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Abstract

MLF is a language that extendidL and Systenf and combines
the benefits of both. We propose a dag representatiolidf
types that superposes a term-dag, encoding the underlging t
structure with sharing, and a binding tree encoding theibgyd
structure. Compared to the original definition, this repreation
is more canonical as it factors out most of the notationaditietit
is also closely related to first-order terms. Moreover, itnies a
simpler and more direct definition of type instance that cioeb
type instance on first-order term-dags, simple operationdaws,
and a control that allows or rejects potential instancesdJghis
representation, we build a linear-time unification alduorit for
MLF types, which we prove sound and complete with respect to
the specification.
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Introduction

The languag@LF [[7] has been proposed for smoothly combining
the advantages d¥lIL-style type inference.[2] with the expressive-
ness of Systenfirst-class polymorphisni[4MLF is a conserva-
tive extension ofML that allows to type all Systerf-terms [[]].
MLF terms are partially annotated. All functions that use tpeir
rameter in a polymorphic way—and only those—need an annota-
tion. In particular ML terms do not.

MLF comes with a type inference algorithm: every well-typed
source program provided with some annotations has a pahcip
type—i.e. one of which all other correct types airestances The
typing rules ofMLF are a simple generalization of those i,
and are quite straightforward. Moreover, they can be ptedeas a
particular instance of a simple generic type system thagigdizes
both ML and Systenf [8]. This system is parameterized by the
exact language of types andyge instanceelation between types.
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Unfortunately, while type instance and a subrelation dzélle-
stractionplay a key role inMLF, they are defined by purely syn-
tactic means and with little intuitive support. So far, theela-
tions were mainly justified a posteriori by the propertiesMiff.

A more semantic-based definition has been proposed but only f
a significant restriction of the language and only for thaéanse
relation [8].

We propose an alternative definition of types based on an
(acyclic) graph representation. More precisely, typegl@avunder-
lying term-graph structure, similar to the representatbsimple
types with sharing, an additional binding tree, and furih@per-
ties relating the two. The existence of a graphic presemtetr
MLF-types had already been suggestgd [6], but it was not suf-
ficiently well-understood to be used formally. Graphic typee
more canonical, as they factor out most of the syntactididhats
that can be found in the original definition BfLF.

We define instantiation on graphs as a combination of simple
transformations that include the following three partstamtiation
of the first-order term-graph, simple transformations an tind-
ing tree, and a control process based on flags attached tinithe b
ing tree. Equivalence on syntactic types becomes, on grayes,
equality up to the sharing of monomorphic nodes—a much sim-
pler relation. Syntactic types in the original instanceatieh are
mapped to graphic types in instance relation (modulo etpriez),
and conversely—both in linear time.

We also present a sound and complete linear-time unification
algorithm on graphic types that implements unification ancabr-
responding syntactic types.

The paper is organized as follows. First, we recall the dégdimi
of syntacticMLF types ¢ ) and introduce their graphic represen-
tation § ). Then, we present the instance relation on graphs and
some of its propertie ). Finally, we describe the unification al-
gorithm and its correctness prodfH).

Full technical details and proofs can be found in the extdnde
version of the papef1l2]. A black-and-white version is asail-
able ahttp://gallium.inria.fr/~remy/project/mlf/.

1. A brief introduction to (syntactic) MLF
1.1 MLF syntactic types

MLF types are parameterized by a set of of type symBblsiclud-
ing at least the arrow symbel. We distinguish first-order types
from second-order types, both are defined by the following gram-
mar in BNF form.

t o= alt—t]...
o = t|Ll|V(aoo)o
& = Zl:
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A first-order typet is defined as usual. A syntactic typeis a
first-order typet, a bottom typel (that intuitively stands for the
SystemF type Va.a), or a quantified type of the fornv (a ¢
o) o'. A difference with Systenf is that quantification always
assign bounds to variables, which are themselves secaieal-or
types. Bounds are eitheigid when introduced with the- flag, or
flexiblewhen introduced with the> flag. Intuitively, the meaning
of a ¢ o is thata ranges over types that are either equivalent to
o when the bound is rigid, or an instancemfvhen the bound is
flexible.

The typeVa. o — «a of SystenF can be represented MLF as

Vie>1l)a— a. (oia)

In examples, we often omit trivial bounds and writé«) o for
V(a > 1) o. The Systent type (Va. & — a) — (Va. o — «)
cannot be represented directly, as the grammar forbids tspels
aso.q — o0iq. We instead use an auxiliary variable with a rigid
bound and write

V(B=0w)B— 8. (o1)
One may still, at first, understand rigid bounds by expansm®if
o1 standed for the ill-formed typeis — oid.
In MLF, we can also write the type

Y(B>0i) B — B. (02)

Syntactically, it only differs fromry by changing the rigid bound
into a flexible one. This time however, expansion would be s mi
leading intuition—otherwise, rigid and flexible bounds Wwbmake
no difference. Intuitivelyg2 should rather be understood by the set
of its instances, that is, all typ&y 3 =0) 8 — (3 such that is an
instance ob,4. In fact, o1 is itself an instance of».

The auxiliary variable3 is used to share the two instancessof
on the left and right sides of the arrow. Thus, is quite different
from the type

V(B>0u) V(B >0u)B— 0, (03)

which stands for all type¥ (3 =0) V(8 =¢') 8 — 3 such
thato ando’ areindependentnstances ofr,4. This is similar to
the difference between typ&gy.y — v andVy.Vy'.y — 4 in
SystemF.

Combining both forms of quantification, the type

V(B=0i) V(B >0iu)B— 5 (04)

may be understood as the set of all typesd = 0:4) V(5 = o)
B — 3 (i.e.intuitively 0,4 — o) such thaw is an instance of .

1.2 Type instance

A peculiarity of MLF is its sophisticated instance relatiahthat
can operate deeply under other quantifiers and, indireatigler
type structure, as illustrated with type above.

While flexible bounds are often used in covariant contexts an
rigid bounds in contravariant ones, quantificationMihr also al-
lows to instantiate the (flexible) bound of a variable thapears
both covariantly and contravariantly, as &. This is actually
a key to having principal types ivMLF. This is made possible,
while maintaining type-soundness, by enforcing all ocences of
the bound to simultaneously pick the same instance: the aveak
the types in contra-variant position (typically of argurtgnthe
weaker the types in co-variant position (typically of resyl

Instantiation is always safe—and permitted—under flexible
bindings, whichprovide some polymorphism but did not request
it. Conversely, it is generally unsafe—and forbidden—unitgid
ones, whichrequire some polymorphism, and might have assumed
it. While a function of type¥ (o) & — « can be safely considered
as a function of type — ¢ for any monotype, it would be unsafe

to consider a function of typ€ (3 = 0.4) 3 — [ as a function
of typeV (8 =t — t) 8 — (: the former requires its argument
to be polymorphic (and returns a polymorphic result) wHile kat-
ter only requires its argument to be of type— ¢. In the second
case, this argument could then be erroneously applied tesaif
unexpected type.

While rigid bounds that occur in contravariant position rmain
be instantiated for soundness of type-checking, it is a kesigh
choice to forbid instances of all rigid bounds, so that typstan-
tiation is then only driven by bound flags and never looks ait va
ances. This makes type inference decidable, tractableactndlly
relatively simple.

