A graphical presentation of $M L^{F}$ types with a linear-time unification algorithm

Didier Rémy, Boris Yakobowski

INRIA Rocquencourt

A brief presentation of $M L F$

[Le Botlan-Rémy, ICFP 2003]
[Le Botlan, 2003]

Why MLF?

ML

Outer \forall
$\forall \alpha \beta .(\alpha \rightarrow \beta) \rightarrow \alpha t \rightarrow \beta t$

Full type inference
(Good)

System F

Inner (1st class) \forall (Good)
$\lambda(f: \forall \alpha . \alpha \rightarrow \alpha)\left(f[\right.$ int $\left.] 1, f[\mathrm{bool}] \quad{ }^{\prime} b^{\prime}\right)$
Explicitely typed
(undecidable type inference)

Fully annotated terms are (too) verbose
\Rightarrow Need for partial type inference

Conservative extension of both ML and System F

- ML programs need no annotations (type inference)
- F terms need fewer annotations
type abstraction and applications are inferred
- Annotations are only required on λ-abstractions that are used polymorphically used
- ML programs need no annotations (type inference)
- F terms need fewer annotations
type abstraction and applications are inferred
- Annotations are only required on λ-abstractions that are used polymorphically used

Principal types (taking user-provided annotations into account)

Robust to small program transformations
e.g. if $E\left[\begin{array}{ll}a_{1} & a_{2}\end{array}\right]$ is typable so is $E\left[\begin{array}{lll}\text { apply } & a_{1} & a_{2}\end{array}\right]$
(where apply is $\lambda f . \lambda x . f x$)

Term
$i d=\lambda x . x$
choose $=\lambda x . \lambda y$.if b then x else y

Type
$\forall \alpha . \alpha \rightarrow \alpha \quad\left(\tau_{i d}\right)$
$\forall \gamma . \gamma \rightarrow \gamma \rightarrow \gamma$

Example: type of choose id

In System F, two different typings for choose id:

$$
\text { choose }[\forall \alpha \cdot \alpha \rightarrow \alpha] \text { id } \quad: \quad \tau_{i d} \rightarrow \tau_{i d} \quad F_{1}
$$

$\Lambda \alpha \cdot$ choose $[\alpha \rightarrow \alpha] \quad(\operatorname{id} \alpha) \quad: \quad \forall \alpha \cdot(\alpha \rightarrow \alpha) \rightarrow(\alpha \rightarrow \alpha) \quad F_{2}$

Example: type of choose id

In System F, two different typings for choose id:

$$
\text { choose }[\forall \alpha \cdot \alpha \rightarrow \alpha] \text { id } \quad: \quad \tau_{i d} \rightarrow \tau_{i d}
$$

$\Lambda \alpha \cdot$ choose $[\alpha \rightarrow \alpha] \quad($ id $\alpha): \quad \forall \alpha \cdot(\alpha \rightarrow \alpha) \rightarrow(\alpha \rightarrow \alpha) \quad F_{2}$

In $M L^{F}$ (note the absence of type annotations):
choose id: $\quad \forall\left(\beta=\tau_{i d}\right) \quad \beta \rightarrow \beta$

$$
\begin{equation*}
: \forall(\alpha) \forall(\beta=\alpha \rightarrow \alpha) \beta \rightarrow \beta \tag{1}
\end{equation*}
$$

But $\tau=\forall\left(\beta \geq \tau_{i d}\right) \beta \rightarrow \beta$ is another, principal, typing:

$$
\tau \sqsubseteq\left\{\begin{array}{l}
\forall(\beta \geq \text { int } \rightarrow \text { int }) \beta \rightarrow \beta \quad(\text { i.e. } \quad(\text { int } \rightarrow \text { int }) \rightarrow(\text { int } \rightarrow \text { int })) \\
\forall\left(\beta=\forall\left(\eta=\tau_{i d}\right) \eta \rightarrow \eta\right) \beta \rightarrow \beta \quad\left(\text { i.e. }\left(\tau_{i d} \rightarrow \tau_{i d}\right) \rightarrow\left(\tau_{i d} \rightarrow \tau_{i d}\right)\right) \\
\tau_{1}, \tau_{2}
\end{array}\right.
$$

Syntactic presentation

A lot of administrative rules

- Hides the underlying principles
- Heavy proofs
- Makes extensions difficult

Is the instance relation the best within the framework?

