
A Graphical Presentation ofMLFTypes with
a Linear-Time Unification Algorithm.

Didier Rémy Boris Yakobowski
INRIA Rocquencourt

http://gallium.inria.fr/∼remy http://www.yakobowski.org

Abstract
MLF is a language that extendsML and SystemF and combines
the benefits of both. We propose a dag representation ofMLF

types that superposes a term-dag, encoding the underlying term-
structure with sharing, and a binding tree encoding the binding-
structure. Compared to the original definition, this representation
is more canonical as it factors out most of the notational details; it
is also closely related to first-order terms. Moreover, it permits a
simpler and more direct definition of type instance that combines
type instance on first-order term-dags, simple operations on dags,
and a control that allows or rejects potential instances. Using this
representation, we build a linear-time unification algorithm for
MLF types, which we prove sound and complete with respect to
the specification.

Categories and Subject Descriptors F.3.3 [Logics and Mean-
ings of Programs]: Studies of Program Constructs—Type struc-
ture; D.3.3 [Programming Languages]: Language Constructs and
Features—Polymorphism; E.1 [Data Structures]: Graphs

General Terms Algorithms, Design, Languages

Keywords SystemF, MLF, Unification, Types, Graphs, Binders

Introduction
The languageMLF [7] has been proposed for smoothly combining
the advantages ofML-style type inference [2] with the expressive-
ness of System-F first-class polymorphism [4].MLF is a conserva-
tive extension ofML that allows to type all System-F terms [7].
MLF terms are partially annotated. All functions that use theirpa-
rameter in a polymorphic way—and only those—need an annota-
tion. In particular,ML terms do not.

MLF comes with a type inference algorithm: every well-typed
source program provided with some annotations has a principal
type—i.e. one of which all other correct types areinstances. The
typing rules ofMLF are a simple generalization of those ofML,
and are quite straightforward. Moreover, they can be presented as a
particular instance of a simple generic type system that generalizes
both ML and SystemF [8]. This system is parameterized by the
exact language of types and atype instancerelation between types.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

TLDI’07 January 16, 2007, Nice, France.
Copyright c© 2007 ACM 1-59593-393-X/07/0001. . . $5.00.

Unfortunately, while type instance and a subrelation called ab-
stractionplay a key role inMLF, they are defined by purely syn-
tactic means and with little intuitive support. So far, these rela-
tions were mainly justified a posteriori by the properties ofMLF.
A more semantic-based definition has been proposed but only for
a significant restriction of the language and only for the instance
relation [8].

We propose an alternative definition of types based on an
(acyclic) graph representation. More precisely, types have an under-
lying term-graph structure, similar to the representationof simple
types with sharing, an additional binding tree, and furtherproper-
ties relating the two. The existence of a graphic presentation for
MLF-types had already been suggested [6], but it was not suf-
ficiently well-understood to be used formally. Graphic types are
more canonical, as they factor out most of the syntactical artifacts
that can be found in the original definition ofMLF.

We define instantiation on graphs as a combination of simple
transformations that include the following three parts: instantiation
of the first-order term-graph, simple transformations on the bind-
ing tree, and a control process based on flags attached to the bind-
ing tree. Equivalence on syntactic types becomes, on graphic types,
equality up to the sharing of monomorphic nodes—a much sim-
pler relation. Syntactic types in the original instance relation are
mapped to graphic types in instance relation (modulo equivalence),
and conversely—both in linear time.

We also present a sound and complete linear-time unification
algorithm on graphic types that implements unification on the cor-
responding syntactic types.

The paper is organized as follows. First, we recall the definition
of syntacticMLF types (§ 1) and introduce their graphic represen-
tation (§ 2). Then, we present the instance relation on graphs and
some of its properties (§ 3). Finally, we describe the unification al-
gorithm and its correctness proof (§ 4).

Full technical details and proofs can be found in the extended
version of the paper [12]. A color version is also available at
http://gallium.inria.fr/∼remy/project/mlf/.

1. A brief introduction to (syntactic) MLF

1.1 MLFsyntactic types

MLF types are parameterized by a set of of type symbolsΣ, includ-
ing at least the arrow symbol→. We distinguish first-order typest
from second-order typesσ; both are defined by the following gram-
mar in BNF form.

t ::= α | t → t | . . .
σ ::= t | ⊥ | ∀ (α ⋄ σ) σ
⋄ ::= ≥ | =

http://gallium.inria.fr/~remy
http://www.yakobowski.org
http://gallium.inria.fr/~remy/project/mlf/

A first-order typet is defined as usual. A syntactic typeσ is a
first-order typet, a bottom type⊥ (that intuitively stands for the
System-F type ∀α.α), or a quantified type of the form∀ (α ⋄
σ) σ′. A difference with System-F is that quantification always
assign bounds to variables, which are themselves second-order
types. Bounds are eitherrigid when introduced with the= flag, or
flexiblewhen introduced with the≥ flag. Intuitively, the meaning
of α ⋄ σ is thatα ranges over types that are either equivalent to
σ when the bound is rigid, or an instance ofσ when the bound is
flexible.

The type∀α. α → α of SystemF can be represented inMLFas

∀ (α ≥⊥) α → α. (σid)

In examples, we often omit trivial bounds and write∀ (α) σ for
∀ (α ≥ ⊥) σ. The System-F type (∀α. α → α) → (∀α. α → α)
cannot be represented directly, as the grammar forbids suchtypes
asσid → σid . We instead use an auxiliary variable with a rigid
bound and write

∀ (β = σid) β → β. (σ1)

One may still, at first, understand rigid bounds by expansionas if
σ1 standed for the ill-formed typeσid → σid .

In MLF, we can also write the type

∀ (β ≥ σid) β → β. (σ2)

Syntactically, it only differs fromσ1 by changing the rigid bound
into a flexible one. This time however, expansion would be a mis-
leading intuition—otherwise, rigid and flexible bounds would make
no difference. Intuitively,σ2 should rather be understood by the set
of its instances, that is, all types∀ (β =σ) β → β such thatσ is an
instance ofσid . In fact,σ1 is itself an instance ofσ2.

The auxiliary variableβ is used to share the two instances ofσ
on the left and right sides of the arrow. Thus,σ2 is quite different
from the type

∀ (β ≥ σid) ∀ (β′ ≥ σid) β → β′, (σ3)

which stands for all types∀ (β = σ) ∀ (β′ = σ′) β → β′ such
that σ andσ′ are independentinstances ofσid . This is similar to
the difference between types∀γ.γ → γ and∀γ.∀γ′.γ → γ′ in
System-F.

Combining both forms of quantification, the type

∀ (β = σid) ∀ (β′ ≥ σid) β → β′ (σ4)

may be understood as the set of all types∀ (β = σid) ∀ (β′ = σ)
β → β′ (i.e. intuitively σid → σ) such thatσ is an instance ofσid .

1.2 Type instance

A peculiarity of MLF is its sophisticated instance relation⊑ that
can operate deeply under other quantifiers and, indirectly,under
type structure, as illustrated with typeσ4 above.

While flexible bounds are often used in covariant contexts and
rigid bounds in contravariant ones, quantification inMLF also al-
lows to instantiate the (flexible) bound of a variable that appears
both covariantly and contravariantly, as inσ2. This is actually
a key to having principal types inMLF. This is made possible,
while maintaining type-soundness, by enforcing all occurrences of
the bound to simultaneously pick the same instance: the weaker
the types in contra-variant position (typically of arguments), the
weaker the types in co-variant position (typically of results).

Instantiation is always safe—and permitted—under flexible
bindings, whichprovide some polymorphism but did not request
it. Conversely, it is generally unsafe—and forbidden—under rigid
ones, whichrequiresome polymorphism, and might have assumed
it. While a function of type∀ (α) α → α can be safely considered
as a function of typet → t for any monotypet, it would be unsafe

to consider a function of type∀ (β = σid) β → β as a function
of type∀ (β = t → t) β → β: the former requires its argument
to be polymorphic (and returns a polymorphic result) while the lat-
ter only requires its argument to be of typet → t. In the second
case, this argument could then be erroneously applied to values of
unexpected type.

While rigid bounds that occur in contravariant position cannot
be instantiated for soundness of type-checking, it is a key design
choice to forbid instances of all rigid bounds, so that type instan-
tiation is then only driven by bound flags and never looks at vari-
ances. This makes type inference decidable, tractable, andactually
relatively simple.

Still, it would always be sound and often useful to treat a
function of typeσ1 as a function of typeσ4. To circumvent this
limitation—and recover all uses of polymorphism—MLF intro-
duces type annotations(: σ) that behave as explicit retyping
functions of type∀ (α = σ, α′ ≥ σ) α → α′. That is,(a : σ)
explicitly requiresa to have typeσ, and then allows it to be used
with an instance ofσ.

