
THÈSE

présentée à

l’Université Paris 7 – Denis Diderot

pour obtenir le titre de

Docteur en Informatique

Types et contraintes graphiques :

polymorphisme de second ordre

et inférence

soutenue par

Boris Yakobowski

le 17 Décembre 2008

Jury

Président Roberto Di Cosmo

Rapporteurs Stéphanie Weirich
Hugo Herbelin

Examinateurs Fritz Henglein
Alexandre Miquel

Directeur Didier Rémy

Remerciements

Ce travail n’aurait pas vu le jour sans l’aide, le concours et le soutien de nombreuses
personnes, que je tiens à remercier ici.

En premier lieu, merci à Didier pour avoir encadré cette thèse, tout particulièrement
pour sa disponibilité sans faille pendant ces 4 années. En plus de ses conseils scientifiques,
j’aurai également largement bénéficié de son expertise TEX, me permettant d’atteindre le
niveau enviable (?) de «TEX utilisateur frustré mais capable».

Mes deux rapporteurs, Stephanie Weirich et Hugo Herbelin, ont eu la lourde tâche de
relire mon imposant manuscrit ; qu’ils soient ici remerciés pour leur intérêt et leur persé-
vérance. Merci en particulier à Stephanie pour ses nombreuses remarques, toujours d’une
grande pertinence. Merci également à Fritz Henglein et Alexandre Miquel pour m’avoir fait
l’honneur de s’intéresser à mon travail. En plus de présider mon jury, Roberto Di Cosmo
m’aura initié à la recherche alors que je n’étais encore qu’un jeune padawan de Licence. Pour
tout cela, et bien d’autres choses encore, je lui suis à jamais reconnaissant. Enfin, cette thèse
aura également été l’occasion de discussions scientifiques très enrichissantes. Merci donc à
Didier Le Botlan, Daan Leijen et Dimitrios Vytiniotis pour toutes leurs remarques et sug-
gestions sur mon travail.

Le projet Cristal, qui s’est sublimé en Gallium pendant ma thèse, est un environ-
nement de travail d’une richesse scientifique exceptionnelle. Qu’il me soit donc permis de
remercier ici tous ceux qui ont contribué à le faire vivre pendant ces 4 années. En particu-
lier, merci à Xavier Leroy pour nous avoir fait bénéficier de son savoir aussi encyclopédique
qu’éclectique, et à Sandrine Blazy, Damien Doligez, Alain Frisch et Michel Mauny pour leur
bonne humeur contagieuse. Merci également à Jacques Garrigue et François Pottier pour
leurs remarques sur mon travail ; la Définition 4.3.3, qui aurait dû être le bien moins élégant
Lemme 4.3.4, doit par exemple beaucoup à François. Gallium serait incomplet sans notre
projet frère Moscova ; merci à eux. Enfin, séparés de nous uniquement par la distance,
merci infiniment à Daniel Hirschkoff et Yves Bertot pour m’avoir fait découvrir et aimer les
théories de la programmation et de la preuve.

Primus inter pares parmi nos petits condisciples, merci à Yann pour nos interminables
discussions sur le typage et tant d’autres sujets, ainsi que pour m’avoir supporté comme
cobureau. Ma thèse aurait été fort différente sans lui. De même, merci à Zaynah pour
avoir été là toutes ces années. Même si la teneur en typage de nos discussions aura été

iii

iv

bien moindre, elles auront été tout aussi enrichissantes. Un autre immense merci à mes
compagnons de 4ème année Jade et Benoît M. . Enfin, je me dois de remercier Benoît R.
(deuxième cobureau, et premier Benoît chronologiquement !), ainsi que Nico et J.B. pour
toutes nos discussions dans mon bureau ou au coin café/thé.