Still, it would always be sound and often useful to treat a
function of typeo as a function of typers. To circumvent this
limitation—and recover all uses of polymorphisntF intro-
duces type annotations : o) that behave as explicit retyping
functions of typeV (o = 0,0’ > 0) a — . Thatis,(a : o)
explicitly requiresa to have types, and then allows it to be used
with an instance of.

In fact, MLF still allows a very restricted form of instance under
rigid bounds, calle@bstractionand written=. Typically, abstrac-
tion may increase sharing by merging two variables with #rees
rigid bound, but may not instantiate flexible bounds. Fotanse,
o1 is an abstraction of (3 = 0.4, 8 = i) 3 — B3 —but not
the converse. Abstraction may be distinguished from génera
stances, as its inverse relatienis sound and is only disallowed
in order to keep type inference decidable. The remainingreivle
partE N 3, called type equivalence and written captures syn-
tactic artifacts such as renaming of bound variables, cotatiom
of adjacent binders, removal of useless binders, and such.

In the original definition of type instance, places whereeirin-
stantiation or abstraction may actually occur are impliaefined
by contextual inference rules. Namely, instantiation maly @c-
cur under flexible quantifiers, called a flexible context, ahstrac-
tion may only occur under a sequence of rigid quantifierdfitse
flexible context. For example, abstraction is disalloweth&inner
boundas of V (a1 =V (a2 >V (s = 03) 02) 01) o. While such a
transformation appears to be sound from a semantic poineef v
its naive integration would surprisingly break type sowrsmvia
ad hoc intricate interaction with type equivalence.

One of our main contributions is to revisit the instancetiefa
(§B) using a graph presentation of typé®). This new presenta-
tion eliminates most of the syntactic artifacts and so isenttirect,
allows more support for intuition, and supports extensiohthe
abstraction relation just mentioned without endangermmsaness.

2. Graphic types

We remind of the graph representations of first-order typésch

is often used—behind the scene—in efficient unification -algo
rithms. We then introduce graphical notations on the wetivn
SystemF types, as they offer a good support for intuitions. We
finally define the representation MLF types as a refinement of
SystemF types.

2.1 Representing first-order types

First-order types are usually understood as trees. For@eatme
tree (1) of Figur&ll represents the type— (8 — «). However,

it is sometimes convenient to identify all variables witle ttame
name as shown in the dag (2). Efficient unifications algorghm
often use such a graph representation explicitly, whenriest

as imperative algorithms, or implicitly[5]. In fact, theynonly
share variables of the same name, but may also share innes nod
with identical subtrees, as illustrated with the represion (3) of

(@ —=pP) = (a—p).
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Figure 1. Representations of first- and second-order types.

In the rest of this paper, we caéirm-grapha graph representing
a first-order term that enforces the use of a single node for al
occurrences of the same variable. Conversely, weskaletorthe
tree expansion of a term-graph.

A more formal presentation of term-graphs can be found in the

Appendix ¢8).

2.2 Representing second-order types

Traditionally, binders are represented with an expliciietabeled
with a special symboV of arity two. For example, the Systef-
typeVa. (V3.8 — a) — «ais usually represented as the tree (4) of
Figure[l. Using dags, we may represent it as in (5).

We may in fact remove the quantifier node and instead intduc

abinding edgebetween the bound variable and the node just above

which it is bound, as illustrated in graph (6). We have oeent
the binding edge from the bound variable to its binding ndde,
convenience.

Notice that this notation looses the order of adjacent bgde
and useless binders—two artifacts of the syntactic notatibat
we are so happy to eliminate. For instande,V3.(8 — «) — 3,
VBVa.(8 — a) — B andVy.Va.V3.(8 — «) — B will all have
the same representation (7).

Finally, as quantified variables are treated moduenaming,
we may advantageously draw them anonymously, as in (8)hiabr t
purpose, we introduce a new kind of nodecalled abottom node
to mean “a variable”. The bottom sighis not a true symbol (and
not an element of) as it does not clash with other symbols during
unification. We intendedly reuse the same notation as thrnot
type of syntactidMLF types, since the notation/{a ¢ L)” plays
the same role asv«.” in System¥ types.

o1

02 g3

Figure 2. Examples of graphitLF types.

Nodes in graphs Let us introduce our convention for naming
nodes in graphs. In the remainder of the paper, we designate a
noden by the set of paths along which it can be reached from the
root. Paths are obtained by following the arities on thecstme
edges of the graphic representation of the type. (In thevatlg

we often leave arities implicit, as we always write struetedges
downwards and from left to right.) Letter ranges over paths and

e stands for the empty path. As a path belongs to at most one node
we may write(r) for the noden that containsr.

Consider for example, type (3) of Figui® 1: nofle} is the
root, labelled by—; Both (1) and (2) designate the same node
immediately below the root, reachable by the left or righthpa
The node labelled can be reached by the two pathk and 21;
hence we may designate it By1), (21), or its full name{11, 21}.

2.3 RepresentingMLF types

Let us illustrate the graphic representationMif types on the four
typesoi, o2, o3, andoy introduced earlier§[L) and drawn in
Figurel2. As for Systenk, we draw binding edges from nodes to
their binding node, but use two kinds of edges to distingtish
tween flexible and rigid bindings, represented by dotteddasthed
lines respectively. In addition, we represent the boundefvari-
able in place of the unique node representing that varidigece,
non-bottom nodes now also have binding edges. For instinee,
graph representings contains at the nodél) a subgraph repre-
senting the bound-;, of the variablex. This node is itself bound
at the root. For bottom bounds, we thus recover the repratsemt
of variables for Systenf-types. For example, nodg@1) of o3 is a
bottom node.

Notice that sharing of nodes that are not variables is plessib
(and significant). INVILF, o4 (in which the two occurrences of 4
may be instantiated separately) is quite different feangin which
both sides of the arrow must be instantiated simultanepuhis
is reflected in the graphic presentation by the fact thatthes two
occurrences of the graph representingin o4, but only one inos.

We are now able to characterize graphic typesgraphs rep-
resentingvILF types. We first define pre-types, and then state well-
formedness conditions they must satisfy in order to be types

DEFINITION 1. A (graphic) pre-type- is a pair of:

1. A term-graphr, whose nodes are labelled by element&iodr
L. The bottom nodes must be leaves and the other nodes must
respect the arity of their symbol.

2. A binding treer for 7. That is, a set of binding edges labelled
with flags that form an upside-down tree rooted (aj and
whose leaves include all bottom nodes.

Remark that all bottom nodes need to be bound. Hence, we may
only representlosedMLF types.

Conversely, not all nodes need to be bound. We palymor-
phic (resp.monomorphic) the nodes efthat are boundrésp.un-
bound). For instance, nodé2) in T on FiguredB is monomorphic.



Figure 4. Invalid graphic types and diagram for scope nesting.

Useless binding edges In fact, according to Definitiofll1, non-
bottom nodes with no incoming binding edge need not be boAind.

binding edge leaving from such a node may then be deleted. Thi

deletion preserves well-formedness and also the intuitiganing

of types,i.e. the two pre-types before and after deletion represent

the same syntactic type. Given a pre-typewe write gc(r) for
the result of recursively deleting all such edges fron€omputing
gc(7) can be done in linear time, by a depth-first traversat.of
Let us consider again the pre-typeof Figure[3: the binding
edges leaving from nodé$11) and(12), and, in turn, the one leav-

ing from node(1) can be deleted. The only (mandatory) remaining

binding edge is the one leaving from the bottom node. Heree, t
resulting pre-type’ is gc(7).

