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Abstract

MLF is a type system that seamlessly merdis-style type in-
ference with Systen- polymorphism. We propose a system of
graphic (type) constraints that can be used to perform tyfer-i
ence in bothML or MLF. We show that this constraint system is a
small extension of the formalism of graphic types, origyaitro-
duced to represemILF types. We give a few semantic preserving
transformations on constraints and propose a strategyfayiag
them to solve constraints. We show that the resulting algorhas
optimal complexity forMLF type inference, and argue that, as for
ML, this complexity is linear under reasonable assumptions.
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Introduction

MLF [2] is a type system that combines the power of first-class,
SystemF-style polymorphism with the convenience BfL type
inference MLF is a conservative extension bfL. In particular, all
ML terms are typable itMLF. Moreover, the full power of first-
order polymorphism is also available, as any Systerarm can be
typed by using type annotations (containing second-orgegs).
Still, as inML, all typable expressions have principal types. More-
over, the set of well-typed programs is invariant under aevaidiss

of program transformations, including let-expansionrétuction,
n-expansion of functional expressions, reordering of arguis)
curryfication, and also “abstraction of applications”, efhimeans
that a1 a2 is typable if and only ifapply a1 a2 is (where
apply is A(f) A(z) f z). Furthermore, only lambda-bound ar-
guments that are used polymorphically need an annotatios; t
makes it very easy for the user to predict where and whichtanno
tions to write. FinallyMLF is an impredicative type system, which
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allows embedding polymorphism inside containers; for gxam
(V(a) @ — a) list is a valid type, quite different from the weaker

V(a) ((a — a)list). A full comparison betweeMLF and other

extensions of Systeff can be found in[3].

Unfortunately, the power ofMLF has a price MLF types are
more general than Systeftypes, making them look unfamiliar.
The original syntactic presentation BfLF [2] is also quite techni-
cal, and most extensions of the system in this form wouldiregu
large amount of work. Finally, the original type inferendgaaithm
based on syntactic types has obvious sources of ineffiegsraid

we believe that it would not scale up well to large, possihiyoa

matically generated, programs.

Graphic typeshave been introduced as a simpler alternative to
the original syntactic types, in order to solve all thre@iéss[10]. In
this work, we extend graphic types to address the questitypef
inference. We do not adapt the original type inference lgor[2]
by replacing its unification algorithm on syntactic typeghathe
new, more efficient unification algorithm on graphic tyded][the-
cause repeatedly translating to and from graphic types dvbel
both inelegant and inefficient, loosing the quite compaptesen-
tation of graphic types. Moreover, we believe that the gi@phe-
sentation is better suited for studying the meta-theakpooper-
ties of MLF.

Instead, we propose an entirely graphical presentatiogpa t
inference. Additionally, we highlight the strong ties beamMLF
andML by parametrizing our type inference system with the actual
set of types that is being used, rediscovering a known effitjge
inference algorithm foML [} [9]. Our approach is also constraint-
based, hence more general than just a particular type idere
algorithm: we introduce a set of graphic constraint corsg;uand
define typing constraints in term of those.

Our contributions are as follows:

¢ We propose a small set gfaphic constraintsfeaturing gener-
alization levels, existential nodes, unification and insggion
edges. We encode typing problems in terms of those, by defin-
ing a compositional translation frontterms to constraints.

* \We show that this system can be seen as a small generalization
of the formalism of graphic types.

Our constraint system is in fact implicitly parametrizedthg
type system considered and the operation of taking an iostan
of a type scheme. We make this last operation explicit foh bot
ML andMLF, and (re)prove thatiL is a subsystem dfiLF.

e We identify a subset of constraints solved formsand use
these to give a semantics to our constraints as sets of types.

o We identify a set oficyclic constraints, that include all typing
constraints, and have decidable principal solved forms.
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e We study the theoretical complexity of solving typing con-
straints and show that under reasonable assumptions, riype i
ference inMLF has linear complexity—as iIL. We also ob-
serve that our algorithm has optimal complexity for bl
andMLF type inference.

Outline of the paper We introduce a graphic presentation\t.
types, extend it to graphic constraints, and define a trioslrom
source expressions to constrairffdl)( We give a brief overview of
MLF and graphic types, and show that graphic constraints ane-an e
tension of graphic typed#). We define what it means for a graphic
constraint to be solved, both ML andMLF (§3), and present sound
and complete transformations on constrai@).(We show that a
large class of constraints have principal solutions anaihice a
strategy to reduce any such constraint to an equivalentosaved
form (§8). We discuss type annotationsNiLF (§6). We show that
our strategy for solving constraints leads to an efficienqglémen-
tation of type inferencefl). We present a few examples of typings
in §8 and discuss related works §a.

An online prototypeVILF typechecker and an extended version
of this paper with all proofs are available online atttp: //
gallium. inria. fr/ ~remy/mlf/.

1. Graphic types and constraints
1.1 ML Graphic types

St

Figure 1. GraphicML types

ML graphic types are first-order (quantifier freedm dags As
with first-order terms, every node is labeled with a symbloé t
arity of which determines the number of its successors. $ysnb
contain at least the arrow of arity 2. Variable nodes are labeled
using a pseudo-symbal of arity 0. However, in first-order term
dags (as opposed to first-order terms), nodes may also bedshar
i.e. there may be differenpathsleading to the same node. Paths

are sequences of integers that are used to designate ndues. T

empty pathe designates the root node Hdesignates node, % - j
designates thg'th successor ofi. We usually leave implicit and
write 121 instead ofl - 2- 1. For illustration, consider the type of
Figure[d. The rightmost lowermost node (which is labeledwi)
can be designated by either pathor path22: this is a shared node.
We write () for the node designated by pathAn edge fromn to
n' is writtenn o— n’. For example, irr, (2) o— (21).

In ML graphic types, only sharing of variable nodes is signifi-
cant: sharing of inner nodes, such(@s in type 73, is not. Thus,

<, thus simpler reasoniflgWe then prove that all our results hold
when types are equal up tosimilarity relation ~ that captures
sharing of inner nodes.¢. 5 =~ 75 holds).

Notice that< can be decomposed into two more atomic re-
lations, grafting and merging Grafting adds a subgraph under a
variable node. For example; is obtained fromr; by grafting the
graphic type representing — ~ under(1). Merging shares some
nodes, which need not be variable nodes. For examplegsults
from sharing nodeg11) and(21) in 72, while 73 is obtained by
sharing(1) and(2) in 73.

1.2 (Graphic) type schemes and generalization
Central toML type inference is the notion of generalization:
I'kte:r

« does not appear free In GEN
Pke:V(a)T

We must reflect this mechanism in graphic type inferencehifo t
effect, types are extended intonstraints We first introduce a new
type constructof of arity one, so as to distinguisiipesfrom type
schemeslindeed, G-nodes indicate where polymorphism may be
introduced. We then associate to each variable nduitecing edg@
which goes to the G-node where the variable is bound. Hence, G
nodes can be seen as introducggneralization levelghence their
names).