Expensive unification (and hence type inference) algorithms.
Would it scale up to large or automatically generated programs?

Contributions

Graphs are used instead of trees to represent types.
Graphs had already been proposed as a simpler representation, but were not formalized

- Simpler presentation, strongly related to first-order types
- Proofs are shorter and simpler
- Unification has good complexity

Representing first and second-order types

$(\alpha \rightarrow \beta) \rightarrow(\alpha \rightarrow \beta)$ as: a tree

Representing first-order types

$(\alpha \rightarrow \beta) \rightarrow(\alpha \rightarrow \beta)$ as: atkee a dag

All occurrences of a variable are shared.

Representing first-order types

$(\alpha \rightarrow \beta) \rightarrow(\alpha \rightarrow \beta)$ as: atree an anonymous dag

Variables can be α-converted and do not need to be named

Representing first-order types

$(\alpha \rightarrow \beta) \rightarrow(\alpha \rightarrow \beta)$ as: atree an anonymous dag with sharing

Non-variable nodes may be also shared

Representing terms with binders

Binders are represented with explicit \forall nodes

$$
\text { int } \rightarrow(\forall \alpha \beta \cdot(\alpha \rightarrow \beta) \rightarrow(\alpha \rightarrow \beta))
$$

Problem: commuting or instantiating binders change the structure of the type

Representing terms with binders

With bindings edges, between a variable and the node where the variable is introduced.

$$
\text { int } \rightarrow(\forall \alpha \beta \cdot(\alpha \rightarrow \beta) \rightarrow(\alpha \rightarrow \beta))
$$

Commutation of binders comes for free!

MLF types, graphically

MLF graphic types

$$
\forall(\alpha=\forall(\beta \geq \perp) \forall(\eta=\forall(\delta \geq \perp) \beta \rightarrow \delta) \forall(\epsilon \geq \perp) \eta \rightarrow \epsilon) \alpha \rightarrow \alpha
$$

As a graphic type:

As a graphic type:

A first-order term graph...

MLF graphic types

As a graphic type:

...plus a binding tree...

MLF graphic types

$\forall(\alpha=\forall(\beta \geq \perp) \forall(\eta=\forall(\delta \geq \perp) \beta \rightarrow \delta) \forall(\epsilon \geq \perp) \eta \rightarrow \epsilon) \alpha \rightarrow \alpha$

As a graphic type:

...superposed

Well-formedness of graphic types

Syntactically:
$\underset{\sim(\alpha \geq \beta)}{\forall(\delta) \beta \rightarrow \beta)} \forall(\beta \geq \forall(\eta) \eta \rightarrow \delta) \alpha \rightarrow \alpha$

- There is a mutual dependency between α and β
\Rightarrow Not a MLF type

Well-formedness of graphic types

Graphically:

- The binder of a node n must dominate n in all the mixed paths between n and the root ϵ
- There is a path between δ and ϵ which does not contain α
\Rightarrow This graph is not a type

Instance between graphic types

Instance

Only four different transformations on graphic types:

Plus some permissions on nodes governing the set of transformations that can be applied to a node

Flags and permissions

- Transformations whose inverse can be unsound: allowed on flexible nodes
- Transformations whose inverse is sound, but that cannot be made implicit while retaining type inference: allowed on rigid nodes:

Binding path	Permissions
\geq^{*}	Flexible
$(\geq \mid=)^{*}=$	Rigid
Others	Locked

- Similar to the ML instance rule + generalization $\forall \alpha . \tau \leqslant \forall \bar{\beta} \cdot \tau\left[\alpha / \tau^{\prime}\right]$
- Replaces a variable node by a type
- Irreversible transformation (the shape of the type changes), the node must be flexible