Notations In the text, we writes o— n’ € 7 (tespn —— n’ €
7) to mean that there is a structure edge (resp. binding edipe wi
flag o) from n to n’ in 7. We may drop &€ 7" when 7 is implicit
from context. We may also drop the flag if it is unimportant. If
n =25 n' € 7, we also writer (n) and’7(n) (or simply#) for o
andn’, respectively. We calh’ the binder of n and we say that
is bound at:’. Finally, 7(n) denotes the symbol on the nodeWe

use-+ and= on top of arrows to denote the transitive closure and

the reflexive transitive closure of the corresponding refat

2.4 Well-formedness

All pre-types are not types. Types must correspond to syintac
types, hence ensure that variables have lexical scopeshand t
variables bounds are not mutually recursive. Fidiire 4 ples/two
examples of ill-formed binding trees:

¢ In pre-typer;, the node(21) is bound at a node that is not
among its parents, which is not permitted: in a syntactisgme
tation, the anonymous variabteused to represent the binding

would be introduced on the left branch and used on the right

branch, where it is out of scope.

¢ In pre-typers, the nodeg(1) and (11) are bound at the root.
When translating the graph to a syntactic type, if we try talbi
(11) first, we must refer tg112) which is bound unde(1).
Conversely, if we choose to bind) first, we must usé11) in

LT
| Perm | Name Allows | Binding Path |
\

F Flexible | Instance >* “
R Rigid Abstraction| (>|=)* = :(Q _7
L | Locked | Nothing (=) =>" N

0]

Figure 5. Permissions for the instance relation.

the bound of(1) while this node is not bound yet. Henee,is
not a type.

Before we present the well-formedness condition failed-hywe
recall the definition of dominators.

DEFINITION 2 (Dominators).Letg be a term-graph ana andn’
two nodes of;. We say thah dominates:’, and we writen < n’
if every path from the root ta’ goes through. O

For example, in type of Figurel2,(1) dominateg11), as all four
pathsl1, 12, 21 and22 to (11) go through(1). On the other hand,
in the second type of FiguE@ 12) doesnotdominate(22). Indeed,
path1 does not go througkR). Notice that domination is a partial
order on nodes.

DEeFINITION 3 (Domination).The binding tree of a pre-type is
well-dominatedf every bound node is dominated by its binder,
Vn,n’ € 7,n = n’ impliesn’ < n. O

Domination rules out type; of Figure[3, in which nod€1) does
not dominate nodé21).
To rule out typer, we introduce the following condition:

DEeFINITION 4 (Nesting).The binding tree of a pre-typeis well-
nestedif for any nodesn, n’ andn” such thatn = n” o'

n’ oo n, we also have’ = n”. O

This condition is presented as a diagram on the right sidagf F
ure[4. On this diagram, binding edges are drawn with solieslito
mean that they may indifferently be rigid or flexible. The chn
sion of the diagram is represented as a double line.

The pre-typer; is not well-nested: the premises are met when
taking (112) for n and(11) for »n’, but(11) is bound at/1), above
the binding nod€1) of (112).

DEFINITION 5 (Types).A(graphic) types a well-dominated well-
nested pre-type. O

3. Instance relation on graphic types

This section presents the instance relation on graphicstyplee
relation can be decomposed into local atomic transformatian
types, each of them transforming either the underlying tgraph
of the graphic type, or its binding tree. However, thesediama-
tions are only allowed in certain contexts determined byothding
structure. We abstract this contextual informatiopasmissions

3.1 Permissions

Permissions may be seen as additional information attathed
every bound node by a preprocessing step. There are thferedif
permissionsFlexible, Rigid andLocked, abbreviated by, R, and
L respectively, and listed in strictly decreasing ordee—fewer
transformations are permitted érnodes than off-nodes.

To each permission intuitively corresponds a class of foaans
mations that will be allowed at nodes having this permission
stance transformations are permitted at flexible nodeseheigl,



they are semantically not reversibig,. the inverse transformations
would be unsound. Abstraction transformations are a suifsat
stance transformations that are still permitted at rigide® Re-
versing abstraction transformations is not technicallgvetd for
type inference purposes, although this would be sound.

The permission of a node is uniquely determined by the se-
guence of flags along the path in the binding tree leadingdb th
node. Remember that the binding tree (and hence the bindihg)p
walks the binding edges in inverse direction, from the raoothie
node. For example, in Figuk® 2, the binding path of nodes$ and
(2) of typeo4 are(=>) and(>) respectively.

The permission system is given by a functiBrfrom strings of
flags to the sefF, R, L}. Then, the permission of a bound node
of a typer may be computed &B(3) whered if the binding path
of ninr.

The simplest way to defin® is by a finite automaton, given
in Figurel®. The states of the automaton are the three peamsss
with F being the initial stateife. also the permission of the root
node). Transitions are (inverse) binding edges labeletidiy flag.
The permissiofP(3) is the state the automaton reaches when given
the strings as input. It is striking on this definition that flexible
nodes form a prefix of the binding tree, followed by an altéoma
of rigid and locked regions as flags alternate. It can alsootieed
that the permission of a node determines the flag of the kindin
edge leaving that node.

Permissions are summarized in the table of Fiflire 5. The bind (Rhombuses nodes abbreviate constant parts of the types)
ing path column is given as a regular expression that desctie
sets of binding paths having the corresponding permis3ioacol- nClnCincfnucY s M m

ors of the rows of this table are sometimes used in drawinlgsbe
to remind of the permissions unobstructively. For exampéemis-
sions are explicitly drawn on all types of FigUrk 6. For ins&,
node(11) of type 7 is rigid—its binding path i$>=.

Figure 6. Example of type instance.

We identify exactly four atomic transformations on typgsft-
More restrictive permissions The looser the permissions, the ing andmergingthat essentially operates on the underlying term-

larger the instance relation, the more “inference”. Of seymper- graph, andaising andweakeninghat only operates on the under-
missions should remain within the limit of type soundnesse T lying binding tree. Each transformation is restricted byaloside
permissions we have described above are a slight geneiatize conditions on binding edges and permissions.

the ones that could be reconstructed from a careful readititeo We examine each of the four transformations in more detail
syntactic instance relation, and described by the follgvéintoma- below. For each operation both a schematic depiction andefo
ton: definition are given—most of the technical details may safed

‘./ AL x@ skipped on a first read.
@ ( E 5 1

. S . . 3.2.1 Grafting
The difference lies in the set of rigid hodes. In the syntaoéirmis-
sions, one can only encounter some flexible flags followeddig r

ones; afterwards, all the permissions are locked. With oasér . c¢ . c¢ c¢
definition, rigid binding edges behaves as a “protectiord seset ; : @ . .
looser permissions preserve type soundness—-a formétagion S

is ongoing work. A variant of looser permissions was infjiaug-

gested by Francois Pottier on syntactic types.

Interestingly, the instance relation is implicitly paraerized
by the permission systeff: all results depending on permissions
are obtained through lemmas that abstract over importamtepr
ties of permissions, and thus apply to all permission systtrat

satisfy those lemmas. Hence, we may easily fall back to tihetest
permissions, if ever need be.

locked-nodes to rigid ones. We have good reasons to beliate t @ %

Figure 7. Sketch and example of grafting.