In fact,MLFstill allows a very restricted form of instance under
rigid bounds, calledabstractionand written⊏−. Typically, abstrac-
tion may increase sharing by merging two variables with the same
rigid bound, but may not instantiate flexible bounds. For instance,
σ1 is an abstraction of∀ (β = σid , β′ = σid) β → β′—but not
the converse. Abstraction may be distinguished from general in-
stances, as its inverse relation⊐− is sound and is only disallowed
in order to keep type inference decidable. The remaining reversible
part⊏− ∩ ⊐−, called type equivalence and written≡, captures syn-
tactic artifacts such as renaming of bound variables, commutation
of adjacent binders, removal of useless binders, and such.

In the original definition of type instance, places where inner in-
stantiation or abstraction may actually occur are implicitly defined
by contextual inference rules. Namely, instantiation may only oc-
cur under flexible quantifiers, called a flexible context, andabstrac-
tion may only occur under a sequence of rigid quantifiers itself in a
flexible context. For example, abstraction is disallowed inthe inner
boundα3 of ∀ (α1 =∀ (α2 ≥∀ (α3 =σ3) σ2) σ1) σ. While such a
transformation appears to be sound from a semantic point of view,
its naive integration would surprisingly break type soundness via
ad hoc intricate interaction with type equivalence.

One of our main contributions is to revisit the instance relation
(§ 3) using a graph presentation of types (§ 2). This new presenta-
tion eliminates most of the syntactic artifacts and so is more direct,
allows more support for intuition, and supports extensionsof the
abstraction relation just mentioned without endangering soundness.

2. Graphic types
We remind of the graph representations of first-order types,which
is often used—behind the scene—in efficient unification algo-
rithms. We then introduce graphical notations on the well-known
System-F types, as they offer a good support for intuitions. We
finally define the representation ofMLF types as a refinement of
System-F types.

2.1 Representing first-order types

First-order types are usually understood as trees. For example, the
tree (1) of Figure 1 represents the typeα → (β → α). However,
it is sometimes convenient to identify all variables with the same
name as shown in the dag (2). Efficient unifications algorithms
often use such a graph representation explicitly, when described
as imperative algorithms, or implicitly [5]. In fact, they not only
share variables of the same name, but may also share inner nodes
with identical subtrees, as illustrated with the representation (3) of
(α → β) → (α → β).

→

α

1

→
2

β

1

α

2

(1) As a term

→

→
2

β

1

α

2

1

(2) As a dag.

→

→

1 2

α

1

β

2

(3) Dag.

∀

α

1

→
2

∀

β

1

→

2

β

1

α

2

α

2

(4) Second-order term

∀

→
2

∀
1

→
2

β
1

α

2

1

2

1

(5) Second-order dag

→

→

2

β

1

α

2

1

(6) binding
edges

→

→

2

β

1

α

2

1

(7)

→

→

2

⊥

1

⊥

2

1

(8) anonymous
variables.

Figure 1. Representations of first- and second-order types.

In the rest of this paper, we callterm-grapha graph representing
a first-order term that enforces the use of a single node for all
occurrences of the same variable. Conversely, we callskeletonthe
tree expansion of a term-graph.

A more formal presentation of term-graphs can be found in the
Appendix (§A).

2.2 Representing second-order types

Traditionally, binders are represented with an explicit node labeled
with a special symbol∀ of arity two. For example, the System-F
type∀α.(∀β.β → α) → α is usually represented as the tree (4) of
Figure 1. Using dags, we may represent it as in (5).

We may in fact remove the quantifier node and instead introduce
abinding edgebetween the bound variable and the node just above
which it is bound, as illustrated in graph (6). We have oriented
the binding edge from the bound variable to its binding node,for
convenience.

Notice that this notation looses the order of adjacent binders
and useless binders—two artifacts of the syntactic notations that
we are so happy to eliminate. For instance,∀α.∀β.(β → α) → β,
∀β.∀α.(β → α) → β and∀γ.∀α.∀β.(β → α) → β will all have
the same representation (7).

Finally, as quantified variables are treated moduloα-renaming,
we may advantageously draw them anonymously, as in (8). For that
purpose, we introduce a new kind of node⊥, called abottom node
to mean “a variable”. The bottom sign⊥ is not a true symbol (and
not an element ofΣ) as it does not clash with other symbols during
unification. We intendedly reuse the same notation as the bottom
type of syntacticMLF types, since the notation “∀ (α ⋄ ⊥)” plays
the same role as “∀α.” in System-F types.

→

→

1 2

⊥

1 2

σ1

→

→

1 2

⊥

1 2

σ2

→

→

1

⊥

1 2

→

2

⊥

1 2

σ3

→

→

1

⊥

1 2

→

2

⊥

1 2

σ4

Figure 2. Examples of graphicMLF types.

Nodes in graphs Let us introduce our convention for naming
nodes in graphs. In the remainder of the paper, we designate a
noden by the set of paths along which it can be reached from the
root. Paths are obtained by following the arities on the structure
edges of the graphic representation of the type. (In the following
we often leave arities implicit, as we always write structure edges
downwards and from left to right.) Letterπ ranges over paths and
ǫ stands for the empty path. As a path belongs to at most one node,
we may write〈π〉 for the noden that containsπ.

Consider for example, type (3) of Figure 1: node{ǫ} is the
root, labelled by→; Both 〈1〉 and 〈2〉 designate the same node
immediately below the root, reachable by the left or right paths.
The node labelledα can be reached by the two paths11 and21;
hence we may designate it by〈11〉, 〈21〉, or its full name{11, 21}.

2.3 RepresentingMLF types

Let us illustrate the graphic representation ofMLF types on the four
typesσ1, σ2, σ3, andσ4 introduced earlier (§ 1.1) and drawn in
Figure 2. As for SystemF, we draw binding edges from nodes to
their binding node, but use two kinds of edges to distinguishbe-
tween flexible and rigid bindings, represented by dotted anddashed
lines respectively. In addition, we represent the bound of the vari-
able in place of the unique node representing that variable.Hence,
non-bottom nodes now also have binding edges. For instance,the
graph representingσ3 contains at the node〈1〉 a subgraph repre-
senting the boundσid of the variableα. This node is itself bound
at the root. For bottom bounds, we thus recover the representation
of variables for System-F types. For example, node〈11〉 of σ3 is a
bottom node.

Notice that sharing of nodes that are not variables is possible
(and significant). InMLF, σ4 (in which the two occurrences ofσid

may be instantiated separately) is quite different fromσ3 (in which
both sides of the arrow must be instantiated simultaneously). This
is reflected in the graphic presentation by the fact that there are two
occurrences of the graph representingσid in σ4, but only one inσ3.

We are now able to characterize graphic types,i.e. graphs rep-
resentingMLF types. We first define pre-types, and then state well-
formedness conditions they must satisfy in order to be types.

DEFINITION 1. A (graphic) pre-typeτ is a pair of:

1. A term-graph̊τ , whose nodes are labelled by elements ofΣ or
⊥. The bottom nodes must be leaves and the other nodes must
respect the arity of their symbol.

2. A binding tree≻τ for τ̊ . That is, a set of binding edges labelled
with flags that form an upside-down tree rooted at〈ǫ〉 and
whose leaves include all bottom nodes. �

Remark that all bottom nodes need to be bound. Hence, we may
only representclosedMLF types.

Conversely, not all nodes need to be bound. We callpolymor-
phic (resp.monomorphic) the nodes ofτ that are bound (resp.un-
bound). For instance, node〈12〉 in τ on Figure 3 is monomorphic.

(τ) →

→

→

→

⊥

→

(τ ′) →

→

→

→

⊥

→

Figure 3. Illustration ofgc.

(τ1) →

→

⊥

→

⊥

(τ2) →

→

→

⊥ ⊥

n′′

n′

+ +

n

+

Figure 4. Invalid graphic types and diagram for scope nesting.

Useless binding edges In fact, according to Definition 1, non-
bottom nodes with no incoming binding edge need not be bound.A
binding edge leaving from such a node may then be deleted. This
deletion preserves well-formedness and also the intuitivemeaning
of types,i.e. the two pre-types before and after deletion represent
the same syntactic type. Given a pre-typeτ , we write gc(τ) for
the result of recursively deleting all such edges fromτ . Computing
gc(τ) can be done in linear time, by a depth-first traversal ofτ .

Let us consider again the pre-typeτ of Figure 3: the binding
edges leaving from nodes〈111〉 and〈12〉, and, in turn, the one leav-
ing from node〈1〉 can be deleted. The only (mandatory) remaining
binding edge is the one leaving from the bottom node. Hence, the
resulting pre-typeτ ′ is gc(τ).

Notations In the text, we writen ◦−→ n′ ∈ τ (resp.n
⋄

≻−→ n′ ∈
τ) to mean that there is a structure edge (resp. binding edge with
flag ⋄) from n to n′ in τ . We may drop “∈ τ ” when τ is implicit
from context. We may also drop the flag if it is unimportant. If
n

⋄
≻−→ n′ ∈ τ , we also write

⋄
τ (n) and≻τ (n) (or simply≻n) for ⋄

andn′, respectively. We calln′ thebinder of n and we say thatn
is bound atn′. Finally,τ (n) denotes the symbol on the noden. We
use+ and∗ on top of arrows to denote the transitive closure and
the reflexive transitive closure of the corresponding relation.

