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Types in programs

Context

◮ Safety of software

◮ Expressivity of programming languages
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Types in programs

Context

◮ Safety of software

◮ Expressivity of programming languages

A key tool for this: Typing

◮ Prevents the programmer from writing some forms of erroneous code

e.g. 1 + ”I am a string”

(Of course, semantically incorrect code is still possible)

◮ Static typing is important

if (...) then

x := x+1;

else // rarely executed code

print_string(x)
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Type inference

The compiler infers the types of the expressions of the program

◮ Removes the need to write (often redundant) type annotations

Node n = new Node();

◮ Facilitates rapid prototyping

◮ Can infer types more general than the ones the programmer had
in mind
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Type inference issues

◮ Which type should we give to functions admitting more than one
possible type?

Example: finding the length of a list

let rec length = function

| [] -> 0

| _ :: q -> 1 + length q

length:

{
int list → int

float list → int
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ML-style polymorphism

◮ Functions no longer receive monomorphic types, but type schemes

sort: ∀α. α list→ α list

◮ An alternative way of saying

“for any type α, sort has type α list→ α list”

The symbol ∀ introduces universal quantification
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ML-style polymorphism

◮ Functions no longer receive monomorphic types, but type schemes

sort: ∀α. α list→ α list

◮ An alternative way of saying

“for any type α, sort has type α list→ α list”

The symbol ∀ introduces universal quantification

ML Polymorphism

◮ One of the key reasons of the success of ML as a language

◮ Full type inference
(annotations are never needed in programs)

◮ Sometimes a bit limited
universal quantification only in front of the type
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Second-order polymorphism

◮ Universal quantification under arrows is allowed

λ(f ) f (λ(x) x) : ∀α. ((∀β. β → β)→ α)→ α

◮ Many uses:

Encoding existential types
Polymorphic iterators over polymorphic structures
State encapsulation runST :: ∀α. (∀β. ST β α)→ α
. . .
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Second-order polymorphism

◮ Universal quantification under arrows is allowed

λ(f ) f (λ(x) x) : ∀α. ((∀β. β → β)→ α)→ α

◮ Many uses:

Encoding existential types
Polymorphic iterators over polymorphic structures
State encapsulation runST :: ∀α. (∀β. ST β α)→ α
. . .

◮ We want at least the expressivity of System F

But type inference in System F is undecidable!
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System F as a programming language

◮ System F does not have principal types

Example:

id , λ(x) x : ∀β. β → β

choose , λ(x) λ(y) x : ∀α. α→ α→ α
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System F as a programming language

◮ System F does not have principal types

Example:

id , λ(x) x : ∀β. β → β

choose , λ(x) λ(y) x : ∀α. α→ α→ α

choose id :

{

(∀β. β → β)→ (∀β. β → β) α = ∀β. β → β

∀γ. (γ → γ)→ (γ → γ) α = γ → γ

No type is more general than the other

This is a fundamental limitation of System-F
(and more generally of System-F types)
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Adding flexible quantification to types

Flexible quantification

MLF types extend System F types with an instance-bounded
quantification of the form ∀ (α > τ) τ ′:

◮ Both τ and τ ′ can be instantiated inside ∀ (α > τ) τ ′

◮ All occurrences of α in τ ′ must pick the same instance of τ
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Adding flexible quantification to types

Flexible quantification

MLF types extend System F types with an instance-bounded
quantification of the form ∀ (α > τ) τ ′:

◮ Both τ and τ ′ can be instantiated inside ∀ (α > τ) τ ′

◮ All occurrences of α in τ ′ must pick the same instance of τ

◮ Example:

choose id : ∀ (α > ∀β. β → β) α→ α

⊑ (∀β. β → β)→ (∀β. β → β)

or ⊑ ∀γ. (γ → γ)→ (γ → γ)
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Adding rigid quantification

◮ Flexible quantification solves the problem of principality

◮ But not the fact that type inference is undecidable
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Adding rigid quantification