Grafting corresponds to the operation of substituting sipokphic
3.2 Instance operations type variable by a type, as can be donévh. It is a semantically
irreversible transformation as the skeleton of the typengka, and

We now classify the different ways in which two types may be thus it can only occur at flexible nodes.

in an instance relation. We isolate atomic instance relasi@ps

that instantiate either the term-graph or the binding tkéareover, DEFINITION 6 (Grafting). A typer’ is a grafting of a typer if 7/
each step is controlled by the permissions of the node itabpgr is obtained by replacing a flexible bottom noderdfy a typer”.
on. Figure[®, which is used throughout this section, intoedua We write Graft(7”, n) for the functionr — 7’ and C for
sequence of types, each of which is in a particular form dhimse the reflexive transitive closure of the relationR 7’ defined by

relation with it successor as shown at the bottom of the figure In, 37", 7" = Graft(r",n)(1). O



Notice that if the typer” to be grafted at the node of 7 is
monomorphici(e. its root has no incoming binding edge), then the
edgen = 7 may be be garbage-collectedrih

Let us consider some examples. The left part of Fiddre 7
presents a schematic depiction of grafting. In Fidlre;6CC 7
holds for2 < i < 6, the grafting occurring at nod@). The right
part of Figurd’ shows a derivation of, C€ V (o > 0i4) o —
aC9VY(a>V(8>0i) B — ) a — a. Indeed, let us temporar-
ily call 74,1, 74,2 andry, 3 those three graphs. The three following
relations hold:

Tg,2 = Graft(7g,1, (1)) (74,1) 7g,3 = Graft(7g,1, (11))(74,2)
7g,3 = Graft(7g,2, (1)) (74,1)

Hencer, 1 T 7,3 can be proved either by transitivity of the in-
stance relation applied to the two first grafting steps, othysin-
gle atomic last grafting step. The fact that instantiatiomintains
the original binder and permissions so as to allow furthénee
ments is particularly striking on graphic types.

3.2.2 Merging

: M : : M :
o o <o
ni no n ni no n
T T T T T T

Figure 8. Sketch of merging.

Merging can be explained in two steps. Ignoring binding sdge
at first, merging two bottom nodes is akin to saying that—

« is an instance otx — (3. Non-bottom nodes may also be
merged, which increases sharing but leaves the underlii&igten

of the type unchanged. Now, taking back the binding strecituo
account, we also require that merged nodes agree on thdingin
edgesij.e. that their binding edges have the same flag and lead to
the same (or merged) parents nodes.

The general form of merging is sketched on the left side of
Figure[®. The type on the left is such that its subgraphs uthder
nodesn; andn. are equal. Some subparts of the subgraphs can
already be shared, hence the overlap in the sketch. Moreover

andns must be bound at the same node, with the same flag. They

can be both flexible or both rigid, but not locked (we reprégeem
in blue to remind of this fact). Merging: andn. in the type on
the left yields the one on the right, in which the identicdigtaphs
have been fused.

Simple examples of merging are presented in Fiflire 6, where i
is used thrice. Two pairs of bottom nodes are merged indegethyd
in type 74, (211) and(212) on the one hand;221) and (222) on
the other hand, leading to type. In type s, the subgraphs under
(1) and(2) are merged, resulting iry.

A particular case of merging is when all the merged nodes are
monomorphic, which is depicted on the right side of Fidlre 8.

We callmergedtwo nodes which were initially different, but are
mapped into the same node by the merge. The formal definifion o
merging adds an additional condition on binding edges,anetl
below.

DEFINITION 7 (Merging). A typer’ is a merging of a type- at
nodesn; andn. of 7 if the following conditions hold:

(1) the subgraphs of undern; andn. are equal;
(2) 7' is the result of merging those two subgraphs-ijn

Figure 9. Merging conditions.
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Figure 10. Sketches of raising and weakening.

In addition, either all merged nodes are monomorphic or the t
following extra conditions hold:

(3) n1 andny are bound on the same node, with the same flag, and
have non-locked permissions;

(4) for any two merged bound node$ andn’, respectively under
n1 andng, n; must be transitively bound at; (i.e. n} =——
n; € T)foriin {1, 2}.

We writeMerge (n1, n2) for the functionr — 7'. O

Merging of monomorphic nodes is as with first-order termd-Ot
erwise, the interesting condition[is 4, which prevents rimgrghat
would recursively merge nodes bound abemeandn.. In those
cases, mergings would only be correct under a much more com-
plex control of permissions than conditifh 3. For examptm-c
sider the types, 7, andt,,, of Figure[d. The typer,,, is not
Merge ({1}, (2))(7): nodes(11) and (21) fail condition[3, since
(11) is not bound undefl) in 7,,,-. In this particular case, the trans-
formation can be decomposed into two atomic merges that both
satisfy conditiol}:

T = Merge((1), (2))(7m) Tm = Merge((11), (21))(7)

However, it is not always possible to do such a decompositien
permissions may prevent merging the nodes that are boune abo
the nodes to be merged.

We write C™M for the reflexive transitive closure of the relation
R defined byr R 7/ <= Ini,na, 7’ = Merge(n1,n2)(7). We
write C™ the restriction of=* to merging of monomorphic nodes
(i.e. all pairs (n1,n2) in the definition of C* are required to be
monomorphic.

Merging has no direct equivalent in the syntactic preseantaf
MLF, and can only be obtained by a combination of several rules.
For instance, one could prove thafa. > o) V(3 >0) a — B can
be syntactically instantiated intt(a>o) V (8>a) o — 3, which
inturn is equivalent t&/ (o« > o) a — a. This syntactic derivation
requires to abstract the second occurrence loéhind the name,
and to replaces by a everywhere using the equivalence relation.
The graphic proof is direct and simpler.

3.2.3 Raising

Raising performs in essence a scope extrusion, similareow
the SystenF type 7’ — (Va.7) into Va.(7' — 7) whenevera
does not appear free if. However, sharing of type variables in
MLF allows raising to soundly occur under left sides of arrows an



deeper inside types. Namely, given two successive bindigg®
n = n’ = n”, the first one can be raised above the second
one to yield the edge =—— n” whenevem is not locked.

Raising is sketched on the left side of Figlird 10.

DEFINITION 8 (Raising).A typer’ is the raising of a flexible or
rigid noden of a typer if = and 7’ coincide except for the binding
edges ofn, which are such that =2~ n’ =— n” € ¥ and
n—-n" ¥

We write Raise(n) for the functionr — 7’ and C for the
reflexive transitive closure of the relation definedbR ' <
3n, 7" = Raise(n) (7). O

In Figurel®, 75 is a raising of nod€221) in 7> and 4 is a raising
of node(222) in 3.

After raising, the binding edge’ =— n’’ may sometimes be
deleted, namely when was the only node bound at. This is the
case for the edg&2) = (2) of 73, which we removed.

3.2.4 Weakening

Weakening is used to forbid irreversible instance openatito
occur underneath a node. It turns a flexible binding edgeirigav
a flexible node into a rigid one, as illustrated on the righiesbf

Figure[1D.

DEFINITION 9 (Weakening) A typer’ is a weakening at a flexible
noden of a typer if 7 and 7’ coincide except for the binding edge
n == n’ € 7, which is replaced by, =— n’ in 7.