In particular, G-nodes are used to tyfee constructs and it
is important that they can be nested. Moreover, we do not want
them to appear inside types. Both requirements can be édlfill
stratifying constraints: all G-nodes are in the top-most,Ebove
thetype partof the constraint. Each G-node but the root is bound
to another G-node, and can only be accessed by its bindirey edg

Figure 2. Constraints with G-nodes

Figurel2 shows three constraints, each containing two @sod
the root(e) and the nodey, bound at(e). We extend the syntax
of paths to allow named nodes suchga§or example, in all three
constraints the rightmost lowermost bottom node can bgdated
by either(g - 1-2), (1-1) or (1 - 2). In the figures, binding edges
are dotted oriented lines. In the text, we use— g to say that
n is bound atg. Given a noden in y, there is at most ong such
thatn = g, called thebinder of n, and writtenn. In all three
constraints of FigurEl2, we have =— (e) and (11) >— (e).

ML graphic types may always be unfolded and read back as trees.Notice that binding edges do not count in arities;in(1) is the

However, before doing so, bottom nodes must all be relabebeth
with a different type variable, so that all occurrences thate
shared in the graph representation become the same typdleari
in the unfolding. For instance, the skeleton of the typéan Fig-
ure[d represents thilL type o« — (3 — ). Similarly, > rep-
resents(a« — a) — (B — B3), while bothrs and 3 represent
(a = a) = (a—a).

Type instance< on ML graphic types captures almost entirely
the corresponding instance relation ML types. In particular,
71 < 72 < 73 < 74 holds. Howeverg is oriented so that it allows
only more sharing; thus; < 73 does not hold, even though tiv_
types they represent are equal. This permits a simpler defirof

rightmost arrow node, nat.

The nodeg of constrainty represents the type scheréo)
a — [, whereg is a free variable represented by the ndde&)
that is bound aboveg; conversely, the nodégll) representing
o is bound atg. By contrast, in the constraint’, both variables
are bound above, henceg represents the typa — (3, which

1This also makes our definitions closer to (usual) implentants, which
use a union-find based representations of types.
2Using G-nodes and binding edges instead of sequences afiexfthodes

have many advantages; in particular we gain commutationd@cant
binders and removal of useless quantification for free.
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is monomorphic in the context @f. The root node represents the
same type scheme(3) 3 — § in all three constraints.

The instance relatios{ on ML graphic types can be extended
to an instance relatioic on graphic constraints as follows: we
allow any transformation alongl at every type node, except that
nodes can only be merged if they have the same bound. Ingarall
we introduce a third instance operation that consistaising a
binding edge along another on. replacing the bound of a node
n by the bound ofs. This results in extruding the polymorphism
to the enclosing generalization level. Readers familiahwank-
basedML type inferencel]g.19] can recognize the similarity between
raising and adjusting the ranks of two variables about tortied.

As an example, consider nodégl1) and (g12) in Figure[2.

In x, they cannot be merged. However, nggé 1) can be raised,
resulting in the constraint’. The merging is now possible, and
results in the constraint”. In summary, we havee C ' and
x' C x”, and thereforey C " by transitivity.

1.3 Constraint edges and existential nodes

In order to perform type inference, we only need three more co
structs: unification and instantiation constraints, bothdedled by
constraints edgesand existential nodes.

e A unification edge; ng links two type nodes and means
that n; and ny should be merged. (In drawings we do not
represent unification edges whose two extremities are the sa
node.)

An instantiation edge === n relates a G-node to a type
noden. It requires the type undet to be an instance of the
type scheme represented byBeing “an instance of” will be
precisely defined ig3].

e Existential nodes are type nodes that are only part of the con
straint structure. Usually they are nodes in which we are not
interestecper se but only indirectly, in order to constrain other
nodes. For example, the typing of an applicatigru» requires
a1 to have an arrow type whose domain is also the type @f.
However, we are eventually only interested in the type tewyl
from the applicationi.e. the codomain of-. We thus introduce
the arrow node of as an existential node.

Figure 3. Typingid 1

Examples of constraints are given in Figlle 3. The congtpain
is the typing ofid 1, whereid is the identity function. The leftmost
G- nodeg represents the type scheiéa) o — « of id. The
root G-node represents the typing constraint for an apjica
as explained above. In particular,is an existential arrow node
constrained (through an instantiation edge) to be an instahthe
G-nodeg. Finally,n’ is an existential node that represents the type
int of 1 and constrains (through a unification edge) the domain of
n to be an integer.

Neither the instantiation nor the unification constrainte a
solved in. The unification constraint can be satisfied by graft-
ing the typeint under(n1) and merging this node with’. The
instantiation constraint can be solved by taking as an restaf
V(a) @ — a, the identity3 — g itself, and unifying this type

with n, i.e. merging(n1) and(n2). The resulting constraint is de-
picted byx,. In particular, the type of the application is the type
scheme represented k), in this case the ground typet.

About unbound nodes So far, we have only bound variable nodes
and G-nodes; however, this approach lacks some homogeneity
Instead, we choose to bind all nodes explicitly to the enatps
G-node they belong to. A fully-bound version of the typg of
FigurelB isx;,.

1.4 Putting it all together: typing constraints

Let « range over a denumerable set of variables. Expressions are
those of the\-calculus enriched withet bindings. As usual, the
expressions\(z) a andlet z = a’ in a bindsz in a but not ina’.

az=z|ANx)a|aa|letz=aina

To represent typing problems, we use a compositional @éosl
from source terms ttyping constraintsWe introduceexpression
nodesas a meta-notation standing for the constraint the expres-
sion represents. An expression node is represented byangert
lar box in drawings. Expression nodes receive a set of cainstr
edges from the typing environment, meant to constrain thieesio
corresponding to the free variables of the expression. Eedgb is
labeled by the variable it constrains. In drawings we regmesuch
a set of edges as an edge=» , generally omitting the labels.
Expression nodes can be inductively transformed into €mpl
constraints using the rules presented in Fifire 4. We fakaiog-
ical presentations dfiL type inference, where generalization can
be performed at every typing stee. not only atlet construc.
Thus each basic expression is typed in its own generalizéie!,
and the root of a basic constraint will always be a G-node. #veh
drawn those nodes in the right-hand sides of Fifilire 4 in caler
disambiguate the origin of edges.

let x = a1 in ag

g

as®

()
-~ N
£
Ti

e
= O,

re X

Figure 4. Typing of primitive expressions

e A variable x is typed as the universal type scheméa) a.
That is, it is a G-node whose child is a bottom node bound on
the G-node. The bottom node is constrained by the unique edge
annotated bye in the typing environment (if there is no such
edge, the constraint is not closed, thus untypable).

e Alet-bindinglet x = a1 in a2 is typed asi2, with the additional
constraint thatr must be an instance af;. The other (free)
variables of:; anda» are constrained by the typing environment.

e An abstraction\(z) a is typed as a type scheme containing an
arrow type. The codomain of the arrow must be an instance of

31t is well-known that, fotML, both presentations are equivalent. However,
this is not the case favLF.



the type ofa. The variables ofi are constrained by the typing
environment, except far that must unify with the domain of the
arrow.

e An applicationa: a- is typed as the codomain of an arrow type
existentially introduced. The domain of the arrow must be an
instance of the type af2, while the arrow type itself must be an
instance of the type af;. Both sub-expressions are constrained
by the typing environment.

