
A graph representation of MLF

types, and a simple, efficient

unification algorithm

Didier Rémy, Boris Yakobowski

INRIA Rocquencourt

Why MLF?

ML System F

Full type inference Explicitely typed
(Good) (undecidable type inference)

Outer ∀ Inner (1st class) ∀ (Good)
∀αβ (α → β) → α t → β t λ(f : ∀α.α → α)(f [int] 1, f [char] ′c′)

MLF

I Type all ML programs (type inference)

I Encode all System F programs

I Annotations on λ-abstractions whose arguments are

polymorphically used (and only them)

Example: type of choose id

System F MLF

id = λx.x ∀α. α → α ∀ (α ≥ ⊥) α → α

choose ∀γ. γ → γ → γ ∀ (γ ≥ ⊥) γ → γ → γ

In System F, two diffent typings:

choose [∀α · α → α] id : (∀α · α → α) → (∀α · α → α)

Λα · choose [α → α] (id α): ∀α · (α → α) → (α → α)

In MLF:

choose id: ∀ (β = ∀ (α) α → α) β → β (σ1)

: ∀ (α) ∀ (β = α → α) β → β (σ2)

σ = ∀ (β ≥ ∀ (α) α → α) β → β is another principal typing.

MLF with syntaxic types

Syntax of types:

Monotypes : τ ::= α | τ → τ ′

Polytypes : σ ::= τ | ⊥ | ∀ (α ≥ σ) σ′ | ∀ (α = σ) σ′

Translation from the types of System F :

[[α]] = α

[[∀α · t]] = ∀ (α ≥ ⊥) [[t]]

[[t1 → t2]] = ∀ (α1 = [[t1]]) ∀ (α2 = [[t2]]) α1 → α2

Instance relation

The instance ≺ relation should be as general as possible, while

remaining sound and implicita. But full generality and type

inference are incompatibleb.

We split ≺ in two subrelations v and @− named instance and

abstraction such that :

I ≺= (v ∪ A−)? is sound

I @− ⊂ v

I v is implicit

I @− is explicitely reversible (and should be as small as possible)

Equivalence (≡) is the kernel of the instance relation. It deals
aNeeded for type inference
bOtherwise, we would get a system as general as System Fwith decidable type inference

with commutations of binders, sharing of monotypes, removal

of unnecessary binders (∀ (α = σ) α ≡ σ)

Difficulty with the current presentation

I Canonical form w.r.t the equivalence relation cannot be

preserved by abstraction and instance. Equivalencea shows

up during proofs.

I The abstractionb and instancec relations are defined by

purely syntactic means, without much support for intuition.

They are only justified by the properties of MLF.

a6 non-trivial rules
b4 rules
c6 rules

Contributions

I Graphs have already been proposed as a simpler

representation for types, but were not formalized

I Complexity of the unification algorithm is unknown

I Reasoning about MLF is heavya, even though the

presentation is not that complicated

aDidier Le Botlan’s PhD thesis is 320 pages longs

MLF with graphs

Types are represented by graphs. More precisely, a dag

structure represents the skeleton of the type, and a tree the

binding structure.

σ = (int → float) → (int → float)

→

→

int float

σ′ = ∀ (α ≥ ⊥) ∀ (β = ∀ (γ ≥ ⊥) γ → α) β → β

→

→
β

⊥
γ

⊥
α

MLF with graphs

Types are represented by graphs. More precisely, a dag

structure represents the skeleton of the type, and a tree the

binding structure.

σ = (int → float) → (int → float)

→

→

int float

σ′ = ∀ (α ≥ ⊥) ∀ (β = ∀ (γ ≥ ⊥) γ → α) β → β

→

→
β

⊥
γ

⊥
α

Translation from syntaxic graphs

I Translation of monotypes is straightforward

I Translation of ∀ (α = σ) σ′ is inductively defined.

(same for flexible bounds)

1. Convert σ to G.

2. Convert σ′ to G′. α is a free variable of σ′,

and appears as a free node in G.

3. Join G and G′.

4. Bind the node corresponding to α to the

root of G
′ (if there is polymorphism in G). G

G′

� α

G

�

Induce some well-formedness conditions for the binding graph.

Equivalence of graphs

Equivalence on graphs is only sharing or unsharing of

monomorphic nodes.

→

→

→

int ⊥

≡

→

→

→ →

int ⊥

Equivalent syntaxic types are translated to equivalent graphs,

and reciprocally.

Instance on graphs: Inst rule

The Inst rule allows to replace a ⊥ node by a new graph. It is

similar to the standard ML rule for instantiation, except it can

introduce more polymorphism.

list

→

→ ⊥

int ⊥

v

list

→

→ →

int ⊥ int ⊥

Instance on graphs: Merge rule

The Merge rule allows to merge together two subgraphs bound

to the same node which are identical.

list

→

→ →

int ⊥ int ⊥

v

list

→

→

int ⊥

Instance on graphs: Extrude rule

The Extrude rule permits to lift a binder on top of another.

This decreases the rank of the polymorphism of the type.

list

→

→

int ⊥

v

list

→

→

int ⊥

Instance on graphs: Rigid rule

A flexible binder can be turned into a rigid one through the

Rigid rule.

list

→

→

int ⊥

v

list

→

→

int ⊥

Restrictions to instance

Instantiation through any of the previous rules can only happen

on nodes which are at a flexible path from the root of the

graph. Instantiation under a rigid bound is forbidden.

list

→

→

int ⊥

6v

list

→

→

int ⊥

6v

list

→

→

int float

Instance: properties

Instance also includes Abstraction, which permits Merge and

Extrude for nodes which are at a path allowing abstraction.

⇒ Instance includes exactly 6 different rules, which can be seen

as conditional rewriting steps on graphs.

Instance on graphs and instance on syntaxic types permit to

derive the same judgments (w.r.t the conversion functions).

Rules of an instance derivation can be ordered:

1. All Inst steps

2. All Extrude steps

3. Merge and Rigid intermingled

Unification algorithm

Given G1 and G2, we want to find the most general graph G

such that G1 v G and G2 v G.

1. First-order unification of the structure graph of G1 and G2.

Gives the skeleton S of G.

2. Bind the nodes of S, using the binders of G1 and G2. This

gives a possible G.

3. Check that G is indeed an instance of G1 and G2 (in fact,

only the uses of the Merge rules). If not, there is no unifier.

Unification: properties

I Sound algorithm (always returns an instance of G1 and G2)

I We are currently proving principality

I Good complexity: linear in the sizes of the input graphs.

I For ML types, the algorithm simplifies to the standard

1st-order unification algorithm.

Conclusion

I More readable types

I Simpler proofs and rules

I Presentation more intuitivea and more canonical

I Complexity of the unification algorithm is now known

aRules are what one would expect on graphs