◮ Flexible quantification solves the problem of principality

◮ But not the fact that type inference is undecidable

Rigid quantification

Instance-bounded quantification, of the form ∀ (α = τ) τ ′

◮ τ cannot (really) be instantiated inside ∀ (α = τ) τ ′

◮ But ∀ (α = τ) α→ α and ∀ (α = τ) ∀ (α′ = τ) α→ α′

are different as far as type inference is concerned
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MLF as a type system

Extends ML and System F, and combines the benefits of both

Compared to ML

◮ The expressivity of second-order polymorphism is available

◮ All ML programs remain typable unchanged

Compared to System F

◮ MLF has type inference

◮ Programs have principal types (given their type annotations)

Moreover:

◮ in practice, programs require very few type annotations

◮ typable programs are stable under a wide range of program
transformations
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How to improve MLF

Limitations

◮ Instance-bounded quantification makes equivalence and instance
between types unwieldy

◮ Meta-theoretical results dense and non-modular

◮ Algorithmic inefficiency of type inference

◮ Not suitable for use in a typed compiler, by lack of a language
to describe reduction

My work

◮ Use graphic types and constraints to improve the presentation

◮ Study efficient type inference

◮ Define an internal language for MLF
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Graphic types: an alternative representation of types

A graphic type

◮ A term-dag, representing the skeleton of the type

Sharing is important, but only for variables
Variables are anonymous

→

→

α ⊥ ⊥ β

→

→

→

α ⊥ ⊥ β

︸ ︷︷ ︸

(α→β)→(α→β)

→

→

⊥ γ

→

→

→

⊥ γ

︸ ︷︷ ︸

(γ→γ)→(γ→γ)
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Graphic types: an alternative representation of types

A graphic type

◮ A term-dag, representing the skeleton of the type

Sharing is important, but only for variables
Variables are anonymous

◮ A binding tree, indicating where variables are bound

→

→

α ⊥ ⊥ β

∀α. (∀β1. α→ β1)→ (∀β2. α→ β2))
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Graphic types: an alternative representation of types

A graphic type

◮ A term-dag, representing the skeleton of the type

Sharing is important, but only for variables
Variables are anonymous

◮ A binding tree, indicating where variables are bound

◮ Some well-scopedness properties

→

→

α ⊥ int

→

(∀α1. α1 → int)→ ( α2 → int)

Ill-scoped!
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Graphic types: an alternative representation of types

A graphic type

◮ A term-dag, representing the skeleton of the type

Sharing is important, but only for variables
Variables are anonymous

◮ A binding tree, indicating where variables are bound

◮ Some well-scopedness properties

Advantages of graphic types:

◮ Commutation of binders, no α-conversion, no useless quantification. . .

◮ Bring closer theory and implementation

◮ Same formalism for different systems: ML, System F, MLF, F≤, . . .
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Graphic MLF types

◮ Two kind of binding edges, for flexible and rigid quantification

◮ Non-variables nodes can be bound

→

γ →

α ⊥ ⊥ β

∀ (α > ⊥) ∀ (γ = ∀ (β > ⊥) α→ β) γ → γ
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Graphic MLF types

◮ Two kind of binding edges, for flexible and rigid quantification

◮ Non-variables nodes can be bound

◮ Sharing of non-variable nodes becomes important

→

→

⊥

∀ (α > σid) α→ α

Possible type for λ(x) x

6=

→

→

⊥

→

⊥

∀ (α > σid) ∀ (β > σid) α→ β

Incorrect for λ(x) x
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Instance on graphic MLF types

The instance relation ⊑
◮ Four atomic operations on graphs:
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◮ Four atomic operations on graphs:

Grafting: replacing a variable by a closed type
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(variable substitution)

Merging: fusing two identical subgraphs
(correlates the two corresponding subtypes)

Raising: edge extrusion
(removes the possibility to introduce universal quantification)
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→

→

⊥

⊑ →

→

⊥

16/51



Instance on graphic MLF types

The instance relation ⊑
◮ Four atomic operations on graphs:

Grafting: replacing a variable by a closed type
(variable substitution)