Figure[® shows the steps transforming the expression nade fo
Alz) A(y) = into a typing constraint. Notice that, in the middle
constraint, the expression node foreceives two unification edges,
one forz and one fory. However the unification edge faris not
useful, and is ultimately dropped singes not free inx.

Figure 5. Typing constraints foi(z) A(y) =

2. An overview of MLF and MLF graphic types
2.1 MLFtypes

CombiningML-style type inference with Systefpolymorphism
is difficult, as type inference in the presence of first-clpsfy/-
morphism leads to two competing strategies: should typdsepe
polymorphic for as long as possible, or conversely, for amtsh
as possible? Unfortunately, those two paths are not corifinen
general, leading to two correct but incomparable types foex
pression (assuming equal types for their subexpressidssian
example, consider the expressiolioose id, whereid has type
V(a) a — «a (which we refer to asr;s) and wherechoose has
typeV (8) 8 — B — B. In SystemF, we can give this application
both types/ (v) (v — v) — (v — ) andoiq — o.4. Yet, neither
one is more general than the other.

To solve this problemMLF enriches types with a new form of
(bounded) quantificatiorthoose id receives the typ¥ (o > 0iq)
a — a. The variablea is allowed to range over all possible
instances of its bound;,, as indicated by the sigix. We say it is
flexiblybound. Of course, the two occurrenceswadn both sides of
the arrow must simultaneously pick the same instance: tlakeve
the argument, the weaker the result. The idea is to keep Bpes
polymorphic as possible, in order to be able to recoverajast
by (implicit) instantiation—what they would have been ifis@ part
had been instantiated earlier.

This form of quantification, while expressive, is not yetfsuf
cient. For example, consider the tetkfid : V(o) a — «)
(id 1,id 'c’). It is not typable inML, as the variabléd is used on
two arguments with incompatible typést andchar. In Systen¥F,
it can be given the type;; — int x char. However, it would be
incorrect to give it thevi LF typeV (o > 0i4) o — int * char, as
this type could be instantiated {int — int) — int  char, which
would erroneously allow the application of the successoction

to a character. Therefor®|LF introduces another form of quantifi-
cation, calledrigidly-bounded quantification and written with an
“="sign. The above term can be given the typéx = 0iq) o —

int * char. Rigid quantification is used when polymorphisnrés
quired, as rigid bounds will never be weakened by instantiation.
Interestingly, inlining rigid bounds as i,; — int * char provides
avery good and intuitive approximation of types, correctrfra se-
mantic standpoint (albeit not from a type inference pointiefv).

2.2 MLF graphic types

Sharing inside types is of paramount importancilitf. For exam-
ple, the type¥ (a>0) V(20) a — fandV (y>o) v — yare

quite different—the former being more general than thestas it
can pick different instances of for o and 3. MLF graphic types
have originally been introduced in part to directly captiimese no-
tions inside the representation of typesi[10]. They alsvigema
more canonical representation of types, and permit a stifaig

ward definition of the type instance relation between types.

Its skeleton

MLF graphic type Its binding tree

@ O

c=V(@)VB=VH)y—=7)V0Z2a—-a)B—¢

Figure 6. An example ofMLF graphic type

MLF graphic types can be decomposed into a first-order quanti-
fier free skeleton, andlginding treethat tells for every nodeshere
andhowit is bound. In particular, we use edges rather than nodes
for quantifiers, as it leaves the structure invariant bywesitm of
quantifiers. FigurEl6 shows an example of a type and its degomp
sition.

All nodes have a binder. Bottom nodes, which represent vari-
ables, must be bound. Binding non-bottom nodes that are-them
selves bounds of other nodes is important to keep precisk tfa
sharing and instantiation permissions, as described ingkesec-
tion. Binding nodes that are not themselves bounds of othées
is not strictly necessary, but convenient for the regutaritthe pre-
sentation.

We use the notatios— for binding edges, as in graphic con-
straints. However, we must distinguish between flexible agid
quantification. Flexible quantification allows instantiat as in
ML, so we (re)use dotted edges. Rigid quantification uses dashe
edges, as for nodél) in Figure[®. When the nature of binding
edges is unimportant, we draw them as dotted-dashed liméisel

text we writen == n’ andn == n’ for flexible and rigid edges
respectively, or as =>~ n’ whereo stands for eithel> or =.

We write o— for (o—) U («—=), calledmixed edged et —
range overo—, >— and o—. We write —— for the reflexive

transitive closure of—, and —— for the transitive closure. We
write (N —) for {n' | 3n € N,n — n’}.

All superpositions of a graphic type with a binding tree dé no
form an MLF graphic type. Indeed, the resulting graph must be
well-dominated the binder of a nodex must dominaten for the
relationo®=<. In essence, well-domination ensures that scopes are
properly nested. The same property must actually hold iphgca
constraints: in FigurEl3, bindingy1) at the root iny;, would have
been incorrect. Indeed;, the binder of(g11), would not have
dominated/g11) (as shown by the patfe) <—— (g1) o— (g11)).



2.3 The instance relation

Grafting Weakening
F G w
@ c 2@ = :fO
FIO) b
Merging Raising
ER
Q‘?o’i ,’4630’
G 20
o}
FrIO 0

Figure 7. Instance operations

The instance relation oMILF typesC is defined as the compo-
sition of the atomic instantiation steps described schigaibt in
Figure[T. That isC is the relation(C¢ U CM U C°® u CW)*.
The annotation§, Fl, andFRI are explained next.

GraftingandMerging operate on the underlying term structure,
as in ML graphic types. Grafting replaces a bottom node. &
variable) by an arbitrariLF type. Merging fuses two isomorphic
subgraphs, as M (ao7) V(Bo7) a — BCM V(aoT) a — a.
RaisingandWeakeningoperate on the binding tree. As in graphic
constraints, raising is used to extrude polymorphism. l€asmsider
the MLF typeV (o >V (8) 3 — B) o — « of choose id, raising
the variableg givesV (8) V(o > 8 — 3) a — « (which is
equivalent to the System-typeV (8) (8 — B8) — (8 — B)).
Weakening turns a flexible binding edge into a rigid one, itheor
to require polymorphism.

Taking an instance of a typeimplicit. Thus,C must not solely
be sound with respect to the reduction of terms, but also iperm
type inference. Indeed, a relatién that is too expressive would
allow—and thus require for principality—guessing polyipioic
types, making type inference undecidatilel [14]MhF, T is the
restriction of such a larger instance relatiénThe missing opera-
tions in< \ C are then made availab&xplicitly, through the use
of user-provided type annotations.

Permissions The instance operations presented in Fidlre 7 are
only sound in certain contexts. For example, the graphie typ
Figurd® corresponds to the SysténtypeV (a) (V (v) v — ) —
(a — a). A function of this type cannot in general be treated as a
function of typeV (o) 7 — o — a wherer is an arbitrary instance
of V (y) v — =, because at least this amount of polymorphism is
required. Hence an operation under the n¢te such as grafting
the node(11), is unsound.