We writeWeaken (n) for the functionr — 7" andC" for the
reflexive transitive closure of the relation definedbR 7/ <=
In, 7" = Weaken (n)(7). O

In Figurel®, typers is a weakening of; at node(21).

3.3 Theinstance relation
Instance is simply the union of all forms of instance operai

DEFINITION 10 (Instance)The instance relation on typésis the
reflexive transitive closur¢C® U C™ U C® U CY)* of all
forms of instances. O

Coming back to our example, we have seen aboverthat®
T2 ER T3 ER T4 E]M T5 EW T6 E]M 77 holds. Hencer; C 77
holds by definition ofC; note that a shortened decomposition
of this fact ismm C¢ 7 CTM . Moreover, operations can
also be performed in a different order. However, the wealgenof
node (21) must always be performed after the nodes1) and

(212) have been merged. Indeed, both nodes are locked after the

weakening, which prevents any further operation on them.

Notice that the graphic instance relation needs not to beekbfi
under prefixes, as it uses permission to deeply operateeitsiths
instead. We believe that this makes the definition signiflgesim-
pler than its syntactic counterpart.

The two following properties abstract over the permissips s
tem (and so serve as interface to many proofs that do not &exh n
to directly refer to the definition of permissions).

PROPERTY1. The permission systef satisfies:

1. |fP(61<>2<>3) 75 L, thenP(61<>2<>364) = P(51<>354).
2. If P(c>) = F, thenP(5=3") < P(3>3') for the order
L<R<F O

In particular, raising preserves permissions (which feidrom[1)
and weakening only restricts them (which follows frBin 2).

Both properties are also verified by the variant of the pesiois
system that matches syntactic type instance.

Binding trees carry two independent pieces of information:
whereandhow nodes are bound. Interestingly, the two can almost

Figure 11. Two similar types.

be treated independently. Thehereis computationally essential
and determines the shape of the binding tree whilenthvemostly
acts as a filter by blocking certain instances. In particuldren
raising is blocked by permission constraints, weakeninvgneelps
(Property[dLP). This enables to perform unification by cotimgu
the binding edges and their labeling independeritBl)(

3.4 Similarity

As defined, the instance relation is slightly too fine grainafhile
sharing of polymorphic nodes is significant, sharing of mooo
phic nodes is semantically meaningless. Therefore, we alefin
similarity relation that abstracts over those details, @motient the
instance relation accordingly.

DEFINITION 11 (Similarity). We callsimilarity the relation(C™
U 3J™)* on graphs, which is written=. We callinstance modulo
similarity the relation(C U )", written C. O

An example of two similar types is given in Figutel 11. The type
on the left is obtained by merging the unbound no¢&® and

(2) of the one on the right. Hence, both types are similar. In the
end, we work up to similarity and are interesteddr. However,

we often express results far alone, as they are stronger than the
corresponding results far ~..

The similarity of two types can be checked efficiently, irelm
time in the size of the graphs. The algorithm, presented @ Fi
ure[I2, merely verifies that the structures of the two typéfy/un
without any change to their binding structure.

Input: Two typesr: andr
Output: A boolean indicating whether; andr, are similar

1. Compute the first-order term-graph unifierpfandr (treating
1 as avariable). Returfalse if it does not exist.

2. Returnfalse if an equivalence class holds any of the following:
(a) Two polymorphic nodes of the same graph,
(b) A polymorphic node and a monomorphic node,
(c) A bottom and a non-bottom node.

3. Returnfalse if two polymorphic nodes in the same equivalence
class do not have their respective binders in the same equiva
lence class, or if they do not carry the same flag on their binde

4. Returntrue

Figure 12. Algorithm for similarity.

The similarity relation~ corresponds exactly to the equivalence
relation= in the syntactic presentation. More precisely, equivalent
syntactic types translate to similar graphic types, andyersely,
similar graphic types translate to equivalent syntactpesy How-
ever, graphic types are more canonical than syntactic étersce,
similarity is a simpler relation than equivalence. Indesidilar-
ity does not require prefixes or context rules. Moreover,aeahof
useless binders and commutation of binders are directljucegh



in the graphic representation: syntactic types that ddfdy by ap-
plications of those rules are mappedetpalgraphic types.

In fact, similarity is the residual of equivalence on firstier
term graphs: two types and 7’ are similar if and only if their
underlying term-graphs are equivalene(the skeletons of their
terms graphs are equal) and their binding trees are equal.

3.5 Commutation lemmas

In this section, we writ&R ; R’ for R'oR, i.e.the composition of
relations defined by (R; R )y <= Jz,2R2A2Ry.

The instance relation is such that one may consider ordered s
guences of instance operations without loss of generaiigftings
can always occur first, followed by raisings, and then meggend
weakenings. This flexibility is the key to an efficient implem
tation of unification ¢ H). It also greatly simplifies reasoning and
proofs on instance derivations.

THEOREM1 (Ordered derivations).The instance relatiorC is
equal toC ; CF; CMW withCMW = (M u )™,

A sequence of elementary instance transformations isccalle

deredwhen they come in the decomposition order of Thediém 1.

This is the case of the proof ef C 77 in Figure[®.

The similarity and instance modulo similarity relationsedso
be decomposed. In particular, all usages of monomorphibarns
ings can be pushed to the end of a derivation. This is usedtepr
that unification and similarity commute.

LEMMA 1. The similarity relation= is equal toC™ ; J™. The
instance modulo similarity relation ~. is equal toC ; J™. O

3.6 The abstraction relation

By comparison with syntactic types, the instance relation o
graphic types has been defined without referring to abstract
This section reintroduces the abstraction relation onlgcaypes.
Although technically unnecessary for solving unificatidinye-
mains interesting for pedagogical purposes. Intuitivebstraction
allows to perform only instance operations on rigid nodes.

Figure 14. Encoding for standard unification.

The following commutative diagram is one of the key proerti

for type soundness.
E

o
. ——
E
Interestingly, this results follows by a very simple caseewhea-
soning with graphic types, while it was a difficult and tectatly
involved proof when reasoning with syntactic types.

In fact, when type inference is not an iss&eg. in the type
soundness proof, we may treat types up to the relgtiory 3)*,
which we write=. That is, we may replace type instance by the
larger relation = U =9)* [B], which we writeCE. It easily follows
from the above commutative diagram (and the fact thais a
subrelation ofC) that & and C= are equal to=; 3 andC; 35,
respectively. This also implies that the unification probier ==
can be reduced to the unification problem fgrwhich we solve in
the next sectioh

4. Unification

This section presents the unification problemNtit types and an
efficient algorithm to solve it.

4.1 Unification problem

The unification problem foMLF is quite standard: given two types
71 and 72, find a typer, that unifiesthose typesj.e. such that
71 C 7, @andms C 7. Itis already known that thisl LF unification

The abstraction operations are sketched in Fifle 13 and de-problem for the syntactic presentation psincipal, i.e. that all

tailed in the definition below.

DEFINITION 12 (Abstraction).The graphic abstraction relation
on types, writtere, is the subrelatiof=™ U =%)* of C where
e is the subrelation of—" that only merges rigid nodes and
% is the subrelation ofZ* that only raises nodes bound on rigid
nodes. O

R

M : : = :
o\ 1= I/ 1=
n =1
— \
T =\ \
n n

Figure 13. Abstraction operations.