Merging: fusing two identical subgraphs
(correlates the two corresponding subtypes)

Raising: edge extrusion
(removes the possibility to introduce universal quantification)

Weakening: turns a flexible edge into a rigid one
(forbids further instantiation of the corresponding type)

◮ A control of permissions rejecting some unsafe instances
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Permissions on nodes

◮ Some instances on types would be unsound

Example: e , λ(x : ∀α. ∀β. α→ β) x

→

→

⊥ ⊥

→

⊥ ⊥

Correct type for e
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Permissions on nodes

◮ Some instances on types would be unsound

Example: e , λ(x : ∀α. ∀β. α→ β) x

→

→

⊥ ⊥

→

⊥ ⊥

Correct type for e

6⊑

→

→

⊥

→

⊥ ⊥

Incorrect type for e:

e (λ(y) y) would have type
∀α. ∀β. α→ β
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Permissions on nodes

◮ Some instances on types would be unsound

◮ Nodes receive permissions according to the binding structure
above and below them

Permissions are represented by colors

→

→

⊥

→

⊥ int

◮ All forms of instance are forbidden on red nodes, as well as
grafting on orange ones

This ensures type soundness
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Unification on MLF graphic types

Unification on graphic types:

◮ Finds the most general type τ such that τ1 ⊑ τ and τ2 ⊑ τ

◮ Or unifies two nodes in a certain type (more general)
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Unification on MLF graphic types

Unification on graphic types:

◮ Finds the most general type τ such that τ1 ⊑ τ and τ2 ⊑ τ

◮ Or unifies two nodes in a certain type (more general)

◮ Unification algorithm

First-order unification on the skeleton
Minimal raising and weakening so that the binding trees match
Control of permissions

Unification

◮ is principal on all useful problems

◮ has linear complexity

18/51
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Type inference in graphic MLF

◮ Constraints are an elegant way to present type inference

Scale better to non-toy languages
More general than an algorithm

◮ Graphic constraints as an extension of graphic types

◮ Can be used to perform type inference on graphic types

Permit type inference for ML, MLF, and probably other systems
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Graphic constraints

◮ Graphic types extended with four new constructs

Unification edges

Force two nodes to be equal

Existential nodes

“Floating” nodes, used only to introduce other constraints

Generalization nodes G

Instantiation edges

◮ Same instance relation as on graphic types

Meta-theoretical results can be reused unchanged
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Type generalization

◮ Type generalization is essential in MLF, just as in ML

◮ Gen nodes are used to promote types into type schemes

G

g

→

⊥ α

g : ∀α. α→ α
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◮ Gen nodes are used to promote types into type schemes

G

g

G

g ′

→

β ⊥

→

⊥ α
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Type generalization

◮ Type generalization is essential in MLF, just as in ML

◮ Gen nodes are used to promote types into type schemes

G

g

G

g ′

→

β ⊥

→

⊥ α

g : ∀α. α→ α

g ′ : ∀β. β → α
α is free at the level of g ′

◮ Gen nodes also delimit generalization scopes
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Instantiation edges

◮ Constrain a node to be an instance of a type scheme

G

G

g

→

β ⊥

→ n

⊥ α

e

◮ e constrains n to be an instance of g
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Instantiation edges

◮ Constrain a node to be an instance of a type scheme

G

G

g

→

β ⊥

→ n

⊥ α

e

g : ∀β. β → α
n : α→ α

e is solved (take β = α)

◮ e constrains n to be an instance of g
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Instantiation edges

◮ Constrain a node to be an instance of a type scheme

G

G

g

→

β ⊥

→ n

⊥ α

e

g : β → α
n : α→ α

e is not solved (β 6= α)

◮ e constrains n to be an instance of g
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Semantics of constraints

◮ Presolutions

A presolution of a constraint χ is an instance of χ in which all the
instantiation and unification edges are solved.