The operations allowed or forbidden on a nedaainly depend
on itspermissionswhich are determined by the binding flagsor
= on the binding edges above It is a key point ofMLF that per-
missions depend only on the binding tree—in particul
they are independent of the variances of type constructors-. -
There are three permissioriexible rigid, andlocked ab-
breviated by their first letter. A node with permissions
said to be anc-node. The permission of a nodeis ob-
tained by following the binding edges linking the rootrto %
in the automaton opposite. Notice that the automaton fok=,
lows binding edges in the inverse direction of the one in dnge:
For instance, for nodél 1), the automaton starts in the initial state
F and ends in the state since(e) «=< (1) «=< (11); hence it is
al-node. Nod€/1) is aR-node, while all other nodes aFenodes.

!

Flexible edges are roughly the analogoudvilf quantification
and indicate where polymorphism is provided. Thus, by desig
F-nodes allow all forms of instantiation. Conversely, rigidges
request polymorphism. Hence, &or L-nodes, we must at least
forbid the transformation of nodes with flexible edges, idesrto
remain sound.

However, there exists an exception. An operation at a node
n can be unsound only if there exists a variable naflghat is
(transitively) flexibly bound ton. Otherwise, there is either no
polymorphism atn, or it is protected by a rigid edge below,
which prevents its instantiation. Formally, a nodés said to be
inert and called ar-node, if for any variable node’ such that
n’ =*- n, there is at least one rigid edge betwegérandn. Inert
nodes includenonomorphicnodes, on which no variable node is
bound at all (for example all the nodes in a graphic represient
of int — int). Following the reasoning above, all operations are
sound at inert nodes.

We can now reread the definition &6fin FigurelJ with permis-
sions in mind. Nodes with permissidhallow all transformations,
including the grafting or variables. Nodes with either pision
R or | allow weakening, raising or merging, either because they
contain no polymorphism (if they are inert), or because thig-p
morphism is protected by a rigid edge, which is preservechby t
transformation.

A more thorough discussion of permissions can be found_ih [12

2.4 Graphic constraints as an extension of graphic types

We can see graphic constraints as a small extensitiLbigraphic
types, which allows reusing all the results already esthbli on
the latter.

G-nodes We addG to the algebra of type constructors and in-
troduce two sort§cheme and Type. The symbolG has signature
Type = Scheme while all others have signaturBype™ = Type
(wheren is the symbol arity); thus G-nodes cannot appear under
nodes of sorType, calledtype nodesAll constraints must be well-
sorted, and we require G-nodes to be flexibly bound. In tHevsl

ing, the root of a constraint is always a G-node. We let thedgt
range over G-nodes.

Unification edges A unification problem over graphic types is the
pair of a graphic type and an equivalence relation on its siclde
solution of a unification problem is an instance of the typat th
makes the nodes equivalent for this relatipnl [12]. This sotes
the simpler problem of unifying two independent types. Waifion
edges are a graphic representation of a unification problem.

On a large class of problems, calladmissible unification is
principal; i.e. an admissible problem admits a solution from which
all other solutions are instances. We slightly extend tHenitien
of admissibility on graphic type&[L2] for graphic consiitat

DEeFINITION 1. We say that a unification edge ng IS
admissibleif either it is admissible on graphic types or > ¢
andnz = ¢’ whereg andg’ are G-nodes.

We require unification constraints to relate two type nodés (
shape of G-nodes, which is in close correspondence with\the
terms being typed, must be invariant), and to be admissible.

Existential nodes Existential nodes are nodes that are not reach-
able when following only structure edges. Formallyis existen-

tial if » andf are not in the same partition for the relatio#-.
Existential nodes can be of any sort. However, we requirexall
istential nodes to be bound on G-nodes. Without this reé&irica
transformation that could be applied to a constrgimtould not be
applicable to a constraint’ derived fromy by adding some un-
constrained existential nodes, thus making reasoninggisyktem
quite difficult.



The restrictions on G-nodes and existential nodes imply tha
the binding structure above an existential type nedis n =>-

(G =2-)*(¢), and all G-nodes have flexible permissions.

Instantiation edges An instantiation edge ====» n must connect
a G-node to a type node. We also requiré¢o be bound on a G-
node (otherwise our system would not be stable by the operefi
taking the instance of a type scheme).

We introduce three operators for transforming constraints

DEFINITION 2. Lety be a constraint and/ a subset of its nodes.
Therestrictionof y to N, written | N, is the subgraph composed
of all the nodes ofV and all edges between two nodes/éf The
removalof N from x, written x \ N, is the restriction ofy to
((e) =)\ N, i.e.all the nodes of but those inV. Theprojection
of x, written proj (x), is the constraint obtained by removing all
unification and instantiation edges from O

MLF and ML constraints From now on, we distinguistMLF
constraints (that use the full rangeMLF graphic types), fronML
constraints in which types are restricted\id. graphic types. That

is, ML constraints are constraints in which all nodes have flexible
binding edges, and all type nodes are bound on a G-node.

Typing constraint@re the subset of constraints generated from
-terms by the rules of Figufg 4. It is straightforward to fiethat
they verify all the well-formedness conditions above. Miwver,
they areML constraints: the typing constraints aeactlythe same
in both systems.

PROPERTY1. Typing constraints are well-formetL and MLF
constraints. O

The instance relation on graphic constraints is essentia#
instance relatiofC on graphic types, and we use the same symbol
for both.

DEFINITION 3. Two constraintg andy’ are such thag C x’ if
x andy’, viewed as graphic types, are in instance relation, and the
binding structure of G-nodes is the sameiandy’. O

Said otherwise, G-nodes, which encode the shape of theraorist
cannot be merged, raised or weakened.

3. Semantics of constraints
3.1 Expanding a type scheme

An instantiation constraing === n requiresn to be an instance
of the type scheme undet, hence, we must define what are the
instances of. Of course, we must take into account generalization
levels. In essence, nodes bound abgvare not generalizable at
the level of g, while those bound under are. We use a uniform
characterization for bothL andMLF.

DEFINITION 4. Theconstraint interiorof a noden, writtenC(n),

is the set(n «*<) of all nodes transitively bound ta. The

structural interior, writtenZ(n), is the restriction of the constraint

interior to nodes structurally reachable frami.e.C(n)N(n o=).
The structural frontier of a noden, written F(n), is the set

(Z(n) o—) \ Z(n) of the nodes outsid&(n) with a structural

immediate predecessor insidén). g

Notice that in arML constrainty € Z(g) implies in factn >— g.

As an example, consider the first constraint of Fiddre 9. lset u
focus at noden first. Its constraint interior is composed of itself
andp2. The nodep; is not in the interior as it is bound above
The structural frontier ofz is composed of the nodes and f,
reachable fromm andp. respectively. If we consider, its structural
interior is composed af, n, p1, andp2 while its constraint interior
also contains the leftmost existential arrow node.

The structural interior of a G-nodgrepresents the nodes gen-
eralizable at the level gf. Conversely, it would be unsafe to gener-
alize the nodes in the structural frontier or the nodes beldws,
in order to take an instance gf

o We copy the skeleton of the structural interiorgofThe shape
of the binding tree depends on whether we perform expansion
in MLF or in ML, as binding trees foML are more restrictive
than forMLF.

e For each node in the structural frontier we introduce a fresh
bottom node connected to the original nodéy a unification
edge. This ensures that all instanceg #fill sharen. (Reusing
n directly would result in ill-dominated constraints.)