The intuition behind the extended abstraction relatioraisifto ex-
plain without referring to subject reduction. Roughly, lEabf the
forms=3', i.e.below arigid flag ar@rotected as they never allow
a truly flexible instance (requiring flexible permission)oiover,
this remains true when stripping off any prefix@fwhich simu-
lates the possible deconstruction of the type during typeseking.
Hence, performing an abstraction at path will not have more
observationable effect than performing this abstractiates, dur-
ing deconstruction) under the flag, which was already allowed
by the syntactic permissions.

solutions are instances of a more general unifiefi/]. However,
we propose a more general definition.

DeFINITION 13 (Generalized unification)iven a typer, we say
that a typer’ is aunifier of a set of node#/ in 7 if 7’ is an instance
of 7 in which all nodes ofV are shared. Moreovey;’ is aprincipal
unifier if any other unifier ofV in 7 is an instance of’. O

Generalized unification is more general than unifying twaety.
In fact, the latter class of problems can be encoded intodiredr
one. Indeed, two types; and 7. unify if the nodes(1) and (2)
unify in the typer of Figure[T#, if this is the case, an unifier of
and 7 is the subgraph of;, starting at nod€1). The reciprocal
implication also holds.

Unfortunately, generalized unification is in faob powerful, as
some problems can have a non-principal set of solutions—aaad
in fact not useful in practice. Consider unifying the nodék) and
(21) in the typer of Figure[Th. A first unifier is,: the two nodes
have been raised once, and then merged. However, otherrsnifie
exist, includingr;, which is obtained by merging the nodgs and
(2), which also indirectly merge& 1) and(21).

There does not exist a unifier more general than those twqg ones
as there is an incompatible choice to be made between rdtsing

I However, it would be misleading to think that solving unifioa for CE
enables more aggressive type inference: on the opposkiegta = for
type instance interacts with other rules in such a way thae¢ ipference
can no longer be reduced to unification (and copying) for ype instance
relation.



Figure 15. A problem without a principal solution.

edges (and merging the leaves), which irreversibly in&ited the
binding structure, or merging the upper nodes, which imstaéy
instantiates the upper nodes of the underlying term-graph.

4.2 Admissible problems

We nevertheless use generalized unification, as it is pessib
characterize an important set of problems that admit graicso-
lutions. This set includes unification under the root of tyjeet as
used to encode unification of two different types (Fidirk, bt
also other interesting cases to be used in type inferencecallle
admissiblehose problemsThe remainder of this section, which is
a little technical, can easily be skipped on a first read.

DEFINITION 14. Given a typer and a set of noded/, we say that
(r, N) is anadmissibleproblem (or thatNV is admissible forr) if

the set of node§n” € 7 | 3n € N,n’ € 7,n' = n’ o’
n o~ n'} is totally ordered by the domination relatien on #. (J

It is difficult to give an intuition of this definition withouactually
proving that it ensures principality of unification problenVery
roughly, non principality of unification always originaté®m a
merging/raising competition (as illustrated on the exagfl Fig-
ure[I3). Admissible problems will ensure that such pot¢ictia-
flicts will always occur between nodes in domination relatémd
thus can only be solved by raising, as merging would creatkesy
in the structure.

In the example of FigurE1l5, the sat = {(11), (21)} is not
admissible forr or 7. Indeed,(1) and(2) (which are the binders of
(11) and(21), and verify the condition above) are not comparable
for <in 7 or 7.

As mentioned above, admissible problems subsume unificatio
under the root. In fact, any set of nodes “under” a given nade f
o— or = is admissible. Moreover, those problems have useful
stability properties.

PROPERTY2. Consider a type- and a noden of 7:

¢ Any subsefV of { n' In o— n' } is admissible forr.
 Any subsetV of {n’ In’ =— n } is admissible fotr.

SupposeN is admissible forr. Then for any typer’ such that
7 C~ 7/, N is admissible for’. O

4.3 Unification algorithm

We present our unification algorithrdnif 5 in Figure[I6. The
algorithm takes a type as input and outputs a typg that unifies
N, or fails. The algorithm is in two steps.

The first step unifies the nodes df in 7 using first-order uni-
fication; the result of this phase will be the structure of tinéier.
The second phase uses an auxiliary algorifRebind (presented
in Figure[IT) to build the binding tree of the unifier. Giverypd
7 and a term-graph:, instance ofr (defined in AppendiX_h), it
returns a binding-tre&, such that(,, 7, is an instance of, or
fails.

Let us introduce some notations. We wrlt€Aq (n1, ..., ny)
for the least common ancestor of the nodsgs..., n, in a rooted

Input: A type T and a set of noded’.
Output: A type 7, that unifiesN, or Failure.

1. Letr, be the first-order unifier of the nod@&in the term-graph
7, treating L as a variable.

Fail if 7, does not exist, or if it is cyclic.
2. Letr, beRebind(7,, 7). Fail if Rebind fails.

3. Letr, be (7, 7.); returnz,.

Figure 16. Unif y algorithm.

graphG. In the following, nodes of are calledn while those of
T, are calledn, with the following exception: for any node: of
T, we writern the corresponding node ef, (i.e. the unique node
of 7, whose name extends the namermej. We say that a node
n is partially grafted if there exists a bottom node: such that

m ol n.
The algorithmRebind proceeds in three steps.

M. Correction of the grafting steps.The first step checks that the
graftings performed to obtain the skeletongffrom the skeleton
of 7 are allowed w.r.t. permissions.

2. Building the binding tree. The second phase binds the nodes of
T,.. Given a noden, it first finds the sef\/,, of the bound nodes of
7 that are merged inta. The binding edges of those nodes (whose
ending nodes ar87') must be raised until they are all bound at the
same node (stdp_2(d}#i) In parallel, a new flag., is computed
for n; it is the best flag common to the nodes/df, (step[2(d])i).
Step§ 2({d)]i anf Z{d)Jv verify that the weakenings and ngjsithat
have been performed respect the permissions of

The computation of7, is incremental and is done in a top-
down fashion: results found for the nodes that have already b
considered are reused for the nodes underneath. The hlgast
conservative and may compute binders for nodes whose lgindin
edges will eventually be deleted lgy (7).

B. Correction of the Merge stepsThe third phase revisits the
mergings performed betweenandr,,. Some of them were poly-
morphic, according to the binding tree found in phase 2. All o
these are verified for permissions (during $teb 3b).

The difficulty of this step lies in finding where exactly thenge
ings originated. Consider the type in Figurel®. InT, the nodes
(1) and(2) were merged, and we must verify that their permissions
were correct. However11) and(21) were also indirectly merged.
Yet, for them no check must be done.

We use the following fact: when two nodes are merged and their
binders are equal, they are the root of a polymorphic mertgel3h
finds the nodes of,, that verify this condition.

For pedagogical purposes, we introduce two intermedisdpigy

74 andr, that correspond to the steps of an ordered derivation of
7 T 7. Although they are never actually bdiby the algorithm,
they are useful to reason on it.

e The graphr, is 7 in which all the graftings have been per-
formed. LetSc be the set of bottom nodes efthat are no
longer bottom nodes im,. Thenr, is obtained by simultane-
ously grafting under every node of S the expansion of the
subgraph ofr, underm (defined below).

2\We defer the discussion By to (§E2).

3The size ofry can be quadratic in the size of Hence, building it would
make impossible to have a linear complexity.