2.4 Well-formedness

All pre-types are not types. Types must correspond to syntactic
types, hence ensure that variables have lexical scopes and that
variables bounds are not mutually recursive. Figure 4 provides two
examples of ill-formed binding trees:

• In pre-typeτ1, the node〈21〉 is bound at a node that is not
among its parents, which is not permitted: in a syntactic presen-
tation, the anonymous variableα used to represent the binding
would be introduced on the left branch and used on the right
branch, where it is out of scope.

• In pre-typeτ2, the nodes〈1〉 and 〈11〉 are bound at the root.
When translating the graph to a syntactic type, if we try to bind
〈11〉 first, we must refer to〈112〉 which is bound under〈1〉.
Conversely, if we choose to bind〈1〉 first, we must use〈11〉 in

Perm Name Allows Binding Path

F Flexible Instance ≥∗

R Rigid Abstraction (≥|=)∗ =

L Locked Nothing (≥|=)∗ = ≥+

F

R

L

Figure 5. Permissions for the instance relation.

the bound of〈1〉 while this node is not bound yet. Hence,τ2 is
not a type.

Before we present the well-formedness condition failed byτ1, we
recall the definition of dominators.

DEFINITION 2 (Dominators).Letg be a term-graph andn andn′

two nodes ofg. We say thatn dominatesn′, and we writen ∢ n′

if every path from the root ton′ goes throughn. �

For example, in typeσ2 of Figure 2,〈1〉 dominates〈11〉, as all four
paths11, 12, 21 and22 to 〈11〉 go through〈1〉. On the other hand,
in the second type of Figure 1,〈2〉 doesnot dominate〈22〉. Indeed,
path1 does not go through〈2〉. Notice that domination is a partial
order on nodes.

DEFINITION 3 (Domination).The binding tree of a pre-typeτ is
well-dominatedif every bound node is dominated by its binder,i.e.,
∀n, n′ ∈ τ, n ≻−→ n′ impliesn′

∢ n. �

Domination rules out typeτ1 of Figure 4, in which node〈1〉 does
not dominate node〈21〉.

To rule out typeτ2 we introduce the following condition:

DEFINITION 4 (Nesting).The binding tree of a pre-typeτ is well-
nestedif for any nodesn, n′ and n′′ such thatn ≻−→ n′′ +

◦−→

n′ +
◦−→ n, we also haven′ +

≻−→ n′′. �

This condition is presented as a diagram on the right side of Fig-
ure 4. On this diagram, binding edges are drawn with solid lines to
mean that they may indifferently be rigid or flexible. The conclu-
sion of the diagram is represented as a double line.

The pre-typeτ2 is not well-nested: the premises are met when
taking〈112〉 for n and〈11〉 for n′, but〈11〉 is bound at〈1〉, above
the binding node〈1〉 of 〈112〉.

DEFINITION 5 (Types).A (graphic) typeis a well-dominated well-
nested pre-type. �

3. Instance relation on graphic types
This section presents the instance relation on graphic types. The
relation can be decomposed into local atomic transformations on
types, each of them transforming either the underlying term-graph
of the graphic type, or its binding tree. However, these transforma-
tions are only allowed in certain contexts determined by thebinding
structure. We abstract this contextual information aspermissions.

3.1 Permissions

Permissions may be seen as additional information attachedto
every bound node by a preprocessing step. There are three different
permissions:Flexible, Rigid andLocked, abbreviated byF, R, and
L respectively, and listed in strictly decreasing order—i.e. fewer
transformations are permitted onL-nodes than onF-nodes.

To each permission intuitively corresponds a class of transfor-
mations that will be allowed at nodes having this permission. In-
stance transformations are permitted at flexible nodes. In general,

they are semantically not reversible,i.e. the inverse transformations
would be unsound. Abstraction transformations are a subsetof in-
stance transformations that are still permitted at rigid nodes. Re-
versing abstraction transformations is not technically allowed for
type inference purposes, although this would be sound.

The permission of a node is uniquely determined by the se-
quence of flags along the path in the binding tree leading to that
node. Remember that the binding tree (and hence the binding paths)
walks the binding edges in inverse direction, from the root to the
node. For example, in Figure 2, the binding path of nodes〈11〉 and
〈2〉 of typeσ4 are(=≥) and(≥) respectively.

The permission system is given by a functionP from strings of
flags to the set{F, R, L}. Then, the permission of a bound noden
of a typeτ may be computed asP(⋄) where⋄ if the binding path
of n in τ .

The simplest way to defineP is by a finite automaton, given
in Figure 5. The states of the automaton are the three permissions,
with F being the initial state (i.e. also the permission of the root
node). Transitions are (inverse) binding edges labeled by their flag.
The permissionP(⋄) is the state the automaton reaches when given
the string⋄ as input. It is striking on this definition that flexible
nodes form a prefix of the binding tree, followed by an alternation
of rigid and locked regions as flags alternate. It can also be noticed
that the permission of a node determines the flag of the binding
edge leaving that node.

Permissions are summarized in the table of Figure 5. The bind-
ing path column is given as a regular expression that describes the
sets of binding paths having the corresponding permission.The col-
ors of the rows of this table are sometimes used in drawings below
to remind of the permissions unobstructively. For example,permis-
sions are explicitly drawn on all types of Figure 6. For instance,
node〈11〉 of typeτ1 is rigid—its binding path is≥=.

More restrictive permissions The looser the permissions, the
larger the instance relation, the more “inference”. Of course, per-
missions should remain within the limit of type soundness. The
permissions we have described above are a slight generalization of
the ones that could be reconstructed from a careful reading of the
syntactic instance relation, and described by the following automa-
ton:

F R L

The difference lies in the set of rigid nodes. In the syntactic permis-
sions, one can only encounter some flexible flags followed by rigid
ones; afterwards, all the permissions are locked. With our looser
definition, rigid binding edges behaves as a “protection” and reset
locked-nodes to rigid ones. We have good reasons to believe that
looser permissions preserve type soundness—-a formal verification
is ongoing work. A variant of looser permissions was initially sug-
gested by François Pottier on syntactic types.

Interestingly, the instance relation is implicitly parameterized
by the permission systemP: all results depending on permissions
are obtained through lemmas that abstract over important proper-
ties of permissions, and thus apply to all permission systems that
satisfy those lemmas. Hence, we may easily fall back to the stricter
permissions, if ever need be.

3.2 Instance operations

We now classify the different ways in which two types may be
in an instance relation. We isolate atomic instance relation steps
that instantiate either the term-graph or the binding tree.Moreover,
each step is controlled by the permissions of the node it operates
on. Figure 6, which is used throughout this section, introduces a
sequence of types, each of which is in a particular form of instance
relation with it successor as shown at the bottom of the figure.

(τ1) →

→

→

⊥

→

⊥

⊥

(τ2) →

→

→

⊥

→

⊥

→

→

⊥ ⊥

→

⊥ ⊥

→ (τ3)

→

→

⊥ ⊥

→ (τ4)

→

→

⊥ ⊥

→

⊥ ⊥

→ (τ5)

→

→

⊥

→

⊥

(τ6) →

→

→

⊥

→

⊥

→

→

⊥

→

⊥

(τ7) →

→

→

⊥

→

⊥

(Rhombuses nodes abbreviate constant parts of the types)

τ1 ⊑G τ2 ⊑R τ3 ⊑R τ4 ⊑M τ5 ⊑W τ6 ⊑M τ7

Figure 6. Example of type instance.

We identify exactly four atomic transformations on types,graft-
ing andmergingthat essentially operates on the underlying term-
graph, andraising andweakeningthat only operates on the under-
lying binding tree. Each transformation is restricted by local side
conditions on binding edges and permissions.

We examine each of the four transformations in more detail
below. For each operation both a schematic depiction and a formal
definition are given—most of the technical details may safely be
skipped on a first read.

3.2.1 Grafting

⊥

⊑G

τ ′′

→

⊥

⊑G
→

→

⊥

⊑G
→

→

→

⊥

Figure 7. Sketch and example of grafting.

Grafting corresponds to the operation of substituting a polymorphic
type variable by a type, as can be done inML. It is a semantically
irreversible transformation as the skeleton of the type changes, and
thus it can only occur at flexible nodes.

DEFINITION 6 (Grafting).A typeτ ′ is a grafting of a typeτ if τ ′

is obtained by replacing a flexible bottom node ofτ by a typeτ ′′.
We writeGraft(τ ′′, n) for the functionτ 7→ τ ′ and ⊑G for

the reflexive transitive closure of the relationτ R τ ′ defined by
∃n,∃τ ′′, τ ′ = Graft(τ ′′, n)(τ). �

Notice that if the typeτ ′′ to be grafted at the noden of τ is
monomorphic (i.e. its root has no incoming binding edge), then the
edgen ≻−→ ≻n may be be garbage-collected inτ ′.

