
A graphical presentation of MLF

types with a linear-time
unification algorithm

Didier Rémy, Boris Yakobowski

INRIA Rocquencourt

A brief presentation of MLF

[Le Botlan-Rémy, ICFP 2003]

[Le Botlan, 2003]

Why MLF? 3(1)/??

ML System F

Outer ∀ Inner (1st class) ∀ (Good)

∀αβ. (α → β) → α t → β t λ(f : ∀α.α → α)(f [int] 1, f [bool] ′b′)

Full type inference Explicitely typed

(Good) (undecidable type inference)

Fully annotated terms are

(too) verbose

⇒ Need for partial type inference

MLF features 4(1)/??

Conservative extension of both ML and System F

◮ ML programs need no annotations (type inference)

◮ F terms need fewer annotations

type abstraction and applications are inferred

◮ Annotations are only required on λ-abstractions that are used

polymorphically used

MLF features 4(2)/??

Conservative extension of both ML and System F

◮ ML programs need no annotations (type inference)

◮ F terms need fewer annotations

type abstraction and applications are inferred

◮ Annotations are only required on λ-abstractions that are used

polymorphically used

Principal types (taking user-provided annotations into account)

Robust to small program transformations

e.g. if E[a1 a2] is typable so is E[apply a1 a2]

(where apply is λf.λx.f x)

Example: type of choose id 5(1)/??

Term Type

id = λx.x ∀α. α → α (τid)

choose = λx.λy.if b then x else y ∀γ. γ → γ → γ

Example: type of choose id 5(2)/??

In System F, two different typings for choose id:

choose [∀α · α → α] id : τid → τid F1

Λα · choose [α → α] (id α) : ∀α · (α → α) → (α → α) F2

Example: type of choose id 5(3)/??

In System F, two different typings for choose id:

choose [∀α · α → α] id : τid → τid F1

Λα · choose [α → α] (id α) : ∀α · (α → α) → (α → α) F2

In MLF (note the absence of type annotations):

choose id : ∀ (β = τid) β → β τ1

: ∀ (α) ∀ (β = α → α) β → β τ2

But τ = ∀ (β ≥ τid) β → β is another, principal, typing:

τ ⊑

∀ (β ≥ int → int) β → β (i.e. (int → int) → (int → int))

∀ (β = ∀ (η = τid) η → η) β → β (i.e. (τid → τid) → (τid → τid))

τ1, τ2

Syntactic presentation 6(1)/??

A lot of administrative rules

◮ Hides the underlying principles

◮ Heavy proofs

◮ Makes extensions difficult

Is the instance relation the best within the framework?

Expensive unification (and hence type inference) algorithms.

Would it scale up to large or automatically generated programs?

Contributions 7(1)/??

Graphs are used instead of trees to represent types.

Graphs had already been proposed as a simpler representation,

but were not formalized

◮ Simpler presentation, strongly related to first-order types

◮ Proofs are shorter and simpler

◮ Unification has good complexity

Representing first and second-order types

Representing first-order types 9(1)/??

(α → β) → (α → β) as: a tree

→

→

α β

→

α β

Representing first-order types 9(2)/??

(α → β) → (α → β) as: a tree a dag

→

→

α

→

β

All occurrences of a variable are shared.

Representing first-order types 9(3)/??

(α → β) → (α → β) as: a tree an anonymous dag

→

→

⊥

→

⊥

Variables can be α-converted and do not need to be named

Representing first-order types 9(4)/??

(α → β) → (α → β) as: a tree an anonymous dag with sharing

→

→

⊥ ⊥

Non-variable nodes may be also shared

Representing terms with binders 10(1)/??

Binders are represented with explicit ∀ nodes

int → (∀αβ.(α → β) → (α → β)) →

int ∀

∀

→

→

⊥

→

⊥

Problem: commuting or instantiating binders change the

structure of the type

Representing terms with binders 10(2)/??

With bindings edges, between a variable and the node

where the variable is introduced.

int → (∀αβ.(α → β) → (α → β)) →

int

→

→

⊥

→

⊥

Commutation of binders comes for free!

