A graphical presentation of ML<sup>+</sup> types with a linear-time unification algorithm

> Didier Rémy, Boris Yakobowski INRIA Rocquencourt

# A brief presentation of $\mathsf{ML}^{\mathsf{F}}$

[Le Botlan-Rémy, ICFP 2003] [Le Botlan, 2003]

#### ML

Outer  $\forall$  $\forall \alpha \beta. \ (\alpha \rightarrow \beta) \rightarrow \alpha \ t \rightarrow \beta \ t$ 

Full type inference (Good)

System F

Inner (1st class)  $\forall$  (Good)  $\lambda(f: \forall \alpha. \alpha \rightarrow \alpha)(f \text{ [int] } 1, f \text{ [bool] } 'b')$ 

Explicitely typed (undecidable type inference)

Fully annotated terms are (too) verbose

 $\Rightarrow$  Need for partial type inference

Conservative extension of both ML and System F

- ▶ ML programs need no annotations (type inference)
- ► F terms need fewer annotations

type abstraction and applications are inferred

• Annotations are only required on  $\lambda$ -abstractions that are used polymorphically used

Conservative extension of both ML and System F

- ▶ ML programs need no annotations (type inference)
- ► F terms need fewer annotations

type abstraction and applications are inferred

• Annotations are only required on  $\lambda\text{-abstractions}$  that are used polymorphically used

Principal types (taking user-provided annotations into account)

Robust to small program transformations

e.g. if  $E[a_1 \ a_2]$  is typable so is  $E[apply \ a_1 \ a_2]$ 

(where apply is  $\lambda f.\lambda x.f x$ )

#### Term

$$id = \lambda x.x$$

choose =  $\lambda x \cdot \lambda y \cdot if b$  then x else y

Type  $\forall \alpha. \ \alpha \rightarrow \alpha \quad (\tau_{id})$  $\forall \gamma. \ \gamma \rightarrow \gamma \rightarrow \gamma$ 

# In System F, two different typings for choose id: choose $[\forall \alpha \cdot \alpha \to \alpha]$ id : $\tau_{id} \to \tau_{id}$ $F_1$ $\Lambda \alpha \cdot \text{choose } [\alpha \to \alpha]$ (id $\alpha$ ) : $\forall \alpha \cdot (\alpha \to \alpha) \to (\alpha \to \alpha)$ $F_2$

In System F, two different typings for choose id: choose  $[\forall \alpha \cdot \alpha \to \alpha]$  id :  $\tau_{id} \to \tau_{id}$   $F_1$  $\Lambda \alpha \cdot \text{choose } [\alpha \to \alpha]$  (id  $\alpha$ ) :  $\forall \alpha \cdot (\alpha \to \alpha) \to (\alpha \to \alpha)$   $F_2$ 

In ML<sup>F</sup> (note the absence of type annotations): choose id :  $\forall (\beta = \tau_{id}) \quad \beta \to \beta \quad \tau_1$ :  $\forall (\alpha) \forall (\beta = \alpha \to \alpha) \beta \to \beta \quad \tau_2$ 

But  $\tau = \forall (\beta \ge \tau_{id}) \ \beta \rightarrow \beta$  is another, principal, typing:

$$\tau \sqsubseteq \begin{cases} \forall (\beta \ge \text{int} \to \text{int}) \ \beta \to \beta \quad (i.e. \ (\text{int} \to \text{int}) \to (\text{int} \to \text{int})) \\ \forall (\beta = \forall (\eta = \tau_{id}) \ \eta \to \eta) \ \beta \to \beta \quad (i.e. \ (\tau_{id} \to \tau_{id}) \to (\tau_{id} \to \tau_{id})) \\ \tau_1, \ \tau_2 \end{cases}$$

### A lot of administrative rules

- ► Hides the underlying principles
- Heavy proofs
- Makes extensions difficult
- Is the instance relation the best within the framework?

Expensive unification (and hence type inference) algorithms. Would it scale up to large or automatically generated programs?

#### Graphs are used instead of trees to represent types.

Graphs had already been proposed as a simpler representation, but were not formalized

- Simpler presentation, strongly related to first-order types
- Proofs are shorter and simpler
- Unification has good complexity

## **Representing first and second-order types**

 $(\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \beta)$  as: a tree



 $(\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \beta)$  as: a tree a dag



#### All occurrences of a variable are shared.

 $(\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \beta)$  as: a tree an anonymous dag



Variables can be  $\alpha$ -converted and do not need to be named

 $(\alpha \to \beta) \to (\alpha \to \beta)$  as: a tree an anonymous dag with sharing



#### Non-variable nodes may be also shared

## **Representing terms with binders**

Binders are represented with explicit  $\forall$  nodes



**Problem:** commuting or instantiating binders change the structure of the type

## **Representing terms with binders**

With bindings edges, between a variable and the node where the variable is introduced.



Commutation of binders comes for free!

# ML<sup>F</sup> types, graphically

 $\forall (\alpha = \forall (\beta \ge \bot) \forall (\eta = \forall (\delta \ge \bot) \beta \to \delta) \forall (\epsilon \ge \bot) \eta \to \epsilon) \alpha \to \alpha$ 

As a graphic type:





As a graphic type:



A first-order term graph...

# ML<sup>F</sup> graphic types



As a graphic type:



...plus a binding tree...