Mon arrivée à PPS aura été l’occasion d’un véritable renouveau. En tout premier lieu,
je remercie Vincent qui m’aura donné l’opportunité fantastique de travailler sur Ocsigen.
Merci à Sam pour ses blagues nulles, mais aussi pour avoir défriché le labyrinthe des semaines
précédant la soutenance. Merci également à Grégoire pour toutes nos discussions, à Gim,
aux amis et collègues du LIAFA (dont Claire et Julien) et des autres laboratoires parisiens,
en particulier Pierre, Aurélien, Mathieu, Matthieu et David. Plus généralement, merci à
tous ceux avec qui j’ai eu la chance d’interagir ces 3 derniers mois.

Merci à ma famille, tout particulièrement mes parents et ma soeur. Même si je les ai
peu vus ces dernières années, ils ont toujours été là pour moi, et j’espère qu’ils continueront
à l’être longtemps. (Et j’espère avoir la possibilité de les voir plus souvent !)

Enfin, et surtout, merci à tous mes amis, pour m’avoir aidé à sortir de mon λ-monde, et
avoir bien voulu me faire partager le leur. Merci donc à Anne-Laure, François, Caro, Gilles,
Mathieu1, Jeremy, Sébastien, Jordan, Luc et Benoît2. Plus généralement, merci à tous les
MIM01 et MIM02, les nanars-clubiens, les Ulmiens non amateurs de nanars, les Anciens
Martins, ainsi que tous ceux que j’oublie mais qui se reconnaîtront. Merci pour tout, et bien
plus encore.

1Un troisième !
2Cf. note 1.

Contents

Remerciements iii

Contents v

1 Notations and conventions 1
1.1 Conventions . 1
1.2 Mathematical notations . 1
1.3 Relations . 1
1.4 Graphs . 2

1.4.1 Directed acyclic graph . 2
1.4.2 Domination . 2

1.5 Types . 3
1.6 Expressions . 3

2 Introduction 5
2.1 Types in functional languages . 5
2.2 Type inference and System F . 6
2.3 MLF . 7

2.3.1 MLF . 7
2.3.2 Enriching the types of System F 8
2.3.3 Syntactic MLF types . 9

2.4 Improving MLF . 10
2.5 Outline of this document . 11

2.5.1 Part I: graphic types and type instance 11
2.5.2 Part II: type inference with graphic constraints 12
2.5.3 Part III: an explicit language for MLF 13
2.5.4 Part IV: conclusions . 14

2.6 Published works . 14

v

vi Contents

I A graphical presentation of MLF types and type instance 15

3 Representing first- and second-order types by graphs 17
3.1 First-order terms . 17

3.1.1 Definition of first-order terms . 17
3.1.2 Instance and unification on first-order terms 18

3.2 Term-graphs . 19
3.2.1 Definition . 19
3.2.2 Instance on term-graphs . 21
3.2.3 Unification on term-graphs . 22
3.2.4 Anonymous variables . 23

3.3 Representing second-order types . 24
3.3.1 Binding edges . 25
3.3.2 Anonymous variables . 26
3.3.3 Instantiation on graphic System F types 26

3.4 Adding flexible quantification to second-order graphic types 30
3.4.1 Beyond system F . 30
3.4.2 Type instance in System F . 31
3.4.3 An informal semantics for the types of System F 36

4 MLF graphic types 39
4.1 Representing MLF graphic types . 39

4.1.1 From syntactic to graphic . 40
4.2 Pre-types . 41

4.2.1 Why binding all nodes . 42
4.3 Well-formedness of graphic types . 42

4.3.1 Well-formed pre-types . 42
4.3.2 Invariants induced by well-formedness 44

4.4 Operators for building and transforming types 45
4.4.1 Grafting . 45
4.4.2 Projection . 46
4.4.3 Fusion . 46
4.4.4 Raising . 48

5 Instance on MLF graphic types 51
5.1 Why rigid quantification? . 51
5.2 Shaping the instance relation . 52

5.2.1 Green MLF nodes . 52
5.2.2 Red MLF nodes . 53
5.2.3 Nodes with a rigid edge . 53
5.2.4 Inert and monomorphic nodes . 53

5.3 Formal definition of the instance relations 55
5.3.1 Permissions . 55
5.3.2 Atomic instance operations . 56
5.3.3 The instance relation . 60
5.3.4 Instance modulo similarity . 61
5.3.5 Instance modulo abstraction . 62