Presolutions correspond to typing derivations, and are in correspondance

with Church-style λ-terms

G

→

⊥ G

⊥

⊥

G

→

G

⊥
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Semantics of constraints

◮ Presolutions

A presolution of a constraint χ is an instance of χ in which all the
instantiation and unification edges are solved.

Presolutions correspond to typing derivations, and are in correspondance

with Church-style λ-terms

◮ Solutions

A solution of a constraint is the type scheme represented by
a presolutions of a constraint.

G

→

⊥ G

⊥

⊥

G

→

G

⊥

→

⊥
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Typing constraints

◮ Source language: (MLF only)

a ::= x | λ(x) a | a a | let x = a in a | (a : τ) | λ(x : τ) a
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Typing constraints

◮ Source language: (MLF only)

a ::= x | λ(x) a | a a | let x = a in a | (a : τ) | λ(x : τ) a

◮ λ-terms are translated into constraints compositionnally

a represents the typing constraint for a

the blue arrows are constraint edges for the free variables of a

◮ One generalization scope by subexpression
in ML, only needed for let; in MLF, needed everywhere

◮ Same typing constraints for ML and MLF

the superfluous gen nodes can be removed in ML
MLF constraints can be instantiated by the more general types of MLF
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Typing constraint for an abstraction

λ(x) a  G

→

⊥

α
a ⊥

β

x

◮ λ(x) a can receive type α→ β, provided

α is the (common) type of all the occurrences of x in a

β is an instance of the type of a.
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Typing constraint for an application

a b  G

a

b

→

⊥

α

⊥

β

◮ a b can receive type β, provided there exists α such that

a→ β is an instance of the type of a

α is an instance of the type of b
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Typing constraint for a let

let x = a in b  b

a

x

◮ As in ML

◮ Each occurrence of x in b must have a (possibly different)
instance of the type of a
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Typing constraint for variables

x
X

 G

⊥

x ∈ X

◮ the variable node is constrained by the appropriate edge from the
typing environment
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Acyclic constraints

◮ Constraints can encode problems with polymorphic recursion

let rec x = a in b  b

x a

x

◮ Restriction to constraints with an acyclic dependency relation

Dependency relation

g depends on g ′ if g ′ is in the scope of g , or if g ′ n with n

in the scope of g

◮ All typing constraints are acyclic

30/51



Solving acyclic constraints

Demo
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Solving acyclic constraints

Demo

◮ Principal presolutions and solutions
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Complexity of type inference

◮ ML : type inference is DExp-Time complete
(if types are not printed)

◮ [McAllester 2003]: type inference in O(kn(d + α(kn)))

k is the maximal size of type schemes
d is the maximal nesting of type schemes
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Complexity of type inference

◮ ML : type inference is DExp-Time complete
(if types are not printed)

◮ [McAllester 2003]: type inference in O(kn(d + α(kn)))

k is the maximal size of type schemes
d is the maximal nesting of type schemes

◮ In ML, d is the maximal left-nesting of let
(i.e. let x = (let y = . . . in . . .) in . . .)
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Complexity of type inference

◮ ML : type inference is DExp-Time complete
(if types are not printed)

◮ [McAllester 2003]: type inference in O(kn(d + α(kn)))

k is the maximal size of type schemes
d is the maximal nesting of type schemes

◮ In MLF, unification has the same complexity as in ML, but we
introduce more type schemes

Still, d is invariant by right-nesting of let

Complexity of MLF type inference

Under the hypothesis that programs are composed of a cascade of
toplevel let declarations, type inference in MLF has linear complexity.
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An explicit langage for MLF

◮ Study subject reduction in MLF

◮ To be used inside a typed compiler

MLF types are more expressive than F ones

System F cannot be used as a target langage

◮ Need for a core, Church-style, langage for MLF, called xMLF
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From System F to xMLF

xMLF generalizes System F

◮ Types: σ ::= ⊥ | ∀ (α> σ) σ | α | σ → σ

Rigid quantification is only needed for type inference, and is inlined in xMLF

◮ Terms : a ::= x | λ(x : σ) a | a a | let x = a in a

| Λ(α> σ) a | a[ϕ]