Let us consider some examples. The left part of Figure 7
presents a schematic depiction of grafting. In Figure 6,τ1 ⊑G τi

holds for2 ≤ i ≤ 6, the grafting occurring at node〈2〉. The right
part of Figure 7 shows a derivation ofσid ⊑G ∀ (α ≥ σid) α →
α ⊑G ∀ (α≥∀ (β≥σid) β → β) α → α. Indeed, let us temporar-
ily call τg,1, τg,2 andτg,3 those three graphs. The three following
relations hold:
τg,2 = Graft(τg,1, 〈1〉)(τg,1) τg,3 = Graft(τg,1, 〈11〉)(τg,2)

τg,3 = Graft(τg,2, 〈1〉)(τg,1)

Henceτg,1 ⊑G τg,3 can be proved either by transitivity of the in-
stance relation applied to the two first grafting steps, or bythe sin-
gle atomic last grafting step. The fact that instantiation maintains
the original binder and permissions so as to allow further refine-
ments is particularly striking on graphic types.

3.2.2 Merging

n1

⋄

τ

n2

⋄

τ

⊑M

n

⋄

τ

n1

τ

n2

τ

⊑M

n

τ

Figure 8. Sketch of merging.

Merging can be explained in two steps. Ignoring binding edges
at first, merging two bottom nodes is akin to saying thatα →
α is an instance ofα → β. Non-bottom nodes may also be
merged, which increases sharing but leaves the underlying skeleton
of the type unchanged. Now, taking back the binding structure into
account, we also require that merged nodes agree on their binding
edges,i.e. that their binding edges have the same flag and lead to
the same (or merged) parents nodes.

The general form of merging is sketched on the left side of
Figure 8. The type on the left is such that its subgraphs underthe
nodesn1 andn2 are equal. Some subparts of the subgraphs can
already be shared, hence the overlap in the sketch. Moreover, n1

andn2 must be bound at the same node, with the same flag. They
can be both flexible or both rigid, but not locked (we represent them
in grey and crossed to remind of this fact). Mergingn1 andn2 in
the type on the left yields the one on the right, in which the identical
subgraphs have been fused.

Simple examples of merging are presented in Figure 6, where it
is used thrice. Two pairs of bottom nodes are merged independently
in type τ4, 〈211〉 and〈212〉 on the one hand,〈221〉 and〈222〉 on
the other hand, leading to typeτ5. In typeτ6, the subgraphs under
〈1〉 and〈2〉 are merged, resulting inτ7.

A particular case of merging is when all the merged nodes are
monomorphic, which is depicted on the right side of Figure 8.

We callmergedtwo nodes which were initially different, but are
mapped into the same node by the merge. The formal definition of
merging adds an additional condition on binding edges, explained
below.

DEFINITION 7 (Merging). A typeτ ′ is a merging of a typeτ at
nodesn1 andn2 of τ if the following conditions hold:

(1) the subgraphs ofτ undern1 andn2 are equal;
(2) τ ′ is the result of merging those two subgraphs inτ ;

(τ) →

→

⊥ ⊥

→

⊥ ⊥

(τm) →

→

⊥ ⊥

→

⊥

(τm′) →

→

⊥ ⊥

Figure 9. Merging conditions.

n

⋄

⊑R

n

⋄ n

≥

⊑W

n

=

Figure 10. Sketches of raising and weakening.

In addition, either all merged nodes are monomorphic or the two
following extra conditions hold:

(3) n1 andn2 are bound on the same node, with the same flag, and
have non-locked permissions;

(4) for any two merged bound nodesn′
1 andn′

2 respectively under
n1 and n2, n′

i must be transitively bound atni (i.e. n′
i

∗
≻−→

ni ∈ τ) for i in {1, 2}.

We writeMerge(n1, n2) for the functionτ 7→ τ ′. �

Merging of monomorphic nodes is as with first-order terms. Oth-
erwise, the interesting condition is 4, which prevents merging that
would recursively merge nodes bound aboven1 andn2. In those
cases, mergings would only be correct under a much more com-
plex control of permissions than condition 3. For example, con-
sider the typesτ , τm and τm′ of Figure 9. The typeτm′ is not
Merge(〈1〉, 〈2〉)(τ): nodes〈11〉 and 〈21〉 fail condition 4, since
〈11〉 is not bound under〈1〉 in τm′ . In this particular case, the trans-
formation can be decomposed into two atomic merges that both
satisfy condition 4:

τm′ = Merge(〈1〉, 〈2〉)(τm) τm = Merge(〈11〉, 〈21〉)(τ)

However, it is not always possible to do such a decomposition, as
permissions may prevent merging the nodes that are bound above
the nodes to be merged.

We write⊑M for the reflexive transitive closure of the relation
R defined byτ R τ ′ ⇐⇒ ∃n1, n2, τ

′ = Merge(n1, n2)(τ). We
write⊑m the restriction of⊑M to merging of monomorphic nodes
(i.e. all pairs (n1, n2) in the definition of⊑M are required to be
monomorphic.

Merging has no direct equivalent in the syntactic presentation of
MLF, and can only be obtained by a combination of several rules.
For instance, one could prove that∀ (α≥σ) ∀ (β ≥σ) α → β can
be syntactically instantiated into∀ (α≥σ) ∀ (β≥α) α → β, which
in turn is equivalent to∀ (α≥ σ) α → α. This syntactic derivation
requires to abstract the second occurrence ofσ behind the nameα,
and to replaceβ by α everywhere using the equivalence relation.
The graphic proof is direct and simpler.

3.2.3 Raising

Raising performs in essence a scope extrusion, similar to coercing
the System-F type τ ′ → (∀α.τ) into ∀α.(τ ′ → τ) wheneverα
does not appear free inτ ′. However, sharing of type variables in
MLFallows raising to soundly occur under left sides of arrows and

deeper inside types. Namely, given two successive binding edges
n ≻−→ n′ ≻−→ n′′, the first one can be raised above the second
one to yield the edgen ≻−→ n′′ whenevern is not locked.

Raising is sketched on the left side of Figure 10.

DEFINITION 8 (Raising).A typeτ ′ is the raising of a flexible or
rigid noden of a typeτ if τ andτ ′ coincide except for the binding
edges ofn, which are such thatn

⋄
≻−→ n′ ≻−→ n′′ ∈ ≻τ and

n
⋄

≻−→ n′′ ∈ ≻τ ′.
We writeRaise(n) for the functionτ 7→ τ ′ and ⊑R for the

reflexive transitive closure of the relation defined byτ R τ ′ ⇐⇒
∃n, τ ′ = Raise(n)(τ). �

In Figure 6,τ3 is a raising of node〈221〉 in τ2 andτ4 is a raising
of node〈222〉 in τ3.

After raising, the binding edgen′ ≻−→ n′′ may sometimes be
deleted, namely whenn was the only node bound atn′. This is the
case for the edge〈22〉 ≻−→ 〈2〉 of τ3, which we removed.

3.2.4 Weakening

Weakening is used to forbid irreversible instance operations to
occur underneath a node. It turns a flexible binding edge leaving
a flexible node into a rigid one, as illustrated on the right side of
Figure 10.

DEFINITION 9 (Weakening).A typeτ ′ is a weakening at a flexible
noden of a typeτ if τ andτ ′ coincide except for the binding edge

n
≥

≻−→ n′ ∈ τ , which is replaced byn
=

≻−→ n′ in τ ′.
We writeWeaken(n) for the functionτ 7→ τ ′ and⊑W for the

reflexive transitive closure of the relation defined byτ R τ ′ ⇐⇒
∃n, τ ′ = Weaken(n)(τ). �

In Figure 6, typeτ6 is a weakening ofτ5 at node〈21〉.

3.3 The instance relation

Instance is simply the union of all forms of instance operations.

DEFINITION 10 (Instance).The instance relation on types⊑ is the
reflexive transitive closure(⊑G ∪ ⊑M ∪ ⊑R ∪ ⊑W)∗ of all
forms of instances. �

Coming back to our example, we have seen above thatτ1 ⊑G

τ2 ⊑R τ3 ⊑R τ4 ⊑M τ5 ⊑W τ6 ⊑M τ7 holds. Hence,τ1 ⊑ τ7

holds by definition of⊑; note that a shortened decomposition
of this fact is τ1 ⊑G τ6 ⊑M τ7. Moreover, operations can
also be performed in a different order. However, the weakening of
node〈21〉 must always be performed after the nodes〈211〉 and
〈212〉 have been merged. Indeed, both nodes are locked after the
weakening, which prevents any further operation on them.

Notice that the graphic instance relation needs not to be defined
under prefixes, as it uses permission to deeply operate inside terms
instead. We believe that this makes the definition significantly sim-
pler than its syntactic counterpart.