MLF types, graphically

MLF graphic types 12(1)/??

∀ (α = ∀ (β ≥ ⊥)∀ (η = ∀ (δ ≥ ⊥) β → δ)∀ (ǫ ≥ ⊥) η → ǫ) α → α

As a graphic type:

→

→

→

⊥ ⊥

⊥

MLF graphic types 12(2)/??

α : β : ⊥ η : δ : ⊥ β → δ ǫ : ⊥ η → ǫ α → α

As a graphic type:

→

→ α

→ η

⊥ β ⊥ δ

⊥ ǫ

A first-order term graph...

MLF graphic types 12(3)/??

∀ α = ∀ β ≥ ⊥ ∀ η = ∀ δ ≥ ⊥ β → δ ∀ ǫ ≥ ⊥ η → ǫ α → α

As a graphic type:

→

→ α

→ η

⊥ β ⊥ δ

⊥ ǫ

...plus a binding tree...

MLF graphic types 12(4)/??

∀ (α = ∀ (β ≥ ⊥)∀ (η = ∀ (δ ≥ ⊥) β → δ)∀ (ǫ ≥ ⊥) η → ǫ) α → α

As a graphic type:

→

→

→

⊥ ⊥

⊥

...superposed

Well-formedness of graphic types 13(1)/??

→ ǫ

→ α

→
β

⊥ η ⊥ δ

Syntactically:

◮ ∀ (α ≥ ∀ (δ) β → β) ∀ (β ≥ ∀ (η) η → δ) α → α

◮ There is a mutual dependency between α and β

⇒ Not a MLF type

Well-formedness of graphic types 13(2)/??

→ ǫ

→ α

→
β

⊥ η ⊥ δ

Graphically:

◮ The binder of a node n must dominate n in all the mixed

paths between n and the root ǫ

◮ There is a path between δ and ǫ which does not contain α

⇒ This graph is not a type

Instance between graphic types

Instance 15(1)/??

Only four different transformations on graphic types:

Grafting

Merging

}

change the structure of the type

Raising

Weakening

}

change the binding tree of the type

Plus some permissions on nodes governing the set of

transformations that can be applied to a node

Flags and permissions 16(1)/??

◮ Transformations whose inverse can be unsound: allowed on

flexible nodes

◮ Transformations whose inverse is sound, but that cannot

be made implicit while retaining type inference: allowed on

rigid nodes:

→

→

→

⊥

→

→

⊥

→

→

⊥

→

⊥

Binding path Permissions

≥∗ Flexible

(≥|=)∗= Rigid

Others Locked

Grafting 17(1)/??

⊥ ⊑G

τ

◮ Similar to the ML instance rule + generalization

∀α.τ 6 ∀β.τ [α/τ ′]

◮ Replaces a variable node by a type

◮ Irreversible transformation (the shape of the type changes),

the node must be flexible

Merging 18(1)/??

⋄

τ

⋄

τ

⊑M ⋄

τ

◮ Partly similar to the ML instance ∀αβ. α → β 6 ∀α. α → α

◮ Merges together two identical subgraphs bound on the same

node with the same flag

◮ The nodes must be flexible or rigid

Raising 19(1)/??

⋄

⊑R

⋄

◮ Scope extrusion (τ → (∀α. τ ′) 6 ∀α. τ → τ ′ , α not free in τ)

◮ Used to prove that the type ∀ (β ≥ ∀ (α) α → α) β → β of

choose id can be instantiated into ∀ (α) ∀ (β ≥ α → α) β → β

◮ The node must be flexible or rigid

Weakening 20(1)/??

n

≥
⊑W

n

=

◮ Forbids some (irreversible) transformations under a node

◮ Used to require some polymorphism

Full example of instance 21(1)/??

→

→

→

⊥

→

⊥

⊥

Full example of instance 21(2)/??

→

→

→

⊥

→

⊥

⊥

→

→

⊥

→

⊥ ⊥

Grafting

Full example of instance 21(3)/??