M

Figure 9. Examples oMLF expansion and solution-testing

The creation of a fresh instance of a type scheme is caltpdn-
sion It must be given a “destination” G-node where to bound the
nodes created by the expansion. Expansion is slightly lessrgl

in ML than inMLF, as types itML are more constrained than types
in MLF. The difference will be explained through examples below.

DEFINITION 5 (MLFand ML expansion)Let g andg’ be two G-
nodes of a constraint. Letn be (g - 1). Theexpansion of; at g’
is derived fromy by:

* adding a copy oproj(x [ (Z(g) U F(g) \ {g})). The copy of
a nodep is calledp®;
o for every nodef in F(g), changingf° into a bottom node
flexibly bound atg” and adding the unification edge 7
o for every nodev € Z(g) such thap = ¢, adding the binding
edgep® =25 p/, where
=in ML, (¢, p") is (=, g") (notice thak is necessarily>)
s in MLF, (¢/,p) is (0, n°) if pis notn, or (=, ¢') if pisn.0

An illustration of anMLF expansion is given as the left constraint
in Figure[®. The right-hand side of the constraint is the Itesfu
expanding the G-nodgatg’. We have highlighted the nodes to be
copied @, p1, p2 andf, on the left) and their copiesf, p{, pS and
f¢, on the right).

Notice that existential nodes and inner constraints arerggph
during expansion, as is illustrated by the unification edgvben
p1 andps in Figurel®. Indeed, expansion is concerned with the type
structure, not with the constraint structure.

Degenerate type schemedAn interesting subcase occurs when
is not bound ory (which implies, by well-domination, th&(g) is
reduced to{g}). In this casey introduces no polymorphism, and
there is no generic part to expand. Hence, anig copied, but the
copy will ultimately be unified with: itself, as illustrated in the top
constraint on the right of Figuf@ 9. We say thds degenerate



Figure 8. Typing A(z) A\(y) =

ML versusMLF expansion Consider the constraint’ in Fig-

ure[8. Disregarding the unification edges nandn. for now,

the constraing’® shows the result of performing &ML expansion
of g at (¢) (undern,), and then atLF expansion (unden.). The
difference lies in the binders df; - 1) and (n2 - 1), which we
have highlighted. In th&/L expansion(n; - 1) is bound on(e).

However, in theMLF expansion(nz - 1) is bound onn., creating
inner polymorphism, forbidden iL.

Notice that, by definitionMLF expansion is always more gen-

eral thanML expansion: the former can be obtained from the latter

by performing a few raisings afterward.

3.2 Meaning of constraints

We are now ready to give a meaning to constraints, and start by

characterizing solved constraint edges. An instantiaddge is
solved when a fresh instance of the type schema&cheshe target
of the edge,i.e. it unifies with the target without changing the
constraint.

DEFINITION 6 (Propagation).Let e be an edgeg === n of
a constrainty. We call propagationof e in y, written x°, the
constraint obtained by expandimgat 72, and adding a unification
edge between and the root of the expansion. O

Intuitively, propagation enforces the constraint impobgdan in-
stantiation edge by forcing the unification of a copy of thpety
scheme with the constrained node. For example the corisfréin
in Figurel® results from performing both &L and anMLF prop-
agation on the unique instantiation edgex6f

DEFINITION 7 (Solved constraint edgep unification edge ofy
is solved if its two extremities are merged. An instantiatzon-
strainte of x is solved ifx° C x. O

DEFINITION 8. A presolutionof a constrainj is an instance,, of
x in which all constraint edges are solvedsélutionof x is a type
T, witnesseddy a presolutiony, of x, for which the instantiation
edge in the solution-testing constraint of Figlire 9 is stive [

In essence, solutions are all the types which a presolutiparels
to, plus all the instances of those types. In particularsttef solu-
tions is closed by instance. Notice that a solution can beesged
by more than one presolution.

DEFINITION 9. Themeaningof a constraint is the set of its solu-
tions. A constrainty entailsa constrainty’ if the meaning ofy is
contained in the meaning of . Two constraints arequivalentif
they have the same meaning. We wtiteand - for entailment
and equivalence of constraints. O

It follows from the semantics of constraints that instatitia re-
duces the set of solutionse. if x T x’, thenx’ I x. Instan-

tiation may sometimes preserve the meaning; however itllysua
does not, and a constraint may become unsolvable by iretiamnti
Conversely, many constraints not in instance relation nzas lthe
same meaning—for example, constraints having differemdibg
structure for G-nodes.€. constraint shape), as this structure is in-
variant by instantiation.

Examples Consider the constraintin Figure[®. We will prove in
the next section that it is equivalent to the last constraiasented
in Figure[®; hence, it encodes the typing)dfc) A(y) z. In a first
step, we can solve the unification edge by raising n@de) and
merging nodeg11) and(g12), which results iny’. However, this is
not a presolution: the constraints imposed by the instamti2dge
are not solved.

Further instantiations¢,, r, xm. and xy,_are presolutions of
X, as can be verified by performing an instantiation test. (‘Aleh
highlighted the differences between the three constraiNtstice
that x,,.F is not a presolution imvL, as it contains inner polymor-
phism: nodg/121) is not bound or{e). However, bothym. andxy,.
areMLF and ML presolutions ofy. Interestingly,xr C xmL C
xwme holds. In fact,x,,r is the principal presolution of in MLF, as
we will prove in§8.

The types corresponding to the expansionsgfr, xmL and
XwuL areyr, v and mue respectively. Hence,, r and v are
solutions ofx (as are all their instances). The graphic type
corresponds to the syntactim() typeV (o) V(8) o — 8 — a,
while 7, F represent¥’ (o) V(y =2 V(8) 8 — «) a — ~. This
second type corresponds roughly to the SysketypeV (o) @ —
(V(B) B — «), with the additional possibility of instantiating

Presolutions and explicitly typed termsin our formalism, preso-
lutions are interesting objects in their own right. Indetiy can
be seen as encoding an entire typing derivation. Givartema
and a presolutiory, of the typing constraint corresponding 4o
Xp Can be used to obtain a version @fwhere all type informa-
tion is fully explicit [11]; of course, different presolatns will give
different decorations af.

Notice that the typing of\(y) z in Figure[® is quite different
in xmL andxpy. . In xm it is polymorphic in its argument, while it
is not in xy,. : node(g11) is bound ory (i.e. to the generalization
node corresponding ta(y) z) in xmL, and to(e) in xy.. This
difference is reflected in the correspondikgerms in Systent:

XML Aa./\&)\(}'\r(:a)) s
Y- AY:Y)T
XmL . Aa ABA(z: @) V() V(B)a— 08—«
My :B8)a

Notice that, by construction, each type variable introdulog a A
corresponds to a node bound on a G-node. For examplewin
ais (11), B is (121) and~ is (g11). In this simple case, the two
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Figure 10. Simplifying unconstrained existential nodes and de-
generate instantiation edges

A-terms are3-convertible, at the level of types. Of course, this does
not hold for all presolutions. For example, another typiagy is
v (B) int — 8 — int (obtained by graftingnt under(11) in xmL),
resulting in a\-term that is nof3-convertible to the ones above.