◮ Typing rules are the same as in System F, except for type application

TApp
Γ ⊢ a : σ Γ ⊢ ϕ : σ ≤ σ′

Γ ⊢ a[ϕ] : σ′
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Type computations

Instance is explicitely witnessed through the use of type computations

ϕ ::= ε | ϕ;ϕ | ⊲ σ | α ⊳ | ∀ (>ϕ) | ∀ (α>) ϕ | N | O
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Type computations

Instance is explicitely witnessed through the use of type computations

ϕ ::= ε | ϕ;ϕ | ⊲ σ | α ⊳ | ∀ (>ϕ) | ∀ (α>) ϕ | N | O

Inst-Reflex

Γ ⊢ ε : σ ≤ σ

Inst-Trans
Γ ⊢ ϕ1 : σ1 ≤ σ2 Γ ⊢ ϕ2 : σ2 ≤ σ3

Γ ⊢ ϕ1; ϕ2 : σ1 ≤ σ3

Inst-Bot

Γ ⊢ ⊲ σ : ⊥ ≤ σ

Inst-Hyp
α > σ ∈ Γ

Γ ⊢ α ⊳ : σ ≤ α

Inst-Inner
Γ ⊢ ϕ : σ1 ≤ σ2

Γ ⊢ ∀ (>ϕ): ∀ (α > σ1) σ ≤ ∀ (α > σ2) σ

Inst-Outer
Γ, ϕ : α > σ ⊢ ϕ : σ1 ≤ σ2

Γ ⊢ ∀ (α>) ϕ : ∀ (α > σ) σ1 ≤ ∀ (α > σ) σ2

Inst-Quant-Elim

Γ ⊢ N : ∀ (α > σ) σ′ ≤ σ′{α← σ}

Inst-Quant-Intro

α /∈ ftv(σ)

Γ ⊢ O : σ ≤ ∀ (α > ⊥) σ
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Example: back to choose id

choose , Λ(α > ⊥) λ(x : α) λ(y : α) x : ∀ (α > ⊥) α→ α→ α

id , Λ(β > ⊥) λ(x : β) x : ∀ (β > ⊥) β → β

◮ To make choose id well-typed, we must choose a type into which α
must be instantiated
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Example: back to choose id

choose , Λ(α > ⊥) λ(x : α) λ(y : α) x : ∀ (α > ⊥) α→ α→ α

id , Λ(β > ⊥) λ(x : β) x : ∀ (β > ⊥) β → β

◮ To make choose id well-typed, we must choose a type into which α
must be instantiated

◮ e , Λ(γ > σid) (choose[∀ (> ⊲ γ);N])
︸ ︷︷ ︸

γ→γ→γ

(id[γ ⊳])
︸ ︷︷ ︸

γ

: ∀ (γ > σid) γ → γ
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Example: back to choose id

choose , Λ(α > ⊥) λ(x : α) λ(y : α) x : ∀ (α > ⊥) α→ α→ α

id , Λ(β > ⊥) λ(x : β) x : ∀ (β > ⊥) β → β

◮ To make choose id well-typed, we must choose a type into which α
must be instantiated

◮ e , Λ(γ > σid) (choose[∀ (> ⊲ γ);N])
︸ ︷︷ ︸

γ→γ→γ

(id[γ ⊳])
︸ ︷︷ ︸

γ

: ∀ (γ > σid) γ → γ

◮

{
e[N] : σid → σid

e[O;∀ (δ>) (∀ (> ∀ (> ⊲ δ);N);N)] : ∀ (δ > ⊥) (δ → δ)→ (δ → δ)
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Reducing expressions

◮ Usual β-reduction

(λ(x : τ) a1) a2 −→ a1{x ← a2}
let x = a2 in a1 −→ a1{x ← a2}
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Reducing expressions

◮ Usual β-reduction

◮ 6 specific rules to reduce type applications

(λ(x : τ) a1) a2 −→ a1{x ← a2}
let x = a2 in a1 −→ a1{x ← a2}

a[ε] −→ a

a[ϕ; ϕ′] −→ a[ϕ][ϕ′]
a[O] −→ Λ(α>⊥) a

if α /∈ ftv(a)