Merging

- Partly similar to the ML instance $\forall \alpha \beta . \alpha \rightarrow \beta \leqslant \forall \alpha . \alpha \rightarrow \alpha$
- Merges together two identical subgraphs bound on the same node with the same flag
- The nodes must be flexible or rigid

- Scope extrusion $\left(\tau \rightarrow\left(\forall \alpha . \tau^{\prime}\right) \leqslant \forall \alpha . \tau \rightarrow \tau^{\prime}, \alpha\right.$ not free in $\left.\tau\right)$
- Used to prove that the type $\forall(\beta \geq \forall(\alpha) \alpha \rightarrow \alpha) \beta \rightarrow \beta$ of choose id can be instantiated into $\forall(\alpha) \forall(\beta \geq \alpha \rightarrow \alpha) \beta \rightarrow \beta$
- The node must be flexible or rigid

- Forbids some (irreversible) transformations under a node - Used to require some polymorphism

Grafting

Raising

Raising

Full example of instance

Weakening

Merging

Merging

Instance properties

Definition: The instance relation \sqsubseteq is $\left(\sqsubseteq^{G} \cup \sqsubseteq^{M} \cup \sqsubseteq^{R} \cup \sqsubseteq^{W}\right)^{*}$

Commutation: \sqsubseteq is equal to $\sqsubseteq^{G} ; \sqsubseteq^{R} ; \sqsubseteq^{M W} \quad\left(\sqsubseteq^{M W}\right.$ is $\left.\left(\sqsubseteq^{M} \cup \sqsubseteq^{W}\right)^{*}\right)$

Drastically simplifies proofs and reasonings on instance derivations

Unification

Unification

Unification problem:
Given two types τ_{1} and τ_{2}, find τ_{u} such that $\tau_{1} \sqsubseteq \tau_{u}$ and $\tau_{2} \sqsubseteq \tau_{u}$

Unification

The unification algorithm proceeds in three steps:
1: Computes the structure of τ_{u}, by performing first-order unification on the structure of τ_{1} and τ_{2}. Cost $O(n)$ (or $O(n \alpha(n))$, depending on the algorithm).

Unification

The unification algorithm proceeds in three steps:
1: Computes the structure of τ_{u}, by performing first-order unification on the structure of τ_{1} and τ_{2}.

2: Computes the binding tree of τ_{u}.
If the nodes n_{1}, \ldots, n_{k} of τ_{1} and τ_{2} are merged into n in τ_{u} :

- The binding edges of n_{1}, \ldots, n_{k} are raised until they are all bound at the same level.
- The flag for n is the least permissive flag on n_{1}, \ldots, n_{k}.

Cost $O(n)$: a top down visit.
Quite involved step. Uses an amortized $O(1)$ algorithm for computing least-common ancestors.

Unification

The unification algorithm proceeds in three steps:
1: Computes the structure of τ_{u}, by performing first-order unification on the structure of τ_{1} and τ_{2}.

2: Computes the binding tree of τ_{u}.
3: Checks the permissions for the merging operations performed in step 1.
Cost $O(n)$, slightly involved visit of τ_{1}, τ_{2} and τ_{u}.

Unification algorithm

- Sound: τ_{u} is always an instance of τ_{1} and τ_{2}
- Complete:
\triangleright always returns an unifier if one exists
\triangleright the unifier returned is principal (i.e. more general for \sqsubseteq) than any other unifier.

Thus it computes all unifiers

- Good complexity: linear in $\max \left(\left|\tau_{1}\right|,\left|\tau_{2}\right|\right)$

Extension to linear in $\min \left(\left|\tau_{1}\right|,\left|\tau_{2}\right|\right)$ in practice

- Simpler relations and proofs
- Presentation more semantic, thanks to permissions.
\triangleright New (relaxed) instance relation.
\triangleright Not easily transposable on syntactic types
- Good complexity for unification

Conclusion

- Simpler relations and proofs
- Presentation more semantic, thanks to permissions.
\triangleright New (relaxed) instance relation.
\triangleright Not easily transposable on syntactic types
- Good complexity for unification

Future works

- Revisit type inference using graphs
- Recursive types