 $\forall (\alpha = \forall (\beta \ge \bot) \forall (\eta = \forall (\delta \ge \bot) \beta \to \delta) \forall (\epsilon \ge \bot) \eta \to \epsilon) \alpha \to \alpha$ 

As a graphic type:



...superposed

## Well-formedness of graphic types





► There is a mutual dependency between  $\alpha$  and  $\beta$ ⇒ Not a ML<sup>F</sup> type

## Well-formedness of graphic types



#### Graphically:

- ▶ The binder of a node n must dominate n in all the mixed paths between n and the root  $\epsilon$
- ► There is a path between  $\delta$  and  $\epsilon$  which does not contain  $\alpha$ ⇒ This graph is not a type

## **Instance between graphic types**

Only four different transformations on graphic types:



Plus some permissions on nodes governing the set of transformations that can be applied to a node

- Transformations whose inverse can be unsound: allowed on flexible nodes
- Transformations whose inverse is sound, but that cannot be made implicit while retaining type inference: allowed on rigid nodes:



| Binding path     | Permissions |
|------------------|-------------|
| $\geq^*$         | Flexible    |
| $(\geq  =)^{*}=$ | Rigid       |
| Others           | Locked      |



- Similar to the ML instance rule + generalization  $\forall \alpha. \tau \leq \forall \overline{\beta}. \tau [\alpha/\tau']$
- Replaces a variable node by a type
- Irreversible transformation (the shape of the type changes), the node must be flexible

# Merging



- ▶ Partly similar to the ML instance  $\forall \alpha \beta. \alpha \rightarrow \beta \leq \forall \alpha. \alpha \rightarrow \alpha$
- Merges together two identical subgraphs bound on the same node with the same flag
- ► The nodes must be flexible or rigid

## Raising



- Scope extrusion  $(\tau \rightarrow (\forall \alpha. \tau') \leq \forall \alpha. \tau \rightarrow \tau')$ ,  $\alpha$  not free in  $\tau$ )
- ► Used to prove that the type  $\forall (\beta \ge \forall (\alpha) \ \alpha \to \alpha) \ \beta \to \beta$  of choose id can be instantiated into  $\forall (\alpha) \forall (\beta \ge \alpha \to \alpha) \ \beta \to \beta$
- ► The node must be flexible or rigid

## Weakening



- ► Forbids some (irreversible) transformations under a node
- ► Used to require some polymorphism



• • . ٠ •

Grafting

21(3)/??

Raising

21(5)/??

Raising



Weakening

21(9)/??

21(10)/??



Merging

21(11)/??





Merging



# **Definition:** The instance relation $\sqsubseteq$ is $(\sqsubseteq^G \cup \sqsubseteq^M \cup \sqsubseteq^R \cup \sqsubseteq^W)^*$

## **Commutation**: $\sqsubseteq$ is equal to $\sqsubseteq^G ; \sqsubseteq^R ; \sqsubseteq^{MW}$ ( $\sqsubseteq^{MW}$ is ( $\sqsubseteq^M \cup \sqsubseteq^W$ )\*)

Drastically simplifies proofs and reasonings on instance derivations

# Unification

Unification problem:

Given two types  $\tau_1$  and  $\tau_2$ , find  $\tau_u$  such that  $\tau_1 \sqsubseteq \tau_u$  and  $\tau_2 \sqsubseteq \tau_u$ 

# Unification

The unification algorithm proceeds in three steps:

1: Computes the structure of  $\tau_u$ , by performing first-order unification on the structure of  $\tau_1$  and  $\tau_2$ . Cost O(n) (or  $O(n\alpha(n))$ , depending on the algorithm). The unification algorithm proceeds in three steps:

- **1:** Computes the structure of  $\tau_u$ , by performing first-order unification on the structure of  $\tau_1$  and  $\tau_2$ .
- **2:** Computes the binding tree of  $\tau_u$ .
  - If the nodes  $n_1, ..., n_k$  of  $\tau_1$  and  $\tau_2$  are merged into n in  $\tau_u$ :
  - ▶ The binding edges of  $n_1, ..., n_k$  are raised until they are all bound at the same level.
  - ▶ The flag for n is the least permissive flag on  $n_1, \ldots, n_k$ .
  - Cost O(n): a top down visit.

Quite involved step. Uses an amortized O(1) algorithm for computing least-common ancestors.

# Unification

The unification algorithm proceeds in three steps:

- **1:** Computes the structure of  $\tau_u$ , by performing first-order unification on the structure of  $\tau_1$  and  $\tau_2$ .
- **2:** Computes the binding tree of  $\tau_u$ .
- 3: Checks the permissions for the merging operations performed in step 1.
  Cost O(n), slightly involved visit of τ<sub>1</sub>, τ<sub>2</sub> and τ<sub>u</sub>.

**Sound:**  $\tau_u$  is always an instance of  $\tau_1$  and  $\tau_2$ 

- Complete:
  - ▷ always returns an unifier if one exists
  - ▷ the unifier returned is principal (*i.e.* more general for  $\sqsubseteq$ ) than any other unifier.

Thus it computes all unifiers

► Good complexity: linear in  $max(|\tau_1|, |\tau_2|)$ Extension to linear in  $min(|\tau_1|, |\tau_2|)$  in practice

## Conclusion

- Simpler relations and proofs
- Presentation more semantic, thanks to permissions.
  - ▷ New (relaxed) instance relation.
  - Not easily transposable on syntactic types
- Good complexity for unification

## Conclusion

- Simpler relations and proofs
- Presentation more semantic, thanks to permissions.
  - ▷ New (relaxed) instance relation.
  - Not easily transposable on syntactic types
- ► Good complexity for unification

## **Future works**

- Revisit type inference using graphs
- Recursive types

#### • • • • •