The two following properties abstract over the permission sys-
tem (and so serve as interface to many proofs that do not then need
to directly refer to the definition of permissions).

PROPERTY1. The permission systemP satisfies:

1. If P(⋄1⋄2⋄3) 6= L, thenP(⋄1⋄2⋄3⋄4) = P(⋄1⋄3⋄4).
2. If P(⋄≥) = F, then P(⋄=⋄′) ≤ P(⋄≥⋄′) for the order

L ≤ R ≤ F. �

In particular, raising preserves permissions (which follows from 1)
and weakening only restricts them (which follows from 2).

Both properties are also verified by the variant of the permission
system that matches syntactic type instance.

Binding trees carry two independent pieces of information:
whereandhownodes are bound. Interestingly, the two can almost

→

→

⊥

→

⊥

→

→

⊥

→
→

⊥

Figure 11. Two similar types.

be treated independently. Thewhere is computationally essential
and determines the shape of the binding tree while thehowmostly
acts as a filter by blocking certain instances. In particular, when
raising is blocked by permission constraints, weakening never helps
(Property 1.2). This enables to perform unification by computing
the binding edges and their labeling independently (§ 4).

3.4 Similarity

As defined, the instance relation is slightly too fine grained. While
sharing of polymorphic nodes is significant, sharing of monomor-
phic nodes is semantically meaningless. Therefore, we define a
similarity relation that abstracts over those details, andquotient the
instance relation accordingly.

DEFINITION 11 (Similarity). We callsimilarity the relation(⊑m

∪ ⊒m)∗ on graphs, which is written≈. We call instance modulo
similarity the relation(⊑ ∪ ≈)∗, written⊑≈. �

An example of two similar types is given in Figure 11. The type
on the left is obtained by merging the unbound nodes〈12〉 and
〈2〉 of the one on the right. Hence, both types are similar. In the
end, we work up to similarity and are interested in⊑≈. However,
we often express results for⊑ alone, as they are stronger than the
corresponding results for⊑≈.

The similarity of two types can be checked efficiently, in linear
time in the size of the graphs. The algorithm, presented in Fig-
ure 12, merely verifies that the structures of the two types unify
without any change to their binding structure.

Input: Two typesτ1 andτ2

Output: A boolean indicating whetherτ1 andτ2 are similar

1. Compute the first-order term-graph unifier ofτ1 andτ2 (treating
⊥ as a variable). Returnfalse if it does not exist.

2. Returnfalse if an equivalence class holds any of the following:

(a) Two polymorphic nodes of the same graph,

(b) A polymorphic node and a monomorphic node,

(c) A bottom and a non-bottom node.

3. Returnfalse if two polymorphic nodes in the same equivalence
class do not have their respective binders in the same equiva-
lence class, or if they do not carry the same flag on their binders.

4. Returntrue

Figure 12. Algorithm for similarity.

The similarity relation≈ corresponds exactly to the equivalence
relation≡ in the syntactic presentation. More precisely, equivalent
syntactic types translate to similar graphic types, and, conversely,
similar graphic types translate to equivalent syntactic types. How-
ever, graphic types are more canonical than syntactic ones.Hence,
similarity is a simpler relation than equivalence. Indeed,similar-
ity does not require prefixes or context rules. Moreover, removal of
useless binders and commutation of binders are directly captured

in the graphic representation: syntactic types that differonly by ap-
plications of those rules are mapped toequalgraphic types.

In fact, similarity is the residual of equivalence on first-order
term graphs: two typesτ and τ ′ are similar if and only if their
underlying term-graphs are equivalent (i.e. the skeletons of their
terms graphs are equal) and their binding trees are equal.

3.5 Commutation lemmas

In this section, we writeR ; R′ for R′◦R, i.e. the composition of
relations defined byx (R ; R′) y ⇐⇒ ∃z, x R z ∧ z R′ y.

The instance relation is such that one may consider ordered se-
quences of instance operations without loss of generality:graftings
can always occur first, followed by raisings, and then mergings and
weakenings. This flexibility is the key to an efficient implemen-
tation of unification (§ 4). It also greatly simplifies reasoning and
proofs on instance derivations.

THEOREM 1 (Ordered derivations).The instance relation⊑ is
equal to⊑G ; ⊑R ; ⊑MW , with⊑MW = (⊑M ∪ ⊑W)⋆. �

A sequence of elementary instance transformations is called or-
deredwhen they come in the decomposition order of Theorem 1.
This is the case of the proof ofτ1 ⊑ τ7 in Figure 6.

The similarity and instance modulo similarity relations can also
be decomposed. In particular, all usages of monomorphic unshar-
ings can be pushed to the end of a derivation. This is used to prove
that unification and similarity commute.

LEMMA 1. The similarity relation≈ is equal to⊑m ; ⊒m. The
instance modulo similarity relation⊑≈ is equal to⊑ ; ⊒m. �

3.6 The abstraction relation

By comparison with syntactic types, the instance relation on
graphic types has been defined without referring to abstraction.
This section reintroduces the abstraction relation on graphic types.
Although technically unnecessary for solving unification,it re-
mains interesting for pedagogical purposes. Intuitively,abstraction
allows to perform only instance operations on rigid nodes.

The abstraction operations are sketched in Figure 13 and de-
tailed in the definition below.

DEFINITION 12 (Abstraction).The graphic abstraction relation
on types, written⊏−, is the subrelation(⊏−M ∪ ⊏−R)∗ of ⊑ where
⊏−M is the subrelation of⊑M that only merges rigid nodes and
⊏−R is the subrelation of⊑R that only raises nodes bound on rigid
nodes. �

n1

=

τ

n2

=

τ

⊏−M

n

⋄

τ

=

n

=

⊏−R

=

n

=

Figure 13. Abstraction operations.

The intuition behind the extended abstraction relation is hard to ex-
plain without referring to subject reduction. Roughly, paths of the
form ⋄=⋄′ , i.e.below a rigid flag areprotected, as they never allow
a truly flexible instance (requiring flexible permission). Moreover,
this remains true when stripping off any prefix of⋄, which simu-
lates the possible deconstruction of the type during type-checking.
Hence, performing an abstraction at path⋄= will not have more
observationable effect than performing this abstraction (later, dur-
ing deconstruction) under the flag=, which was already allowed
by the syntactic permissions.

(τ) →

τ1 τ2

(τ ′
u) →

τu

Figure 14. Encoding for standard unification.

The following commutative diagram is one of the key properties
for type soundness.

· ·

· ·

⊏−

⊑

⊏−

⊑

Interestingly, this results follows by a very simple case when rea-
soning with graphic types, while it was a difficult and technically
involved proof when reasoning with syntactic types.

In fact, when type inference is not an issue,e.g. in the type
soundness proof, we may treat types up to the relation(⊏− ∪ ⊐−)∗,
which we write⊏−⊐−. That is, we may replace type instance by the
larger relation(⊑ ∪ ⊏−⊐−)∗ [8], which we write⊑⊏−⊐−. It easily follows
from the above commutative diagram (and the fact that⊏− is a
subrelation of⊑) that ⊏−⊐− and⊑⊏−⊐− are equal to⊏−; ⊐− and⊑; ⊐−,
respectively. This also implies that the unification problem for ⊑⊏−⊐−

can be reduced to the unification problem for⊑, which we solve in
the next section1.

4. Unification
This section presents the unification problem forMLF types and an
efficient algorithm to solve it.

4.1 Unification problem

The unification problem forMLF is quite standard: given two types
τ1 and τ2, find a typeτu that unifies those types,i.e. such that
τ1 ⊑ τu andτ2 ⊑ τu. It is already known that theMLF unification
problem for the syntactic presentation isprincipal, i.e. that all
solutions are instances of a more general unifierτu [7]. However,
we propose a more general definition.

DEFINITION 13 (Generalized unification).Given a typeτ , we say
that a typeτ ′ is aunifierof a set of nodesN in τ if τ ′ is an instance
of τ in which all nodes ofN are shared. Moreover,τ ′ is aprincipal
unifier if any other unifier ofN in τ is an instance ofτ ′. �

Generalized unification is more general than unifying two types.
In fact, the latter class of problems can be encoded into the former
one. Indeed, two typesτ1 and τ2 unify if the nodes〈1〉 and 〈2〉
unify in the typeτ of Figure 14; if this is the case, an unifier ofτ1

andτ2 is the subgraph ofτ ′
u starting at node〈1〉. The reciprocal

implication also holds.
Unfortunately, generalized unification is in facttoopowerful, as

some problems can have a non-principal set of solutions—andare
in fact not useful in practice. Consider unifying the nodes〈11〉 and
〈21〉 in the typeτ of Figure 15. A first unifier isτu: the two nodes
have been raised once, and then merged. However, other unifiers
exist, includingτ ′

u which is obtained by merging the nodes〈1〉 and
〈2〉, which also indirectly merges〈11〉 and〈21〉.