(Λ(α> τ) a)[N] −→ a{α⊳← ε}{α← τ}

(Λ(α > τ) a)[∀ (>ϕ)] −→ Λ(α> τ [ϕ]) a{α⊳← ϕ; α ⊳}

(Λ(α> τ) a)[∀ (α>) ϕ] −→ Λ(α> τ) (a[ϕ])
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Reducing expressions

◮ Usual β-reduction

◮ 6 specific rules to reduce type applications

◮ Context rule

(λ(x : τ) a1) a2 −→ a1{x ← a2}
let x = a2 in a1 −→ a1{x ← a2}

a[ε] −→ a

a[ϕ; ϕ′] −→ a[ϕ][ϕ′]
a[O] −→ Λ(α>⊥) a

if α /∈ ftv(a)

(Λ(α> τ) a)[N] −→ a{α⊳← ε}{α← τ}

(Λ(α > τ) a)[∀ (>ϕ)] −→ Λ(α> τ [ϕ]) a{α⊳← ϕ; α ⊳}

(Λ(α> τ) a)[∀ (α>) ϕ] −→ Λ(α> τ) (a[ϕ])

E{a} −→ E{a′}
if a −→ a′
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Results on xMLF

Correctness:

◮ Subject reduction, for all contexts (including under λ and Λ)

◮ Progress for call-by-value with or without the value restriction,
and for call-by-name

This is the first time that MLF is proven sound for call-by-name

◮ Mechanized proof of a previous version of the system
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Results on xMLF

Correctness:

◮ Subject reduction, for all contexts (including under λ and Λ)

◮ Progress for call-by-value with or without the value restriction,
and for call-by-name

This is the first time that MLF is proven sound for call-by-name

◮ Mechanized proof of a previous version of the system

◮ Confluence of strong reduction

◮ The reduction rule of System F for type applications is derivable

(Λ(α) a)[σ] −→ a{α← σ}

(when a is a System F term, and σ a System F type)
39/51



From presolutions to xMLF terms

◮ MLF presolutions can be algorithmically translated into well-typed
xMLF terms

This ensures the type soundness of our type inference framework
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From presolutions to xMLF terms

◮ MLF presolutions can be algorithmically translated into well-typed
xMLF terms

This ensures the type soundness of our type inference framework

◮ Nodes flexibly bound on gen nodes are translated into xMLF type
abstractions

◮ The fact that an instantiation edge is solved is translated into a
type computation
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From presolutions to xMLF terms: example

G

→

α ⊥

G

→

β ⊥

→

→

⊥

e

A presolution for K , λ(x) λ(y) x

K : ∀ (α) α→ σid → α
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e

A presolution for K , λ(x) λ(y) x

K : ∀ (α) α→ σid → α

Λ(α) λ(x : α) (Λ(β) λ(y : β) x)
︸ ︷︷ ︸

∀ (β) β→α
︸ ︷︷ ︸

α→σid→α
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From presolutions to xMLF terms: example

G

→

α ⊥

G

→

β ⊥

→

→

⊥

e

A presolution for K , λ(x) λ(y) x

K : ∀ (α) α→ σid → α

Λ(α) λ(x : α) (Λ(β) λ(y : β) x)
︸ ︷︷ ︸

∀ (β) β→α

T (e)
︷ ︸︸ ︷

[∀ (> ⊲ σid);N]

︸ ︷︷ ︸

α→σid→α
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Related works

◮ Bringing System F and ML closer

restriction to predicative fragment
higher-order unification
local type inference
boxy types
FPH, HML

◮ Typing constraints for ML

◮ Encoding MLF into System F
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Contributions

◮ Graphic types and constraints are the good way to study MLF

◮ Presentation of MLF well-understood, and modular

◮ Generic type inference framework: works indifferently for ML or MLF

◮ Optimal theoretical complexity, and excellent practical complexity
for type inference