RelatingML and MLF  Itis immediate to prove thadLF extends
ML. Indeed, theML instance relation is a subrelation of the one
in MLF, and an instantiation edge solved in thi sense is also
solved in theMLF sense (adLF expansions are more general).

PROPERTY2. All ML (pre)solutions areVILF (pre)solutions. [

Interestingly,MLF presolutions containing only flexible edges can
always be transformed by raising intdL presolutions. Thus flex-
ible quantification alone is not significantly more expresshan
ML quantification; it just gives more general types—and more op
portunities to use rigid quantification.

PROPERTY3. Consider anML constrainty with an MLF presolu-
tion x, in which all binding edges are flexible. Then there exists
MLF solutions ofy witnessed by, that are ML types, and those
types are alsdVIL solutions ofy. U

4. Reasoning on constraints

We now present a few transformations on constraints thaepve
sets of solutions; most of them also preserve sets of prased—a
much stronger result.

Unconstrained existential nodes Existential nodes are meant to
introduce constraint edges. Once those edges have beerdsolv

Unification edges The level of generalization we brought to our
graphic representation is small enough that the unificatibn
gorithm on unconstrained graphic typési[10] can be reused un
changed. The principality of unification on graphic typesoa¢n-
sures that unification edges can always be solved eagerly.

LEMMA 3. Lete be a unification edge of. If unifyinge in x fails,
x has no solution. Otherwise, It be the principal unifier ok
in x. Theny andx’ have the same (pre)solutions. O

Interestingly, unification oML graphic types can be solved with
the unification algorithm foMLF graphic types. This follows from
the facts that type instance fbiL is a subrelation of type instance
for MLF and that the unification algorithm ofiLF applied toML
graphic types return§iL graphic types. In fact, the unification al-
gorithm needs not check for permissions when the input tgpes
ML constraints, since in this case all nodes have flexible fgermi
sions. Moreover, the raisings it performs amount to updagen-
eralization levels when variables are merged, exactly a= dio
efficient implementations d¥iL type inference based on ranks and
term dagsl[[8.19].

Degenerate instantiation edgesA degenerate G-node contains
no polymorphism, as witnessed by the fact that no “real”’Hres
node is created when it is expanded. An instantiation edgérig
from a degenerate G-node is itself degenerate, in the shasé t
is equivalent to an unification edge. This is described by hukT1-
ELIM-MonNo on the right of Figur&Z0.

LEMMA 4. INST-ELIM-MONO preserves solutions. O

We can now prove that the constrajnof Figurd® is equivalent
to the typing constraint ok(z) A(y) z given in FigurdB. Indeed
the former is obtained from the latter by successively:

1. solving by unification the constraint edge on ndil#);

2. performing NST-ELIM-MONO on the G-node corresponding
to the variabler (which we callg), as it is degenerate after the
unification;

3. existentially eliminating (whose interior is reduced #y}).
Thus the equivalence is by Lemnfd€B, 4 Bhd 1.

Eager propagation A crucial property of our framework is that
scheme expansion and propagation are essefltratipotonic w.r.t.

the existential nodes become useless, and can be eliminatedto instanceC. An important consequence of this property is that

Implementation-wise, this allows saving memory; it alsonpies
to reason on simpler constraints.

DEeFINITION 10. Letn be an existential node of a constrainsuch
that no node ir€(n) is the origin or the target of a constraint edge.
We callexistential elimination of: in x the constraing \ C(n).0

We refer to this operation asxEsTs-ELIM. An example is shown
in Figure[ID, where existentially eliminating the nodesindg: in
x (Whose constraint interiors are highlighted) giwes

LEMMA 1. Existential elimination preserves solutions. O

Solved instantiation edges Expansion is concerned only with the
nodes of the structural interior of a G-nogeA transformation that
does not change this interior leaves the expansignwfchanged.
We can in fact lift this property to propagation, and by esien,
to solved instantiation edges:

LEMMA 2. An instantiation edgey === d that is solved in a
constrainty remains solved in any instance pfthat leavesZ(g)
unchanged.

This property is quite important for reasoning, as it ensuhat
unrelated changes will not break solved edges.

we may propagate any instantiation edge in any constrathiowi
changing its presolutions.

LEMMA 5. Propagation preserves presolutions. U

This result provides a good test when designing the relafion
Indeed, if it did not hold, it would be impossible to reduceeay
inference to propagation¢.type scheme instance) and unification.

5. Solving acyclic constraints

In their full generality, our constraints may be used to eleco
typing problems with polymorphic recursion, which are atig
undecidable inVIL. Thus we restrict our attention to constraints
in which the instantiation edges induceagyclicrelation.

DEFINITION 11. A G-nodeg dependsn another G-node’ if ¢’
constrains the constraint interior gf or if g is in the scope of/’,

i.e.(In € C(g),g ==»n)V (¢ - ¢). U

4The propertyx C x’ = x° C x’¢ does not hold. However, iff (x°)
andi{(x’¢) are the constraints resulting from solving the unificatidges
generated by the propagation %f andx’, x C x’ = U(x°) C
U (x'¢) does hold.



DEFINITION 12. A constrainty is acyclicif the dependency rela-
tion on its G-nodes is a strict partial order.

Notice that the typing constraints presented in Fi§lire 4ayelic:
instantiation edges follow the scopes of the variables @Ettpres-
sion, which are nested.

5.1 Finding a principal presolution

In acyclic constraints, propagating-then-unifying antamsiation
edge solves that edge.

LEMMA 6. Lete be an instantiation edge -===3» d of a constraint
x whered is not in C(g). Let x’ be the principal unifier of the
unification edges introduced iy* (if this unifier exists). Ther’ is
an instance of in whiche is solved.

The condition onn and C(g) vacuously holds on acyclic con-
straints. It ensures that the interior @fvill not be changed by the
unification. Afterward, the conclusion is simply by idemgaty of
propagation-unification.

Acyclic constraints admit a principal presolution, whidmde
built using the following strategy.

1. Solve all unification edges by unification.

2. Visit the instantiation edges in an order compatible vtita
dependency relation. On each edge

(a) perform a propagation an
(b) unify the resulting unification edges.

Those operations solve(Lemmél®). Moreover, since the con-
straint is acyclic, all instantiation edges already vitifeence
solved) remain solved (Lemniih 2).

The preservation of presolutions follows from Leniha 3 fepsil
andZb and from Lemnid 5 for stEg 2a.

THEOREM 1. Acyclic constraints have principal decidable preso-
lutions. O

A corollary of this result is the fact that the (structurad)erior of
an unconstrained G-nodewill never be instantiated in the princi-
pal presolution of a constraint. Hence, after having praped) an
instantiation edge leaving fromg, it is safe to remove.

COROLLARY 1. Lete be an edge ====9 n of an acyclic constraint
x. If C(g) is not the target of a constraint edge, thgrand x° \ e
are equivalent. Under those hypotheses, weleogi-EXPAND the
replacement of by x° \ e. O

Typability in unannotatedMLF and ML  Consider a typing con-
straint. It is anML constraint (Properf§d1). If it is solvable MLF,
its principal presolution will contain only flexible edgess propa-
gation and unification do not introduce new rigid edges. Tlogn
Property[B, it will have aML solution. Thus, a program without
type annotations is typable MILF if and only if it is typable in
ML. (However, in general its principal type ML will be a strict
instance of its principal type iMLF).