Contents vii

5.4 Instance and permissions . 63
5.4.1 Change in permissions . 63
5.4.2 Ordering permissions . 65
5.4.3 Evolution of permissions through instance 67

6 Properties of the instance relations 69
6.1 Reasoning on restricted instance . 69
6.2 Ordering the instance operations . 70
6.3 Big-step instance subrelations . 72

6.3.1 Big-step raising . 72
6.3.2 Big-step merging and weakening 74

6.4 Grafting atomic types . 76
6.4.1 Widening . 76
6.4.2 Constructor type . 77

6.5 Canonical derivations . 78
6.6 Performing an instance operation early . 78
6.7 Reorganizing the instance modulo relations 81

6.7.1 Confluence of the instance relations 81
6.7.2 Reorganizing the instance modulo relations 86

7 Unification 89
7.1 MLF unification problem . 89
7.2 Admissible problems . 90
7.3 Unification algorithm . 93

7.3.1 Two intermediate graphs . 95
7.4 Correctness of the algorithm . 97

7.4.1 Properties of the unifier . 98
7.4.2 Soundness of Unif . 101
7.4.3 Relating admissibility and the binding trees of unifiers 102
7.4.4 Completeness of Unif . 104
7.4.5 Principality of Unif . 105
7.4.6 Unification modulo similarity . 107

7.5 Complexity . 108
7.6 Generalized unification problems . 109

7.6.1 Generalized admissibility . 109
7.6.2 Generalized unification algorithm 110

7.7 Unification in restrictions of MLF . 111

8 Relating the syntactic and graphic presentations of MLF types 113
8.1 An informal comparison of the syntactic and graphic instance relations . . 113

8.1.1 Syntactic and graphic instance . 113
8.1.2 Syntactic equivalence and graphic similarity 114
8.1.3 Comparison with the original syntactic relations 115

8.2 Translating graphic types to and from syntactic types 116
8.2.1 From graphic to syntactic types . 116
8.2.2 From syntactic to graphic types . 118

8.3 A simple syntactic sugar to display types 120

viii Contents

8.3.1 Inlining bounds . 121
8.3.2 Algorithm . 123
8.3.3 Inlining monomorphic nodes . 125

II Graphic constraints 127

9 Graphic constraints 129
9.1 An informal presentation of graphic constraints 129

9.1.1 Our approach . 129
9.1.2 Graphic ML type inference without generalization 130
9.1.3 (Graphic) type schemes and generalization 131
9.1.4 Type instantiation . 133

9.2 Graphic constraints as an extension of graphic types 134
9.2.1 A formal definition of constraints 134
9.2.2 Properties of constraints . 136
9.2.3 Instance on graphic constraints . 138
9.2.4 Transforming constraints . 139
9.2.5 From graphic constraints to graphic types 139
9.2.6 Interiors . 142

9.3 MLF and ML constraints . 142
9.4 Typing constraints . 144

10 Semantics of constraints 147
10.1 Expanding a type scheme . 147

10.1.1 Degenerate type schemes . 149
10.1.2 Flag and binding reset . 149

10.2 An example . 150
10.3 Solved constraint edges . 151
10.4 Solutions and presolutions of constraints 152

10.4.1 Presolutions and explicitly typed terms 154
10.5 Meaning of constraints . 154

10.5.1 Preserving presolutions . 155
10.5.2 The different flavours of MLF . 155

10.6 Relating the meaning of ML and MLF constraints 156

11 Reasoning on constraints 159
11.1 Removing unconstrained existential nodes 159

11.1.1 Raising and existential nodes . 162
11.2 Solving unification edges . 163

11.2.1 Unification in ML constraints . 165
11.3 Removing degenerate instantiation edges 165
11.4 Eager propagation . 167
11.5 Normalized expansion solving . 168
11.6 Stability of solved instantiation edges . 170

12 Type inference in MLF 173

Contents ix

12.1 Solving acyclic constraints . 173
12.1.1 Acyclic constraints . 173
12.1.2 Solving an instantiation edge . 174
12.1.3 Solving an acyclic constraint . 176