There does not exist a unifier more general than those two ones,
as there is an incompatible choice to be made between raisingthe

1 However, it would be misleading to think that solving unification for ⊑⊏−⊐−

enables more aggressive type inference: on the opposite, taking ⊑⊏−⊐− for
type instance interacts with other rules in such a way that type inference
can no longer be reduced to unification (and copying) for the type instance
relation.

(τ) →

→

⊥ ⊥

→

⊥ ⊥

(τu) →

→

⊥ ⊥

→

⊥

(τ ′
u) →

→

⊥ ⊥

Figure 15. A problem without a principal solution.

edges (and merging the leaves), which irreversibly instantiates the
binding structure, or merging the upper nodes, which irreversibly
instantiates the upper nodes of the underlying term-graph.

4.2 Admissible problems

We nevertheless use generalized unification, as it is possible to
characterize an important set of problems that admit principal so-
lutions. This set includes unification under the root of the type, as
used to encode unification of two different types (Figure 14), but
also other interesting cases to be used in type inference. Wecall
admissiblethose problems.The remainder of this section, which is
a little technical, can easily be skipped on a first read.

DEFINITION 14. Given a typeτ and a set of nodesN , we say that
(τ, N) is anadmissibleproblem (or thatN is admissible forτ) if

the set of nodes{n′′ ∈ τ | ∃n ∈ N, n′ ∈ τ, n′ ≻−→ n′′ +
◦−→

n
∗

◦−→ n′} is totally ordered by the domination relation∢ on τ̊ . �

It is difficult to give an intuition of this definition withoutactually
proving that it ensures principality of unification problems. Very
roughly, non principality of unification always originatesfrom a
merging/raising competition (as illustrated on the example of Fig-
ure 15). Admissible problems will ensure that such potential con-
flicts will always occur between nodes in domination relation and
thus can only be solved by raising, as merging would create cycles
in the structure.

In the example of Figure 15, the setN = {〈11〉, 〈21〉} is not
admissible forτ or τ ′. Indeed,〈1〉 and〈2〉 (which are the binders of
〈11〉 and〈21〉, and verify the condition above) are not comparable
for ∢ in τ̊ or τ̊ ′.

As mentioned above, admissible problems subsume unification
under the root. In fact, any set of nodes “under” a given node for
◦−→ or ≻−→ is admissible. Moreover, those problems have useful
stability properties.

PROPERTY2. Consider a typeτ and a noden of τ :

• Any subsetN of {n′ n ◦−→ n′ } is admissible forτ .
• Any subsetN of {n′ n′ ≻−→ n } is admissible forτ .

SupposeN is admissible forτ . Then for any typeτ ′ such that
τ ⊑≈ τ ′, N is admissible forτ ′. �

4.3 Unification algorithm

We present our unification algorithmUnifN in Figure 16. The
algorithm takes a typeτ as input and outputs a typeτu that unifies
N , or fails. The algorithm is in two steps.

The first step unifies the nodes ofN in τ̊ using first-order uni-
fication; the result of this phase will be the structure of theunifier.
The second phase uses an auxiliary algorithmRebind (presented
in Figure 17) to build the binding tree of the unifier. Given a type
τ and a term-graph̊τu instance of̊τ (defined in Appendix A), it
returns a binding-tree≻τu such that(τ̊u, ≻τu) is an instance ofτ , or
fails.

Let us introduce some notations. We writeLCAG(n1, ..., nk)
for the least common ancestor of the nodesn1, ..., nk in a rooted

Input: A type τ and a set of nodesN .
Output: A type τu that unifiesN , or Failure.

1. Letτ̊u be the first-order unifier of the nodesN in the term-graph
τ̊ , treating⊥ as a variable.

Fail if τ̊u does not exist, or if it is cyclic.

2. Let≻τu beRebind(τ̊u, ≻τ). Fail if Rebind fails.

3. Letτu be(τ̊u, ≻τu); returnτu.

Figure 16. UnifN algorithm.

graphG. In the following, nodes ofτ are calledm while those of
τu are calledn, with the following exception: for any nodem of
τ , we writem̃ the corresponding node ofτu (i.e. the unique node
of τu whose name extends the name ofm). We say that a node
n is partially grafted if there exists a bottom nodem such that
m̃

+
◦−→ n.

The algorithmRebind proceeds in three steps.

1. Correction of the grafting steps.The first step checks that the
graftings performed to obtain the skeleton ofτu from the skeleton
of τ are allowed w.r.t. permissions.

2. Building the binding tree. The second phase binds the nodes of
τ̊u. Given a noden, it first finds the setMn of the bound nodes of
τ that are merged inton. The binding edges of those nodes (whose
ending nodes areBn

1) must be raised until they are all bound at the
same node (step 2(d)iii)2. In parallel, a new flag⋄n is computed
for n; it is the best flag common to the nodes ofMn (step 2(d)i).
Steps 2(d)ii and 2(d)iv verify that the weakenings and raisings that
have been performed respect the permissions ofτ .

The computation of≻τu is incremental and is done in a top-
down fashion: results found for the nodes that have already been
considered are reused for the nodes underneath. The algorithm is
conservative and may compute binders for nodes whose binding
edges will eventually be deleted bygc(τu).

3. Correction of the Merge steps.The third phase revisits the
mergings performed between̊τ and τ̊u. Some of them were poly-
morphic, according to the binding tree found in phase 2. All of
these are verified for permissions (during step 3b).

The difficulty of this step lies in finding where exactly the merg-
ings originated. Consider the typeτ6 in Figure 6. Inτ7, the nodes
〈1〉 and〈2〉 were merged, and we must verify that their permissions
were correct. However,〈11〉 and〈21〉 were also indirectly merged.
Yet, for them no check must be done.

We use the following fact: when two nodes are merged and their
binders are equal, they are the root of a polymorphic merge. Step 3b
finds the nodes ofτu that verify this condition.

For pedagogical purposes, we introduce two intermediate graphs
τg andτr that correspond to the steps of an ordered derivation of
τ ⊑ τu. Although they are never actually built3 by the algorithm,
they are useful to reason on it.

• The graphτg is τ in which all the graftings have been per-
formed. LetSG be the set of bottom nodes ofτ that are no
longer bottom nodes inτu. Thenτg is obtained by simultane-
ously grafting under every nodem of SG the expansion of the
subgraph ofτu underm̃ (defined below).

2 We defer the discussion onBn
2 to (§ 4.4).

3 The size ofτg can be quadratic in the size ofτ . Hence, building it would
make impossible to have a linear complexity.

Input: A type τ and a term-graph̊τu instance of̊τ
Output: A binding tree≻τu for τ̊u, or Failure

1. Correction of the graft steps

Fail if there exists a non flexible bottom nodem in τ such that
m̃ is not a bottom node in̊τu.

2. Building the binding tree

For each noden of τ̊u (visited in a top-down ordering), do:

(a) LetMn be{m ∈ τ | m̃ = n} ∩ dom(≻τ).

(b) LetBn
1 be

˘ ≻τ (m) m ∈ Mn

¯

.

(c) LetBn
2 be

{n′ n′ ◦−→ n } if n is partially grafted
∅ otherwise

(d) If eitherBn
1 or Bn

2 is not empty:

i. Let ⋄n be(=) if (=) is in
⋄
τ (Mn), or (≥) otherwise.

ii. Fail if ⋄n is (=) and there exists a non flexible node

m in Mn such that
⋄
τ(m) is (≥).

iii. Let nB beLCA≻τu
(Bn

1 ∪ Bn
2).

iv. Fail if there existsm in Mn locked inτ and such that
m̃ is notnB .

v. Let ≻τu be≻τu + n
⋄n≻−→ nB .

Let (, ≻τu) begc(τ̊u, ≻τu).

3. Correction of the Merge steps

(a) Build the graphτ↑ such that̊τ↑ equals̊τ and verifying
m ≻−→ m′ ∈τ↑ ⇐⇒ m

⋆
≻−→ m′ ∈τ ∧m̃ ≻−→ m̃′ ∈≻τu.

(b) Fail if there existsm andm′ distinct such that one of them
is locked,m̃ = m̃′, and≻τ↑(m) = ≻τ↑(m

′).

4. Return ≻τu.

Figure 17. Rebind algorithm.

The expansion of a typeτ is the only typeτ ′ whose both term-
graph and binding tree are equal to the skeleton ofτ and whose
nodes are all flexibly bound. For example, the expansion of the
subgraph at node〈1〉 of τ2 in Figure 6 is the subgraph at〈2〉.

• The graphτr is τg in which all the raisings have been per-
formed. It has the same term-graph asτg and its binding tree
is defined by:m

⋄
≻−→ m′ ∈ τr if and only if m̃ ≻−→ m̃′ ∈ τu

andm
⋄⋄

≻−→ m′ ∈ τg.