THEOREM2. Any expression typable without type annotations in
MLFis typable inML. O

Inconsistent constraints We have so far ignored the possibility
that a constraint might become inconsistent while simldyit.
This situation is in fact implicitly dealt with by our formam: an
inconsistent constraint (such as a unification edge thaldidead to

a constructor clash or a cyclic type) cannot be solved. Ttuainot
be removed by existential elimination, and will remain uaed.
Consequently, the constraint has no presolution. Of couare
implementation can fail as soon as an inconsistency is found

Efficiency Using the order induced by the dependency relation
ensures that an instantiation edge never needs to be ptedaga
more than once. Hence, the number of unification steps thmat ca
be performed is bounded by the number of instantiation eplyess
the number of initial unification edges.

One potential source of inefficiency in the strategy usedni fi
the principal presolution is that the resulting constraart be much
bigger than the solution itself. Hence a better approactwéf
are interested only in the solutions) is to applsi-EXPAND to
perform the propagation, then existential eliminationite hodes
that are no longer constrained. While this does not change ti
complexity, it ensures that constraints remain as smalbasiple
and improves space complexity.

6. Type annotations

Figure 11. Types of coercion functions

Type annotations are a key tdLF. Interestingly, we do not
use primitive typing constructs to type them. Instead, wd ad
denumerable set @oercion functionso the typing environment.

As an example, consider the annotatien: 35V (a) 8 —
(e — «)). It contains bothuniversaland existentialquantifica-
tion, and expresses thatmust be a function, the type of its first
argument being left unspecified, and its return type beiragtx
a — «. This annotation can be represented by the typef Fig-
ure[T1. The existential part is bound at the rattiode, while the
nodes inside the universal part are bound(bnor under (in this
simple case they are all bound ¢h)). More general annotations
are depicted by the pseudo-typeof the same figure. In the anno-
tation (a : x), the typer at node(1) insidex is universallyquanti-
fied. However, the other nodesofrepresented by themeta-node
notation and bound on the root, andstentiallyguantified: they can
be instantiated during type inference.

The annotationa : ) is desugared as the application a,
where the type of the coercian is also shown on Figufell1. Each
side of the arrow is a copy af Hence, they could a priori be instan-
tiated independently. However, the domain is rigidly bqumeéan-
ing that the polymorphism is requested, and thus cannoakygte
weakened by instantiation:must be of type-. On the contrary, the
codomain is flexibly bound, meaning that the polymorphispris
vided, and can freely instantiated. The nodes correspgridithe
existential part of are not duplicated: they are shared between the
domain and the codomain, and will be instantiated simutiasky
on both sides. An example is given by the type.

Similarly, the expression(z : k) a is also syntactic sugar, for
A(z) let z = (z : k) in a; an example is given if8. Notice that
type annotations are part of expressions. Hence, two teritiis w
different annotations are really different terms and doumtally
have a common, most general type.

7. Complexity of type inference
7.1 Simplifying typing constraints

For homogeneity, typing constraints introduce a G-nodeestery
sub-expression, including variables. However, those aperflu-
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ous. Indeedlet-bound variables only generate indirections, while
the G-node for a\-bound variable will ultimately be degenerate.
The corresponding simplifications rules are presentedgarelT2.

In ML typing constraints, the G-nodes for abstractions and
application are also superfluous (hence G-nodes are in fdgt o
needed fotet-bound expressions). Indeed, as shown in Fifule 13,
a type node inside a type scheme that is “used” only once ahe at
nearest generalization node can be extruded entirely.

All simplifications can be performed in linear time eitheteaf
the generation of constraints, or on-the-fly during theiregation.

7.2 Complexity analysis

While type inference foML is DExP-TIME complete (when types
need not be output), McAllester has shoWwh [7] that type &iee

has complexityO(kn(a(kn) + d)) wherea is the inverse of the
Ackermann functionk is the maximum size of type schemes ahd

G-nodes instead of the embeddindgeafconstructs. More precisely,
for our typing constraints, the functiahverifies:

dz) =1
d(A\(z) a) =d(a)+1
d(ab) = max(d(a),d(b)) + 1
d(let x = a in b) = max(d(a) + 1,d(b))

When applying MR-LET and VAR-ABS, d verifiesd(z) = 0.

Importantlyd does not increase with right-nesting lef bind-
ings. In particular, a large upper bound @fis the height of the
biggest function of the program (when written as an abssgat
tax tree). Under the two assumptions that (1) large programs
composed of cascades of right-nested topletedeclarations, and
(2) k does not increase with the size of the program, type inferenc
in our constraints system (thushLF) has linear complexity.

Notice that, if we restrict ourselves ML, using the constraint
simplification of Figure[ZIB will eliminate G-nodes for all ksu
expressions but the left-hand sidelef constructs. We therefore
obtain exactly the same complexity as McAllester.

Our analysis also provides an upper bound for the complexity
of type inference. In the worst case, the maximum size of type
schemest is bounded by2°(™ and the maximum depth of G-
nodesd is bounded by:. The complexity is thus i2°(™) x n x
((2°9™ x n) +n),i.e.in 20", As ML programs are typable in
MLFif and only if they are typable iML, the complexity bound for
MLF cannot be better that the one fdiL. We thus have established
the exact complexity bour2 (™ for type inference iMLF.

8. Examples of typings

Figure 16. Typing A(z) =

Figure[I$ presents the typing of the identity, valid in bidth
andMLF. The stepyz to xs is by VAR-ABS. 4 is by unification.
The resulting principal type i€ (o) o — «, abbreviated as;4.

Figure[TH presents the typing lef y = A(z) z in y y in MLF.
In x3 we have developed the expression nodeifay. In x4 we
have replaced (z) x by its principal typing and appliedAR-LET
to bothn; andns. x5 is by INST-EXPAND on each instantiation
edge, then by EISTS-ELIM on g. xe is by unification andy7 by
EXISTS-ELIM onn. The result is7;;. The derivation is essentially

the maximum embedding of type schemes. (Fidule 14 describesthe same ifML, up to a few nodes bound &t) in x5 to x7.

what is meant by embedding of type schemes.) In McAllester's
analysis,d corresponds to the maximum left-nestinglef con-
structsj.e.nestings of the formet x = (lety = ... in...)in....

As argued by McAllestei] is almost always bounded by 5, and

The last example (Figulell7) uses a type constraint on a pa-
rameter. As explained in Sectifh 6, it expands into the esgioa
described in constraingz. In x3 we have expanded the expression
nodes for both the abstraction and the applicatign z. We have

k does not increase with the size of the program. Under these as also simplified on the fly the instantiation edge @y, into a uni-

sumptions, type inference ML hasO(na(n)) complexity, which
is almost linear (the termy(n) is negligible).

