η = ∀ (β > ∀ (γ) ∀ (δ = γ→α) δ) α→
β)η.

2 MLFwith graphs

2.1 Definition of graphs

In the graph presentation of MLF, types are repre-
sented by two graphs: a structure graph, reminiscent
of the way ML types with sharing are seen, and a
binding graph. The graph corresponding to the type
of K = λx.λy.x is presented in Fig 2.

->

->

1

|

0

|

0 1

Figure 2: Type of K

More formally, a graph G = (N, N ′, r, S, B) is
composed of:

1

• A set of nodes N labeled by a set of constructors
C or {⊥}.

• A root r ∈ N .

• A subset N ′ ⊂ N of bound nodes

• A set S ⊂ N × N × N of structure edges.

• A set B ⊂ N ′ ×N ′ of binding edges, labeled by
≥ or =.

For a graph to be well-formed, it must satisfy
some properties; for example, arities of constructors
must be respected. In particular, the binding graph
must be a tree, whose leaves are labeled by ⊥. Addi-
tional conditions must hold so that the graph can be
written back into a type if needed.

2.2 Equivalence

Nearly all the equivalence relation on syntaxic types
is captured by the graph representation; in particu-
lar, the graph in Fig 2 is the only one representing
the type of K. Not surprisingly, the only equiva-
lence rule not captured deals with sharing between
nodes. Equivalence on graphs can be checked with a
complexity of n · α(n), where α is the inverse of the
Ackermann function, and n is the size of the graphs.

2.3 Abstraction and instance

Abstraction and instance and instance, just as in the
syntaxic presentation, are defined as least fixpoint of
relations. Presentation with graphs is simpler: less
rules are needed (2 instead of 3 for abstraction, 4
instead of 51), and they are simpler to understand.

We propose an algorithm which checks whether
two graphs are instance one of the other; this algo-
rithm does not rely on the unification algorithm to
work. We also show that instance derivations can be
rearranged, so that rules are always used in a cer-
tain order. This greatly simplifies reasoning about
derivations.

3 Unification

Given two graphs G1 and G2, the unification algo-
rithm returns a graph G that is an instance of G1

and G2 if it exists, and fail otherwise. It can be de-
composed in 3 parts:

1Rules are not presented here by lack of space.

1. Construction of the shape of the unifier.

This is just a first-order unification on the struc-
ture graphs of G1 and G2.

2. Construction of a possible binding struc-

ture. Given the binding graphs of G1 and G2,
and the shape of the unifier, we compute a more
general binding graph for the result.

3. Verification of instance. We check that the
operations which took place in step 1 were cor-
rect.

The algorithm is both correct (G is indeed an in-
stance of G1 and G2) and complete (if a such G ex-
ists, it will be found). Moreover, since the algorithm
is not recursive, termination is easy to prove, and
we can easily derive a complexity bound, something
which had not been previously done in MLF.

References

[LB04] Didier Le Botlan. MLF : Une extension de
ML avec polymorphisme de second ordre et
instanciation implicite. PhD thesis, Ecole
Polytechnique, May 2004. 326 pages.

[LBR03] Didier Le Botlan and Didier Rémy. MLF:
Raising ML to the power of System-F. In
Proceedings of the International Conference
on Functional Programming (ICFP 2003),
Uppsala, Sweden, pages 27–38. ACM Press,
August 2003.

2