4.4 Example of unification

Our running example will be Figure 6, in which we unify the nodes
〈1〉 and〈2〉 of τ1. Of course,τ7 is one suitable unifier; in fact,τ7 is
Unif{1,2}(τ1), while τ2 andτ4 areτg andτr respectively. Indeed,
in our caseSG = {2}, andτ2 grafts the proper expansion subtype
at 〈2〉. For τr, the only nodes that must be raised inτg are〈221〉
and〈221〉, which are exactly the ones raised betweenτ2 andτ4.

We now examine each of the steps ofRebind in turn.

Step 1 We check that〈2〉 (the only node ofSG) can be grafted.
This is the case here, as it is flexibly bound to the root inτ1.

Step 2 We suppose thatRebind tries to bind the noden = 〈121〉.
The only node ofτ1 merged inton in τu is 〈121〉, thusMn is
{〈121〉}. However, there are three such nodes inτg (i.e.τ2), namely
〈121〉, 〈221〉, and〈222〉. Let this set beM ′

n.

The computation of⋄n is easy, asMn is a singleton. Conse-
quently,

⋄
τu(n) is

⋄
τ1(〈121〉), i.e. (≥). Here, no weakening takes

place, hence no verification is done. Note that it is not necessary to
take into account the flags on the nodes ofM ′

n \ Mn, as we know
they are flexibly bound.

The computation of the new binder is slightly more subtle. In
order to findnB , the algorithm must raise all the nodes ofM ′

n

until they are all bound at the same level. It start by computing the
binders of the nodes ofM ′

n:

• Bn
1 contains the binders of the nodes present inτ (i.e.τ1).

• Bn
2 contains the binders of the nodes that have been grafted

betweenτ andτg. By construction of the expansion graphs, the
binding edges of those nodes are the inverse of structure edges.

In our case,Bn
1 = {≻τ1(n)} = {〈1〉}. Meanwhile,Bn

2 = {〈22〉},
which is exactly the (common) binder inτg of the nodes〈221〉 and
〈221〉 of M ′

n \ Mn (that are grafted inτg and merged inn).
The setBn

1 ∪ Bn
2 is thus equal to{〈1〉, 〈22〉}. At this stage of

the algorithm, the node〈22〉, which is aboven in τ̊u, is already
(flexibly) bound to〈2〉. This last node is equal to〈1〉 in τu, hence
LCA≻τu

(Bn
1 ∪ Bn

2) is equal to〈1〉. The nodes that need to be
raised are〈221〉 and〈222〉, the grafted ones. Again, since they are
flexible, no permissions check is needed.

Step 3 In our simple example,τ↑ is in fact equal toτ (i.e.τ1). The
only pair of nodes satisfying condition 3b is(〈1〉, 〈2〉), for which
the permission check succeeds. Note that while the nodes〈211〉
and〈212〉 were merged in our derivation of Figure 6, the algorithm
does not check for them, as again it knows that they are flexible (the
same for〈221〉 and〈222〉).

4.5 Correctness of the algorithms

This section introduces the correctness results of the algorithm.
All the results also apply to the stricter permission system. Hence,
our algorithm can be reused unchanged to perform unificationin
exactly the syntactic version ofMLF. The first three lemmas are
important auxiliary results for the proofs.

Rebind must temporarily bind nodes that cannot be polymor-
phic in the final result (none of the instance rules allow transform-
ing a monomorphic node into a polymorphic one), in order to be
efficient and incremental when building≻τu. Nevertheless, it does
not “invent” polymorphism:

LEMMA 2. Given a polymorphic noden of τu, any nodem that is
merged inton was polymorphic inτ , τg andτr. �

Rebind chooses the lowest possible binder for a node:

LEMMA 3. Let n be a polymorphic node ofτu. Let n′ be a node
of τu such that for every nodem of τg merged inton there exists

a nodem′ of τg merged inton′ verifyingm
+

≻−→ m′ ∈ τg. Then,

n
+

≻−→ n′ ∈ τu. �

Rebind preserves existing permissions:

LEMMA 4. Letn be a polymorphic node ofτu such that every node
m of τ that has been merged inn has at least the permissionP.
Then,n also has the permissionP in τu. �

For the remainder of this section, we implicitly quantify over a
typeτ , a set of nodesN , and a first-order instance̊τu of τ̊ . Unless
mentioned otherwise, we donot assume that(τ, N) is admissible.
We do not assume that̊τu is the principal first-order unifier ofN in
τ̊ either. The results are given first forRebind, then forUnif.

We start by stating the soundness result.

THEOREM2. If Rebind(τ, τ̊u) returns ≻τu, the instance relations
τ ⊑G τg ⊑R τr ⊑MW (τ̊u, ≻τu) hold. �

ThusUnif is sound even on non admissible problems.

COROLLARY 1 (Soundness).The algorithmUnif is sound. �

Rebind is also complete.

THEOREM 3. Suppose there exists an unifierτv of (τu, N) such
that τ̊v = τ̊u. ThenRebind(τ, τ̊u) returns≻τu such that the typeτu

equal to(τ̊u, ≻τu) is more general thanτv, i.e.τu ⊑ τv. �

For the existence result we show that, for any permissions check
done by the algorithm, any derivations ofτ ⊑ τv uses a transfor-
mation requiring at least those permissions. For the principality re-
sult, we consider an ordered derivationτ ⊑G τ ′

g ⊑R τ ′′
r ⊑MW τv

of τ ⊑ τv, and show (using a commutative diagram) thatτg ⊑ τ ′
g,

τr ⊑ τ ′′
r andτu ⊑ τv.

This result is not sufficient to prove completeness with a dif-
ferent structure graph. However, completeness holds on admissible
problems.

THEOREM 4 (Completeness).Suppose thatN is admissible forτ .
If there exists an unifierτv of (τu, N), UnifN (τ) returns a typeτu;
moreover, this type is more general thanτv. �

Finally, the following lemma justifies the fact that we do not
need to study principality up to similarity. Indeed, it “commutes”
with unification.

LEMMA 5. Let τ1 and τ2 be two types, andN a set of nodes
admissible for both types. AssumeUnifN (τ1) exists andτ1 ≈ τ2.
ThenUnifN(τ2) exists andUnifN (τ1) ≈ UnifN(τ2). �

4.6 Complexity

For the sake of the complexity analysis, we assume that each of the
following elementary operations takes constant time:

• finding the binder of a node;

• going fromm ∈ τ to the corresponding nodẽm ∈ τu;

• finding the list of nodes ofτ that are merged into a node ofτu.

This can easily be achieved by using constant-time access struc-
tures for storing graphs and by keeping track of merges during uni-
fication. For the computation of least common ancestors, we use a
dynamic algorithm that computesLCA queries in worst-case con-
stant time, and in which adding new leaves takes constant-time [1].

THEOREM 5. Unif is linear in the size of its argument. �

This linear-time bound relies on a linear-time unification algorithm
for term-graphs. We can also use a union-find based first-order
unification algorithm [5] instead, in which case we obtain anα(n)
complexity.

The algorithmRebind can be improved so that it does not need
to visit the whole type during unification, but only the nodesthat
are visited during the first-order unification phase. This way, it
can be used incrementally with a good complexity. However, those
improvements are quite technical [12].

While the complexity bound of the algorithm used in the orig-
inal syntactic presentation ofMLF is not known, it has to perform
many duplications andα-conversions. We think that it would not
scale to larger inference problems that can appeare.g.in automat-
ically generated code, encodings, or extensive use of polymorphic
records and variant types.

Conclusion
We have given a formal meaning to the informal graphic types
used in the original presentation ofMLF [6]. We proposed a def-
inition of type instance based on several independent operations

on types: merging and grafting are well-known operations onfirst-
order term-graphs; raising is a simple operation on the binding tree
that reduces polymorphism; weakening and permissions are new
and both work together to ensure that requested polymorphism is
not reduced during instantiation.

We found that unification forMLF-types can be performed in
linear time. Unsurprisingly, the critical step seems to be the com-
putation of the binding structure.

The most immediate application of our work is a simpler and
efficient unification algorithm forMLF types. The languageMLF

has already been used in the Morrow compiler [9]—an extension
of core Haskell with second-order types—using the syntactic pre-
sentation. We believe its performance on large problems would be
significantly improved by using graphic types and our algorithm.

Another immediate benefit is a simplification ofMLF presen-
tation and meta-theory. Our understanding of the design space is
also much improved, especially in the definition of the instance re-
lation. We have proposed a slightly more permissive definition of
permissions—but the soundness ofMLF for our enhanced permis-
sions system remains to be verified.

Our experience with graphic types is that once the definitions
and the main lemmas are settled, results are rather intuitive and
easy. This contrasts with the previous approach based on syntactic
types.

Future works A continuation of this work is to revisit type infer-
ence forMLF using our graph presentation; we are in the process
of formalizing a constraint-based approach. Primary results are en-
couraging, and draw close parallels with type inference algorithms
for ML, known to be quite efficient in practice. In the meantime,
we are implementing a graph-based prototype ofMLF, to verify
that type inference remains indeed tractable, just as inML.