Our strategy for solving constraints is quite similar to tre
used in efficient implementations of type inferenceNtr [[7,[8]. In
particular, type schemes are also simplified in an innerfagsion.
Unification in MLF can also be performed in tim@(na(n)) and
the complexity analysis of McAllester foviL can be transferred to
our constraints setting—provided we reason on the embgdufin
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fication one; this is possible by T-EXPAND and ExISTS-ELIM.

X4 is by VAR-ABS onn, then by unification on the redirected uni-
fication edgeys is by unification on the remaining edges is by
ExisTs-ELIM onn. Up to a few unimportant differences, the high-
lighted nodes correspond to the constraiptof Figure[Th. Simpli-
fying those nodes thus resultsys. xs is by INST-EXPAND on the
instantiation edge, then by Ts-ELIM. o is by unification. The
result is the typ&/ (o« = 044) V(8 > 0iq) @ — (3, corresponding
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roughly to the Systenfi-type o, — o4 in Which instantiating the
occurrence of;,; on the right of the arrow is allowed.

Implementation An MLF type checker (which faithfully imple-
ments the algorithm presented §87) can be found éittp://
gallium.inria.fr/~remy/mlf/. Although graphic types are
used internally, we print the types in syntactic form. Usirgimple
syntactic sugar this nearly always results in quite readahstem-
F-looking types. In particular, this should alleviate datitatMLF
types are too complicated to be presented to the programmer.

9. Comparison with other works

A detailed comparison betwednLF and other extensions of Sys-
temF can be found in[I3]. The most closely related wdrk [5] pro-
poses an interesting restrictionldi_F, calledHML, in which rigid
quantification is treated up to sharing and thus inlined viduich
requires more type annotations—namely, all parametersirod-f
tions that are polymorphic need a type annotation. Intengigt
this restriction seems to be expressible directly in ouméavork,
which should thus be easily applicable to perform type #iee
in HML. This would provideHML with an efficient type inference
algorithm. Notice that while sharing of rigidly bound nodssin-
necessary in the definition ¢fML, it should remain essential in
the implementation to maintain efficiency.

Another system, calle@PH [L3], uses Systerf-types exter-
nally. However its specification introduces “boxes” instgipes to
keep track of impredicative instantiations. Since typeiahce in
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FPH is internally performed using th®ILF type inference mech-
anisms, and sincEPH seems to be a subset bfLF (in fact of
HML), we believe thaEPH and type inference fdfPH could also
be expressed in our framework.

More generally, many recent workd [41 L35, 5] aim at finding a
type system with second-order polymorphism that assigategy
F (or simplified MLF types) to expressions. All of those systems
are less expressive th&tLF, and our graphic presentation of type
inference should help compare these alternatives—an@pgex-
plore others more systematically.

Efficient type inference for ML Efficient type inference algo-
rithms for ML have many similarities with our graphic type infer-
ence algorithm. Of course, they all use an efficient grapgetani-
fication algorithm and reduce type schemes in an inner-dasér
ion. More interestingly, they also use a notion of ranks (anfes)
to keep track of generalization levels and perform germatitin
more efficiently [7[B[(B]. Merging two multi-equations in][8e-
quires them to have the same rank, hence lowering their mank t
the smallest of the two beforehand. Similarly, merging tvedes
in graphic types requires them to have the same bound, heise r
ing them to their lowest common binder. Raising binding edugs
also strong similarities with Rule SH1-ALL of [B].

Type inference as typing constraintsTo the best of our knowl-
edge, Henglein has first expressed type inference as trefasati
tion of type-inference constraints, which led him to studysemi-
unification problem<]1]. Hence, the obvious similaritydeeén our


http://gallium.inria.fr/~remy/mlf/
http://gallium.inria.fr/~remy/mlf/

constraints and his. However, his constraints are integgrever
simple types while ours are interpreted over graphic tyjes gen-
eralize Systent types. Our constraints are therefore more expres-
sive. His constraints avoid the explicit representatiorGefiodes,
and instead read types as type schemes according to thetconte
We cannot make this simplification MLF becausavILF expansion
is more complicated than thdL one.

Typing constraints foML have been explored in detalll [8].
There are many similarities between this work and ours. rigypi
constraints are introduced first, independently of the tyihg

on syntactic ones. Hence, our graphical approach might lmod g
basis for exploring further extensionsMiF with richer type struc-
ture, such as recursive types, primitive existentialshaiegprder
types, dependent types, or some form of subtyping. This mew p
sentation ofMLF typechecking as solving of typing constraints is
also a significant simplification dfILF and a significant step to-
wards its possible use in a full-scale programming language

Acknowledgments We would like to thank Didier Le Botlan and
Yann Régis-Gianas for numerous helpful suggestions oviqure

language; then a set of sound and complete transformations o Versions of this work.

typing constraints are introduced; the type inferencerélyo is
finally obtained by imposing a strategy on applications ofi-co
straint transformations. Moreover, some important stepboth
frameworks can be put in correspondence (solving unifinatan-
straints, expansion of type-schemet). However, our constraints
are more concise, for two reasons. Firstly, the graphiqaiesen-
tation of types is more canonical: for instance, we need fefar
commutation of adjacent binders. Secondly, the underljimg-
ing structure of graphic types is reused for describing thdibg
constructs of graphic constraints. Hence, the representat con-
straints requires fewer extension to the representatidgpafs, as
the latter is already richer.

Semi-unification As shown by Henglein[]1], type inference for
ML reduces to semi-unification problems that are triviallyclicy
by construction—in the absence of polymorphic recursioendé¢,

we should be able to see our constraints as encoding a form of [5]

acyclic graphic-type semi-unification problems. It woukttainly
be worth further exploring this point of view. Possibly, weutd
enable implicit polymorphic recursion iWLF by allowing some
incompleteness in type inference. (Explicit polymorptécursion
is already available through type annotations.)

Other versions of MLF There are two syntactic presentations
of MLF [Z, B]. In the original one[l?], the instance relation on

types is not as general as the one proposed when graphic types

were introduced[10] (and further increased later [12])néte the
type inference system we have presented is slightly morergen
however, we do not know of a short, simple, and uncontrixed
term typable in our system but not in the original one.

The extended instance relation has been transferred balk to
syntactic presentationl[3], albeit at some technical carsd, only
in a stratified, restricted version ®fILF in which types are not
as general as those presented here or in the original patisent
Moreover, type inference has not been addressed in thisegvi
syntactic version oMLF.

Conclusion

We have extended the initial presentation of graphic ty[d&€3 [
to represent typing constraints, for bokL and MLF. Graphic
constraints are simpler than the syntactic constraintshtinze been
developed foML; in particular they sidestep tedious issues such
asa-renaming or commutations of binders. We obtain a new, fully
graphical presentation ®LF, where both the specification and the
type inference algorithm are done graphically. This presem
highlights the very strong ties betwedilL and MLF. We have
also shown that type inference fiotLF has linear-time complexity
under reasonable assumptions.

By lack of space, type soundness is deferred to another pa-

per [11]. We use presolutions to interpret terms into a feRplicit,
Church-style language, which is itself proved sound.

In spite of the overhead inherent to using a slightly uncommo
formalism, reasoning on the meta-theoretical properti¢ksesys-
tem has shown to be significantly simpler on graphic types tha
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