Input: Atyper and a term-graph, instance ofr
Output: A binding tree?, for 75,, or Failure

1. Correction of the graft steps

Fail if there exists a non flexible bottom nodein = such that
m iS not a bottom node im,.

2. Building the binding tree

For each node of 7, (visited in a top-down ordering), do:
(@) LetM, be{m € 7 | ™ = n} N dom(7).
(b) Let B be{ 7(m)|m € M, }.

if n is partially grafted

{nIn' o—n}
0 otherwise

(c) LetB3 be{

(d) If either BT or By is not empty:

. Leto, be(=)if (=) isin ?(Mn), or (>) otherwise.

ii. Fail if o, is (=) and there exists a non flexible node
m in M,, such thaﬁz(m) is (>).

iii. Let np beLCA. (B'U B3).

iv. Fail if there existan in M, locked inT and such that
misnotng.

v. Lets, ber, +n =2 np.
Let (_, 7) bege(7u, 7).
3. Correction of the Merge steps
(a) Build the graphr; such that®; equalst and verifying
ms—m’ ETH &= m s m' er A — ™’ e-?u.

(b) Fail if there existsn andm’ distinct such that one of them
is locked,/n = 7/, and7; (m) = 7t (m/).

4. Return 7.

Figure 17. Rebind algorithm.

The expansion of a typeis the only typer’ whose both term-
graph and binding tree are equal to the skeletonafid whose
nodes are all flexibly bound. For example, the expansionef th
subgraph at nodél) of 7 in Figurel® is the subgraph &2).

The graphr, is 7, in which all the raisings have been per-
formed. It has the same term-graphm@gsand its binding tree
is defined bym =" m’ € 7, ifand only if i = ' € 7,
andm == m’ € 7,.

4.4 Example of unification

Our running example will be FiguE@ 6, in which we unify the ped
(1) and(2) of 7. Of coursey is one suitable unifier; in facty is
Unif {1 23 (71), while 72 and 4 arer, andr, respectively. Indeed,
in our caseSc = {2}, andr grafts the proper expansion subtype
at (2). For 7., the only nodes that must be raisedripare (221)
and(221), which are exactly the ones raised betwegandr,.

We now examine each of the stepsRabind in turn.

Step We check that2) (the only node ofS¢) can be grafted.
This is the case here, as it is flexibly bound to the roat;in

Step We suppose thatebind tries to bind the node = (121).
The only node ofr; merged inton in 7, is (121), thus M,, is
{(121)}. However, there are three such nodesifi.e.72), namely
(121), (221), and(222). Let this set beV,,.

The computation ob,, is easy, asV/,, is a singleton. Conse-
quently, 7., (n) is 71((121)), i.e. (>). Here, no weakening takes
place, hence no verification is done. Note that it is not reargsto
take into account the flags on the nodes\6f \ M., as we know
they are flexibly bound.

The computation of the new binder is slightly more subtle. In
order to findng, the algorithm must raise all the nodes &f;,
until they are all bound at the same level. It start by commuthe
binders of the nodes af7},:

e BT contains the binders of the nodes present (he. 71).

e By contains the binders of the nodes that have been grafted
betweenr andr,. By construction of the expansion graphs, the
binding edges of those nodes are the inverse of structuesedg

In our case By = {7i(n)} = {(1)}. Meanwhile,By = {(22)},
which is exactly the (common) binder iy of the nodeg221) and
(221) of M, \ M, (that are grafted iy, and merged im).

The setBf" U By is thus equal tq (1), (22) }. At this stage of
the algorithm, the nodé22), which is aboven in 7, is already
(flexibly) bound to(2). This last node is equal t@) in 7., hence
LCA- (BT U Bg) is equal to(1). The nodes that need to be

raised arg221) and(222), the grafted ones. Again, since they are
flexible, no permissions check is needed.

Stepl In our simple exampler; is in fact equal ta- (i.e.71). The
only pair of nodes satisfying conditidnl3b ($1), (2)), for which
the permission check succeeds. Note that while the n¢ziely
and(212) were merged in our derivation of Figuk 6, the algorithm
does not check for them, as again it knows that they are flegibé
same for(221) and(222)).

4.5 Correctness of the algorithms

This section introduces the correctness results of theridign
All the results also apply to the stricter permission systelence,
our algorithm can be reused unchanged to perform unification
exactly the syntactic version dfILF. The first three lemmas are
important auxiliary results for the proofs.

Rebind must temporarily bind nodes that cannot be polymor-
phic in the final result (none of the instance rules allowdfarm-
ing a monomorphic node into a polymorphic one), in order to be
efficient and incremental when buildirg,. Nevertheless, it does
not “invent” polymorphism:

LEMMA 2. Given a polymorphic node of 7, any noden that is
merged intan was polymorphic inr, 7, and 7. d
Rebind chooses the lowest possible binder for a node:

LEMMA 3. Letn be a polymorphic node af,. Letn’ be a node
of 7, such that for every node: of 7, merged inton there exists
a nodem’ of 7, merged inton’ verifyingm —— m’ € 7,. Then,
n >L> n € Tu. O
Rebind preserves existing permissions:

LEMMA 4. Letn be a polymorphic node af, such that every node

m of 7 that has been merged im has at least the permissiof.
Then,n also has the permissioRin 7,,. d

For the remainder of this section, we implicitly quantifyem\a
typer, a set of nodesV, and a first-order instancg, of 7. Unless
mentioned otherwise, we dwt assume thatr, V) is admissible.
We do not assume tha, is the principal first-order unifier a¥ in
7 either. The results are given first fBebind, then forUnif.

We start by stating the soundness result.

THEOREMZ2. If Rebind(r,7,) returns 7, the instance relations
7% 7, Cf 1 £ (7, 7u) hold. 0



ThusUnif is sound even on non admissible problems.

COROLLARY 1 (Soundness)The algorithmUnif is sound. O

Rebind is also complete.

THEOREM 3. Suppose there exists an unifier of (7., N) such
that 7, = 7,,. ThenRebind(7, 7,) returns7, such that the type,
equal to(7},, 7, ) is more general tham,, i.e. 7, C 7. O

For the existence result we show that, for any permissioesich
done by the algorithm, any derivations ofC 7, uses a transfor-
mation requiring at least those permissions. For the paiity re-
sult, we consider an ordered derivatioi. 7, CF 7/ CMW
of r C o, and show (using a commutative dlagram) that_ 7,
. C 7/ andry, C 7.

This result is not sufficient to prove completeness with a dif

ferent structure graph. However, completeness holds orsaibie
problems.

’U

THEOREM4 (Completeness)Suppose thad is admissible for-.
If there exists an unifier, of (7., V), Unif 5 (7) returns a typer,;
moreover, this type is more general than O

Finally, the following lemma justifies the fact that we do not
need to study principality up to similarity. Indeed, it “comtes”
with unification.

LEMMA 5. Let 71 and > be two types, andV a set of nodes
admissible for both types. Assutdeif (1) exists andr;
ThenUnif  (72) exists andJnif x (71) = Unif x(72).

~

X To.

O

4.6 Complexity

For the sake of the complexity analysis, we assume that ddabk o
following elementary operations takes constant time:

e finding the binder of a node;
¢ going fromm € 7 to the corresponding nodé € 7;
¢ finding the list of nodes of that are merged into a node of.