12.2 Simplifying acyclic constraints . 177
12.2.1 Removing solved instantiation edges 177
12.2.2 Solving closed subconstraints . 179
12.2.3 Splitting gen nodes . 179

12.3 Typability in annotated and unannotated MLF 181
12.3.1 Unannotated terms . 181
12.3.2 Type annotations . 181

12.4 Simplifying typing constraints . 184
12.4.1 Simplifying the typing of variables 185
12.4.2 Simplifying ML typing constraints 188
12.4.3 Using the simplifications rules . 190

12.5 Analyzing the complexity of type inference 190
12.5.1 Practical complexity bound for MLF type inference 191
12.5.2 Practical complexity bound for ML type inference in our system . 191
12.5.3 Exact complexity bound for MLF type inference 192

12.6 Implementation . 192

13 Constraints up to similarity or abstraction 195
13.1 Constraints and inverse instance . 195

13.1.1 Inverse instance operations . 195
13.1.2 Properties of the modulo systems 196
13.1.3 Shape of presolutions . 197
13.1.4 Stability of presolutions . 198

13.2 Constraints up to similarity . 200
13.3 Constraints up to abstraction . 202

13.3.1 Typability in iMLF . 202
13.3.2 Properties of iMLF presolutions . 203
13.3.3 Reasoning in Implicit MLF . 204
13.3.4 Expressivity of iMLF . 205

III An explicit language for MLF 207

14 xMLF, a Church-style language for MLF 209
14.1 Why another explicit language for MLF? 209
14.2 Types and typing rules of xMLF . 210

14.2.1 Types, terms, and environments 210
14.2.2 Type instance . 211
14.2.3 Typing rules for xMLF . 214

14.3 Reduction in xMLF . 216
14.3.1 Type reduction rules . 216
14.3.2 Reducing only type applications 218
14.3.3 System F as a subsystem of xMLF 218

x Contents

14.4 Type soundness . 219
14.4.1 Preservation of typings . 219
14.4.2 Progress with call-by-value and call-by-name semantics 222

14.5 Confluence of reduction . 227
14.6 A formal proof of xMLF ? . 233

15 Translating gMLF into xMLF 235
15.1 An introductory example . 235

15.1.1 Our approach . 235
15.1.2 Example . 236

15.2 Translatable presolutions . 237
15.2.1 Pitfalls of the translation . 237
15.2.2 Identifying which operations to translate 238
15.2.3 Removing operations on inert-locked nodes 239
15.2.4 Ordering the nodes . 243
15.2.5 Adding xMLF type abstractions . 245
15.2.6 Scopes in a let construct . 248
15.2.7 Translatable presolutions . 249
15.2.8 Using xMLF as an internal language 250

15.3 Translating presolutions into xMLF . 251
15.3.1 Obtaining syntactic types . 251
15.3.2 Types and environments of subterms 252
15.3.3 Typing environments . 254
15.3.4 Computation contexts . 255
15.3.5 Translating normalized derivations into computations 256
15.3.6 Elaborating a translatable presolution 260
15.3.7 Correctness of the translation . 262
15.3.8 Translating type annotations . 263
15.3.9 Soundness of gMLF . 263
15.3.10Obtaining instance derivations . 264

15.4 Obtaining simpler elaborated terms . 265
15.4.1 Creating optimized propagation witnesses 265
15.4.2 Using the simplifications rules on constraints 266

15.5 Translating presolutions of eMLF and iMLF 267
15.5.1 Preliminary results . 267
15.5.2 Translating an eMLF or iMLF presolution 269

15.6 Translating the syntactic presentations of MLF into xMLF 270
15.6.1 Type equivalence under bounds . 270
15.6.2 Expressivity of alias bounds . 271