→

→

→

⊥

→

⊥

→

→

⊥

→

⊥ ⊥

Full example of instance 21(4)/??

→

→

→

⊥

→

⊥

→

→

⊥

→

⊥ ⊥

Raising

Full example of instance 21(5)/??

→

→

→

⊥

→

⊥

→

→

⊥

→

⊥ ⊥

Full example of instance 21(6)/??

→

→

→

⊥

→

⊥

→

→

⊥

→

⊥ ⊥

Raising

Full example of instance 21(7)/??

→

→

→

⊥

→

⊥

→

→

⊥

→

⊥ ⊥

Full example of instance 21(8)/??

→

→

→

⊥

→

⊥

→

→

⊥

→

⊥ ⊥

Weakening

Full example of instance 21(9)/??

→

→

→

⊥

→

⊥

→

→

⊥

→

⊥ ⊥

Full example of instance 21(10)/??

→

→

→

⊥

→

⊥

→

→

⊥

→

⊥ ⊥

Merging

Full example of instance 21(11)/??

→

→

→

⊥

→

⊥

→

→

⊥

→

⊥

Full example of instance 21(12)/??

→

→

→

⊥

→

⊥

→

→

⊥

→

⊥

Merging

Full example of instance 21(13)/??

→

→

→

⊥

→

⊥

Instance properties 22(1)/??

Definition: The instance relation ⊑ is (⊑G ∪ ⊑M ∪ ⊑R ∪ ⊑W)∗

Commutation: ⊑ is equal to ⊑G ; ⊑R ; ⊑MW (⊑MW is (⊑M ∪ ⊑W)∗)

Drastically simplifies proofs and reasonings on instance

derivations

Unification

Unification 24(1)/??

Unification problem:

Given two types τ1 and τ2, find τu such that τ1 ⊑ τu and τ2 ⊑ τu

Unification 24(2)/??

The unification algorithm proceeds in three steps:

1: Computes the structure of τu, by performing first-order

unification on the structure of τ1 and τ2.

Cost O(n) (or O(nα(n)), depending on the algorithm).

Unification 24(3)/??

The unification algorithm proceeds in three steps:

1: Computes the structure of τu, by performing first-order

unification on the structure of τ1 and τ2.

2: Computes the binding tree of τu.

If the nodes n1, ..., nk of τ1 and τ2 are merged into n in τu:

◮ The binding edges of n1, ..., nk are raised until they are all

bound at the same level.

◮ The flag for n is the least permissive flag on n1, . . . , nk.

Cost O(n): a top down visit.

Quite involved step. Uses an amortized O(1) algorithm for

computing least-common ancestors.

Unification 24(4)/??

The unification algorithm proceeds in three steps:

1: Computes the structure of τu, by performing first-order

unification on the structure of τ1 and τ2.

2: Computes the binding tree of τu.

3: Checks the permissions for the merging operations performed

in step 1.

Cost O(n), slightly involved visit of τ1, τ2 and τu.

Unification algorithm 25(1)/??

◮ Sound: τu is always an instance of τ1 and τ2

◮ Complete:

⊲ always returns an unifier if one exists

⊲ the unifier returned is principal (i.e. more general for ⊑)

than any other unifier.

Thus it computes all unifiers

◮ Good complexity: linear in max(|τ1|, |τ2|)

Extension to linear in min(|τ1|, |τ2|) in practice

Conclusion 26(1)/??

◮ Simpler relations and proofs

◮ Presentation more semantic, thanks to permissions.

⊲ New (relaxed) instance relation.

⊲ Not easily transposable on syntactic types

◮ Good complexity for unification

Conclusion 26(2)/??

◮ Simpler relations and proofs

◮ Presentation more semantic, thanks to permissions.

⊲ New (relaxed) instance relation.

⊲ Not easily transposable on syntactic types

◮ Good complexity for unification

Future works

◮ Revisit type inference using graphs

◮ Recursive types

◮ . . .