This can easily be achieved by using constant-time access- st
tures for storing graphs and by keeping track of merges guni-
fication. For the computation of least common ancestors, seeau
dynamic algorithm that computésCA queries in worst-case con-
stant time, and in which adding new leaves takes constiarg-{fi].

THEOREMS5. Unif is linear in the size of its argument. O

This linear-time bound relies on a linear-time unificatidgoaithm

for term-graphs. We can also use a union-find based first-orde
unification algorithml[[5] instead, in which case we obtaincg(n)
complexity.

The algorithmRebind can be improved so that it does not need
to visit the whole type during unification, but only the nodbat
are visited during the first-order unification phase. Thig,wa
can be used incrementally with a good complexity. Howeversé
improvements are quite technical]12].

While the complexity bound of the algorithm used in the orig-
inal syntactic presentation &flLF is not known, it has to perform
many duplications ane--conversions. We think that it would not
scale to larger inference problems that can appeain automat-
ically generated code, encodings, or extensive use of pmiyihic
records and variant types.

Conclusion

We have given a formal meaning to the informal graphic types
used in the original presentation bfLF [B]. We proposed a def-
inition of type instance based on several independent tipesa

on types: merging and grafting are well-known operationfirsix
order term-graphs; raising is a simple operation on theibinttee
that reduces polymorphism; weakening and permissions eke n
and both work together to ensure that requested polymarplis
not reduced during instantiation.

We found that unification foMLF-types can be performed in
linear time. Unsurprisingly, the critical step seems to lee ¢om-
putation of the binding structure.

The most immediate application of our work is a simpler and
efficient unification algorithm foMLF types. The languagsLF
has already been used in the Morrow compilér [9]—an extensio
of core Haskell with second-order types—using the syrtgumte-
sentation. We believe its performance on large problemddiog
significantly improved by using graphic types and our aliponi.

Another immediate benefit is a simplification BfLF presen-
tation and meta-theory. Our understanding of the designesig
also much improved, especially in the definition of the instare-
lation. We have proposed a slightly more permissive definitf
permissions—but the soundnesshEF for our enhanced permis-
sions system remains to be verified.

Our experience with graphic types is that once the defirstion
and the main lemmas are settled, results are rather irgutnd
easy. This contrasts with the previous approach based dactyn

types.

Futureworks A continuation of this work is to revisit type infer-
ence forMLF using our graph presentation; we are in the process
of formalizing a constraint-based approach. Primary tssuk en-
couraging, and draw close parallels with type inferencerélyns
for ML, known to be quite efficient in practice. In the meantime,
we are implementing a graph-based prototypevif, to verify
that type inference remains indeed tractable, just &dlin

By simplifying and increasing our understandinghEF types,
the graphic presentation also permits exploring sevetahsions.
This includes generalized algebraic data types, subtypimgitive
existential types, recursive types, or higher-order types

The combination of recursive types and second-order palymo
phism alone is already tricky][3]. We thus have only consider
acyclic types here. Allowing cyclic term-graphs should losg-
ble (even though we did not do so). The difficulty rather lieshie
treatment of recursion in the binding structure. While aanfe-
work should extend to “monomorphic recursions” that do met i
teract with the binding structure, the general case shoelthbre
challenging.

Probably harder, but also quite useful would be to extend the
mechanism ofMLF to higher-order types. The interaction 6f
reduction at the level of types with a first-order type inferea
la MLF seems non-trivial.
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A. Anintroduction to term-graphs

Term graphs are a more compact representation of first-tedes,
often used in unification algorithms.

A.1 First-order terms

A (first-order)term ¢ over a signature: (a set of symbols with
arities) and a set of variablés is a mapping from a non-empty
set of paths t& U V that is prefix-closed and respect arities. That
is, for all pathst in dom(t) (the domain oft) and all integersk,
wk € dom(t) is equivalent td < k < arity(t(7)).

A substitutiony is a mapping from variables to terms; it is
extended to a mapping from terms to terms in the usual way.

Atermt’ is an instance of a term) which we writet < t/, if
it is the image oft by some substitutiop. Two termst andt’ are
unifiable if there exists a substitutign called a unifier ot andt’,
that identifies them. The unifieris said to be principal if any other
unifier can be written ag’ o ¢ for some substitution’. Similarly,

t" is a (principal) unifier oft andt’ if it is of the form ¢(t) where
 is a (principal) unifier ot and¢’.

Unification is a well-known problem on first-order terms that
can be computed in linear timg]11] using dags. Other aligarst
use union-find structures and hawe(n) time complexity; how-
ever, they run faster in practicgl |[5.110] and are simpler tplém
ment. Moreover, Huet’s algorithnil[5] can perform unification
regular terms as well. Interestingly, all three algorittume a graph
representation of types. In fact, they compute unificatiog@phs,
and reinterpret the resulting graphs as terms.

Figure 18. Instance on term-graphs.

A.2 Term-graphs

Term-graphs formalize the dag-based representation tfofider
terms.

An equivalence relation- on the paths of a termis consistent
if ¢ is constant on every equivalence class (each path in a class
maps to the same symbol or variable). Itweakly consistenif
there is at most one symbol &f in every equivalence class (each
class can contain multiple variables, but at most one symbaol
equivalence relation- on t is a congruence if it is suffix-closed,
i.e.m ~ 7 andrk and 7’k are indom(t) implies 7k ~ ='k.
Congruences identify identical subterms.

A term-graphg is a pair of a terng and a consistent congruence
g on dom(g) such that every variable appears in at most one
equivalence class.

In Figure[I8, the term of both graplis) and(b) is (« — ) —
(a — ). However, their equivalence classes differ. For graph
itisa = {(11), (21)}, {(12), (22) }, while itisa U {(1), (2)} for
graph(b).

A3

A term-graphg’ is aninstanceof a term-graphy, which we write
g <g,ifg < g andg C §'. Two term-graphs arsimilar if
they represent the same tree. For instance, gréphand (b) of
Figure[I8 are similar (as both repres¢at — 3) — (o — 3))
while (b) and (c¢) are not. On the other hand)) is a standard
instance of(c).

Instance on term-graphs implies instance of the underlying
terms. As an example, coming back(® and(c), (&« — 3) —

(a — B) is indeed an instance gf — + through the substitution
v (a—pB).

Unification can bénternalizedon term-graphs, that is, defined
by giving two nodes of a same graph instead of two graphs to be
merged. We say that a term-graghis a unifier of nodes:; and
ng of a term-graply if it is an instance ofy that identifies nodes;
andns (i.e.there exists a node of ¢’ that is a superset of botiy
andnz). For example, in FigurEl8, the term-graph (b) is a unifier
of the nodes{1} and {2} in the term-graph (a). A unifieg’ of
nodesn andn’ is principal if any other unifier is an instance of
¢’. Unification of two nodes: andn’ of g can be computed as the
smallest weakly consistent, congruent equivalence thatbaws g
and merges. andn’ [B].

In fact, unification of term-graphs also computes their oaHi
tion up to similarity,i.e. unification on terms. More precisely, §f
is a (principal) unifier of the noded) and (2) of a term-graply,
theng’ /1 (the subterm ofy’ at occurrencd), also equal tgy’ /2,
is a (principal) unifier ofg/1 and /2. This property, often over-
looked in the literature, justifies the fact that term-gsygian be
used instead of first-order terms to perform first-order oatfon.

Instance and unification on term-graphs
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