IV Conclusions 273

16 Related works 275
16.1 Type inference and second-order polymorphism 275

16.1.1 More recent proposals . 278
16.2 Type inference for MLF . 283

Contents xi

16.2.1 Efficient type inference for ML . 283
16.2.2 Type inference using typing constraints 283

16.3 Explicit languages . 284

17 Conclusion 285
17.1 Our work in the context of MLF . 285
17.2 Applications beyond MLF . 286
17.3 Perspectives . 287

V Appendix 289

A The flavours of MLF 291
A.1 The MLF cube . 291
A.2 Existing variants . 292

B Syntactic MLF relations 293

Bibliography 295

Index of definitions 301

Abstract 308

1
Notations and conventions

1.1 Conventions

In this document, we distinguish four kinds of formal results: lemmas, properties, corollaries,
and theorems. A lemma states a simple result, and is usually used to show other results. A
corollary is a direct consequence of the previous results. A theorem is a fundamental result
of this document. A property is a simple—but often used—result that we implicitly use
inside proofs. Results and definitions are numbered with respect to the current section.

1.2 Mathematical notations

The symbol , is used to give the formal definition of an object, and means “is equal by
definition to”. The symbol

→
= signifies that the left-hand side rewrites to the right-hand

one, but the converse might not be true in general (because some side-conditions are missing
on the right-hand side).

We write logical conjunctions and disjunctions on multiple lines as shown below

∧

{
A
B

, A∧B ∨

[
A
B

, A∨B

We write |A| the cardinal of a set A, A×B the cartesian product of A and B, and A # B
the fact that A and B are disjoint (i.e. A ∩ B is empty). If a is a meta-variable ranging
over some set A, we write a for an ordered sequence of elements of A. Given a function f ,
dom(f) and codom(f) are respectively its domain and codomain.

1.3 Relations

In this document, a binary relation R over a set S is often seen as a set of pairs of S, and
we write x R y for (x, y) ∈ R. A function f can be seen as the binary relation Rf verifying

x Rf y ⇐⇒ y = f(x)

1

2 Notations and conventions

We often view relations as (potentially non-deterministic) rewriting systems. Conse-
quently, we write f ;g for the inverse composition g ◦ f . The semicolon notation emphasizes
the order in which the rewritings are done. Similarly, given two relations, we write R ;R′

for the composition of relations defined by

x (R ;R′) y ⇐⇒ ∃z, x R z ∧ z R′ y

Given a relation R, we write R−1 for its symmetric relation, R+ its transitive closure
and R∗ its reflexive transitive closure. The kernel of R is the relation R ∩ R−1. We also
use > for <−1 when < is a relation symbol with a symmetric symbol. Finally, given two
relations R1 and R2, we write R1 ⊙ R2 the relation (R1 ∪R2)

∗

1.4 Graphs

Let G be an arbitrary directed graph with nodes N and edges E labeled in L, i.e. E ⊆
N × L×N . We write

n1
l
−→ n2 ∈ G for (n1, l, n2) ∈ E

Often, G may be left implicit and we simply write n1
l
−→ n2. We may also fix a label l ∈ L

and see
l
−→ as the binary relation {(n1, n2) | (n1

l
−→ n2)}.

Fixing one side of the arrow to a particular set of nodes S, we write (S −→) and (−→ S′)
for the set of nodes reached from a node in S, and reaching a node in S′ respectively:

(S −→) , {n′ | ∃n ∈ S, n −→ n′} (−→ S′) , {n | ∃n′ ∈ S′, n −→ n′}

If l is a string of labels l1 . . . lk, we write n1
l
−→ nk for n1

l1−→ . . . nk−1
lk−1

−→ nk. We also

write n
∗
−→ n′ if there exists a string of labels l such that n

l
−→ n′, and n

+
−→ n′ if this

string is non-empty.

1.4.1 Directed acyclic graph

Given a directed graph G over a set N , we say that G is a directed acyclic graph, abbreviated

as dag, if no element n of N is such that n
+
−→ n.

1.4.2 Domination

Given a graph G over a set N , we say that G is rooted if there exists an element r of N
such that all the elements of N are accessible from r: ∀n, r

∗
−→ n.