Graphs can be used to explain type inference in a simple way,
and not only for MLF

◮ xMLF makes MLF suitable for use in a typed compiler
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Perspectives

◮ Extensions to advanced typing features

qualified types
GADTs, recursive types
dependent types
Fω

◮ Revisit HML and FPH using our inference framework
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Thanks
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Equivalence and instance on types

◮ ⊑ permits only more sharing/raising/weakening

exactly corresponds to implementation
simpler to reason about
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◮ ≈ identifies monomorphic subparts represented differently

→

→

⊥

→

int int

≈ →

→

⊥

→

int
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Equivalence and instance on types

◮ ⊑ permits only more sharing/raising/weakening

exactly corresponds to implementation
simpler to reason about

◮ ≈ identifies monomorphic subparts represented differently

◮ ⊑≈ is ⊑ modulo ≈

monomorphic subparts need not be bound at all
same expressivity as ⊑

◮ ⊏−⊐− views types up to rigid quantification and ≈

◮ ⊑⊏−⊐− is ⊑ modulo ⊏−⊐−

most expressive system
undecidable type inference
terms typable for ⊑⊏−⊐− are typable for ⊑ through type annotations

47/51



Expansion

Expansion takes a fresh instance of a type scheme

G

g

G

g ′

→

⊥ ⊥
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Expansion

Expansion takes a fresh instance of a type scheme

G

g

G

g ′

→

⊥ ⊥

→

⊥ ⊥

◮ The structure of the type scheme is copied

◮ The nodes that are not local to the scheme are shared between the
copy and the scheme

◮ Where to bind nodes?

in MLF, inner polymorphism
in ML, to the gen node at which the copy is bound (less general)

48/51



Propagation

◮ Used to enforce the constraints imposed by an instantiation edge

G

G

g

→

α ⊥ →

β ⊥

→

n

⊥

γ

g : ∀α. α→ (β → β)
n : ∀γ. γ → γ
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Propagation

◮ Used to enforce the constraints imposed by an instantiation edge

◮ We copy the type scheme

G

G

g

→

α ⊥ →

β ⊥

→

n

⊥

γ

→

⊥ →

⊥

g : ∀α. α→ (β → β)
n : ∀γ. γ → γ
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Propagation

◮ Used to enforce the constraints imposed by an instantiation edge

◮ We copy the type scheme, and add an unification edge between the
constrained node and the copy

G

G

g

→

α ⊥ →

β ⊥

→

n

⊥

γ

→

⊥ →

⊥

g : ∀α. α→ (β → β)
n : ∀γ. γ → γ
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Propagation

◮ Used to enforce the constraints imposed by an instantiation edge

◮ We copy the type scheme, and add an unification edge between the
constrained node and the copy

G

G

g

→

α ⊥ →

β ⊥

→

n

→

g : ∀α. α→ (β → β)
n : (β → β)→ (β → β)

◮ Solving the unification edges enforces the constraint
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Coercions

◮ Annotated terms are not primitive, but syntactic sugar

(a : τ) , cτ a

λ(x : τ) a , λ(x) let x = (x : τ) in a

◮ Coercion functions

Primitives of the typing environment

cτ : →

τ τ

The domain of the arrow is frozen

The codomain can be freely instantiated
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Solving acyclic constraints

Solving an acyclic constraint χ

1. Solve the initial unification edges (by unification)

2. Order the instantiation edges according to the dependency relation

3. Propagate the first unsolved instantiation edge e, then solve the
unification edges created

This solves e, and does not break the already solved instantiation edges

4. Iterate step 3 until all the instantiation edge are solved
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Solving acyclic constraints

Solving an acyclic constraint χ

1. Solve the initial unification edges (by unification)

2. Order the instantiation edges according to the dependency relation

3. Propagate the first unsolved instantiation edge e, then solve the
unification edges created

This solves e, and does not break the already solved instantiation edges

4. Iterate step 3 until all the instantiation edge are solved

Correctness

This algorithm computes a principal presolution of χ
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