By simplifying and increasing our understanding ofMLF types,
the graphic presentation also permits exploring several extensions.
This includes generalized algebraic data types, subtyping, primitive
existential types, recursive types, or higher-order types.

The combination of recursive types and second-order polymor-
phism alone is already tricky [3]. We thus have only considered
acyclic types here. Allowing cyclic term-graphs should be possi-
ble (even though we did not do so). The difficulty rather lies in the
treatment of recursion in the binding structure. While our frame-
work should extend to “monomorphic recursions” that do not in-
teract with the binding structure, the general case should be more
challenging.

Probably harder, but also quite useful would be to extend the
mechanism ofMLF to higher-order types. The interaction ofβ-
reduction at the level of types with a first-order type inference a
la MLFseems non-trivial.

Acknowledgments

We would like to thank the anonymous referees for numerous
helpful comments, Yann Régis-Gianas for close readings ofearly
versions of this paper, and Didier Le Botlan for providing uswith
an initial large collection of examples and counter-examples of
graphic types, sharing with us his expertise onMLF, and for many
insightful discussions all along this work.

References
[1] Richard Cole and Ramesh Hariharan. Dynamic LCA queries on

trees. InSODA ’99: Proceedings of the tenth annual ACM-SIAM
symposium on Discrete algorithms, pages 235–244, Philadelphia, PA,
USA, 1999. Society for Industrial and Applied Mathematics.

[2] Luis Damas and Robin Milner. Principal type-schemes forfunctional
programs. InProceedings of the Ninth ACM Conference on Principles
of Programming Langages, pages 207–212, 1982.

[3] Nadji Gauthier and François Pottier. Numbering matters: First-order
canonical forms for second-order recursive types. InProceedings
of the 2004 ACM SIGPLAN International Conference on Functional
Programming (ICFP’04), pages 150–161, September 2004.

[4] Jean-Yves Girard. Interprétation fonctionnelle et élimination
des coupures de l’arithmétique d’ordre supérieur. Thèse d’état,
University of Paris VII, 1972.

[5] Gérard Huet. Résolution d’équations dans les langages d’ordre
1, 2, . . . , ω. Thèse de doctorat d’état, Université Paris 7, 1976.

[6] Didier Le Botlan. MLF: Une extension de ML avec polymorphisme
de second ordre et instanciation implicite. PhD thesis, University of
Paris 7, June 2004. (english version).

[7] Didier Le Botlan and Didier Rémy. MLF: Raising ML to the power of
system-F. InProceedings of the Eighth ACM SIGPLAN International
Conference on Functional Programming, pages 27–38, August 2003.

[8] Didier Le Botlan and Didier Rémy. MLF made simple. Draft,
available electronically athttp://gallium.inria.fr/∼remy/
project/mlf, July 2006.

[9] Daan Leijen and Andres Löh. Qualified types for MLF. InICFP ’05:
Proceedings of the tenth ACM SIGPLAN international conference
on Functional programming, pages 144–155, New York, NY, USA,
September 2005. ACM Press.

[10] Alberto Martelli and Ugo Montanari. An efficient unification
algorithm. ACM Transactions on Programming Languages and
Systems, 4(2):258–282, 1982.

[11] Michael S. Paterson and Mark N. Wegman. Linear unification.
Journal of Computer and System, 16(2):158–167, 1978.

[12] Didier Rémy and Boris Yakobowski. A graphical presentation ofMLF

types with a linear-time incremental unification algorithm. Extended
version, of [13], September 2006.

[13] Didier Rémy and Boris Yakobowski. A graphical presentation ofMLF

types with a linear-time incremental unification algorithm. January
2007.

A. An introduction to term-graphs
Term graphs are a more compact representation of first-orderterms,
often used in unification algorithms.

A.1 First-order terms

A (first-order) term t over a signatureΣ (a set of symbols with
arities) and a set of variablesV is a mapping from a non-empty
set of paths toΣ ∪ V that is prefix-closed and respect arities. That
is, for all pathsπ in dom(t) (the domain oft) and all integersk,
πk ∈ dom(t) is equivalent to1 ≤ k ≤ arity(t(π)).

A substitutionϕ is a mapping from variables to terms; it is
extended to a mapping from terms to terms in the usual way.

A term t′ is an instance of a termt, which we writet 6 t′, if
it is the image oft by some substitutionϕ. Two termst andt′ are
unifiable if there exists a substitutionϕ, called a unifier oft andt′,
that identifies them. The unifierϕ is said to be principal if any other
unifier can be written asϕ′ ◦ ϕ for some substitutionϕ′. Similarly,
t′′ is a (principal) unifier oft andt′ if it is of the form ϕ(t) where
ϕ is a (principal) unifier oft andt′.

Unification is a well-known problem on first-order terms that
can be computed in linear time [11] using dags. Other algorithms
use union-find structures and havenα(n) time complexity; how-
ever, they run faster in practice [5, 10] and are simpler to imple-
ment. Moreover, Huet’s algorithm [5] can perform unification on
regular terms as well. Interestingly, all three algorithmsuse a graph
representation of types. In fact, they compute unification on graphs,
and reinterpret the resulting graphs as terms.

(a) →

→

1

α

→

2

β

1 21 2

(b) →

→

1 2

α

1

β

2

(c) →

γ

1 2

Figure 18. Instance on term-graphs.

A.2 Term-graphs

Term-graphs formalize the dag-based representation of first-order
terms.

An equivalence relation∼ on the paths of a termt is consistent
if t is constant on every equivalence class (each path in a class
maps to the same symbol or variable). It isweakly consistentif
there is at most one symbol ofΣ in every equivalence class (each
class can contain multiple variables, but at most one symbol). An
equivalence relation∼ on t is a congruence if it is suffix-closed,
i.e. π ∼ π′ and πk and π′k are indom(t) implies πk ∼ π′k.
Congruences identify identical subterms.

A term-graphg is a pair of a term̂g and a consistent congruence
g̃ on dom(ĝ) such that every variable appears in at most one
equivalence class.

In Figure 18, the term of both graphs(a) and(b) is (α → β) →
(α → β). However, their equivalence classes differ. For graph(a),
it is ã = {〈11〉, 〈21〉}, {〈12〉, 〈22〉}, while it is ã ∪ {〈1〉, 〈2〉} for
graph(b).

A.3 Instance and unification on term-graphs

A term-graphg′ is an instanceof a term-graphg, which we write
g 6 g′, if ĝ 6 ĝ′ and g̃ ⊆ g̃′. Two term-graphs aresimilar if
they represent the same tree. For instance, graphs(a) and (b) of
Figure 18 are similar (as both represent(α → β) → (α → β))
while (b) and (c) are not. On the other hand,(b) is a standard
instance of(c).

Instance on term-graphs implies instance of the underlying
terms. As an example, coming back to(b) and(c), (α → β) →
(α → β) is indeed an instance ofγ → γ through the substitution
γ 7→ (α → β).

Unification can beinternalizedon term-graphs, that is, defined
by giving two nodes of a same graph instead of two graphs to be
merged. We say that a term-graphg′ is a unifier of nodesn1 and
n2 of a term-graphg if it is an instance ofg that identifies nodesn1

andn2 (i.e. there exists a noden of g′ that is a superset of bothn1

andn2). For example, in Figure 18, the term-graph (b) is a unifier
of the nodes{1} and {2} in the term-graph (a). A unifierg′ of
nodesn andn′ is principal if any other unifier is an instance of
g′. Unification of two nodesn andn′ of g can be computed as the
smallest weakly consistent, congruent equivalence that containsg̃
and mergesn andn′ [5].

In fact, unification of term-graphs also computes their unifica-
tion up to similarity,i.e. unification on terms. More precisely, ifg′

is a (principal) unifier of the nodes〈1〉 and〈2〉 of a term-graphg,
then ĝ′/1 (the subterm of̂g′ at occurrence1), also equal tôg′/2,
is a (principal) unifier of̂g/1 and ĝ/2. This property, often over-
looked in the literature, justifies the fact that term-graphs can be
used instead of first-order terms to perform first-order unification.

http://gallium.inria.fr/~remy/project/mlf
http://gallium.inria.fr/~remy/project/mlf

	A brief introduction to (syntactic) MLF
	MLF syntactic types
	Type instance

	Graphic types
	Representing first-order types
	Representing second-order types
	Representing MLF types
	Well-formedness

	Instance relation on graphic types
	Permissions
	Instance operations
	Grafting
	Merging
	Raising
	Weakening

	The instance relation
	Similarity
	Commutation lemmas
	The abstraction relation

	 Unification
	Unification problem
	Admissible problems
	Unification algorithm
	Example of unification
	Correctness of the algorithms
	Complexity

	An introduction to term-graphs
	First-order terms
	Term-graphs
	Instance and unification on term-graphs