Given two nodes n and n′ of a rooted graph G, we say that n dominates n′, written
n −−≫−→ n′, if for any sequence n0 −→ n1 . . . −→ nk with n0 = r and nk = n′, there exists
i such that ni = n. Intuitively, all the paths from the root to n′ contain n. The domination
relation is a partial order over the nodes of N . Moreover, for any three nodes n1, n2 and
n3, if n1 −−≫−→ n3 and n2 −−≫−→ n3, either n1 −−≫−→ n2 or n2 −−≫−→ n1.

1.5. Types 3

1.5 Types

We assume the existence on an unspecified algebra of type constructors Σ, containing at
least the arrow constructor →. In the examples we will sometimes use type constructors
such as int or list. Each constructor C comes with its arity, written arity(C); the arrow
constructor has arity 2. The meta-variable C ranges over Σ.

First-order types, ML type schemes and second-order types are defined by the following
grammar:

t ::= α | C t First-order types
τ ::= t | ∀α. τ ML type schemes
σ ::= α | C σ | ∀α. σ System F types

A first-order type is either a type variable α, or the application of a type constructor
respecting the arity of the constructor. ML type schemes only allow prenex quantification
i.e. at the front of the type. System F types are more general and allow type quantification
everywhere.

In the following, the metavariables α, β, γ and δ range over a denumerable set of type
variables. As usual, ∀ binds to the right as far as possible, and the arrow constructor
associates to the right. That is,

∀α. ∀β. (α→ α)→ β → ∀γ. γ → γ is ∀α. (∀β. ((α→ α)→ (β → ∀γ. (γ → γ))))

The free variables of a type are written ftv.

1.6 Expressions

We reason on the expressions of the λ-calculus enriched with let constructions.

a ::= x | λ(x) a | a a | let x = a in a

The metavariables x and y range over a denumerable set of variables. The expressions
λ(x) a and let x = a′ in a bind x in a but not in a′. The simultaneous capture-avoiding
substitution of a sequence of variable x by a sequence of expressions e inside an expression
e′ is written e′[e/x].

In some cases, we annotate expressions or λ-bound variables with types, resulting in the
grammar

a′ ::= x | λ(x) a′ | λ(x : σ) a′ | a′ a′ | let x = a′ in a′ | (a′ : σ)

Type annotations will be defined precisely in §12.3.2.

2
Introduction

2.1 Types in functional languages

Types are a key part of the design of statically typed functional languages such as ML
(Milner 1978) or Haskell (Peyton Jones 2003). One of the reasons of the success of these
languages is undoubtedly type inference, which relieves the programmer from the burden
of writing the types of the variables of the program. This facilitates rapid prototyping and
code maintenance.

Both ML and Haskell are based at their core on the Damas-Milner type system (Damas
and Milner 1982). In this system, type inference is decidable, and principal : a program
can be assigned a type that is more general than all its all other possible types. This is a
very desirable property, as the compiler never needs to make arbitrary choices during type
inference. Moreover, type inference is total: the programmer never needs to write types to
make his program typecheck.

Another key part of the success of the Damas-Milner system is the possibility to write
polymorphic functions, that can be applied to arguments of different types. For example, a
function computing the length of a list would receive type

∀α. α list→ int

Such a function can be applied to a list of any type. That is, while lists are required to be
homogeneous (i.e. contain only one type of element), we can compute the length of lists of
integers, of binary trees, of functions. . .

Using the fact that functions are first-class in functional languages, we can also write
so-called iterators, such as the ubiquitous map function over lists

∀α. ∀β. (α→ β)→ α list→ β list

This function uses its first argument f to convert each element e in the list to f e.

The form of polymorphism offered by the Damas-Milner type system is somewhat weak,
as type quantification can only appear at the front of the type; the quantification is said to

5

6 Introduction

be prenex. For example, we cannot write a function that takes an iterator over lists such
as the function map above. Such a function would have type

(∀α. ∀β. (α→ β)→ α list→ β list)→ . . .

This type is not permitted, as α and β are introduced under an arrow constructor instead
of at the beginning of the type.

During the last 25 years, the system proposed by Damas and Milner has been a re-
markable point of equilibrium in the design space of programming languages. While more
expressive systems have been proposed, they often were too complicated, or had unde-
cidable type inference, or were not a conservative extension of ML. . . As a result, while
Damas-Milner has been enriched by many new constructions such as qualified types (Jones
1994), or generalized algebraic data types (Xi et al. 2003; Jones et al. 2006; Pottier and
Régis-Gianas 2006), it still forms the core of our type systems.

Still, the form of polymorphism it offers is sometimes too limited. Peyton Jones et al.
(2007, §2) provide a good survey on why second-order polymorphism can be needed. Let
us just mention the possibility to write functions taking iterators as arguments (as shown
above); generic programming, in which the compiler automatically generates some functions
(such as a pretty-printer) for the objects of a certain type; or the ability to encode invariants,
by embedding polymorphic arguments inside the datastructure.

From an expressivity point of view, we would like to obtain at least the same power
as the second-order polymorphic λ-calculus, also called System F (Girard 1972; Reynolds
1974). In System F, polymorphism can appear everywhere, and

(∀α. α→ α)→ ∀β. β → β

is a valid type. Unfortunately, System F has undecidable type inference (Wells 1994).
Moreover, as shown by the next section, System F has poor properties as a programming
language, in particular because it does not have principal types. As a result, over the years
a considerable amount of effort has been devoted to finding a type system that combines the
expressivity of System F with the convenience of (at least some) ML-style type inference.
We give a summary of these works in §16.

2.2 Type inference and System F

We recall that the instance relation 6F in the implicit presentation of System F is defined by

∀α. σ 6F ∀β. σ[σ′/α] β # ftv(∀α. σ)

This relation allows instantiating the type variables quantified at the head of the type, and
generalizing on-the-fly the newly introduced type variables.

Combining ML-style type inference with System F polymorphism is difficult, as type
inference in the presence of second-order polymorphism leads to two competing strategies:
should types be kept polymorphic for as long as possible, or conversely, for as short as
possible? Unfortunately, those two paths are not confluent in general, leading to two correct
but incomparable types for an expression (assuming equal types for their subexpressions).

2.3. MLF 7

As an example, consider the expressions choose id, where choose and id are defined by

id , λ(x) x : ∀α. α→ α

choose , λ(x) λ(y) if false then x else y : ∀β. β → β → β

(In the following, we abbreviate ∀α. α→ α as σid.)

In System F, we can give choose id the following types σ1 and σ2

choose id :

{
∀γ. (γ → γ)→ (γ → γ) (σ1)
(∀α. α→ α)→ (∀α. α→ α) (σ2)

Those two types are incomparable for 6F, as none is more general than the other. Indeed,
the inner polymorphism of σ2 cannot be recovered by instantiating σ1. Conversely, up to
useless quantification, σ2 has no other instance by 6F than itself. The—crucial—information
that the two instances of σid are linked, and that instantiating them together would be sound,
has been lost. This shortcoming is inherent to using System F types, which cannot express
that kind of dependency—hence the language MLF, described below.

2.3 MLF

This section briefly presents the MLF language (Le Botlan and Rémy 2003), on which a
large part of this work is based. However, we purposefully do not dig into details, as much
of the material covered here will be presented using quite different approaches elsewhere in
this document.

2.3.1 MLF

The MLF language (Le Botlan and Rémy 2003; Le Botlan 2004) aims at smoothly combining
the advantages of ML-style type inference with the expressiveness of System F second-
order polymorphism. In MLF, terms are partially annotated. All functions that use their
parameters in a polymorphic way—and only those—need an annotation. In particular, ML
terms never require one. In fact, MLF is a conservative extension of ML: all ML terms are
typable in MLF. Moreover, the full power of first-class polymorphism is also available, as
any System F term can be typed by using type annotations (containing second-order types).
Still, as in ML, all typable expressions have principal types.

MLF is a language with very good stability properties: the set of well-typed pro-
grams is invariant under a wide class of program transformations, including let-expansion,
let-reduction, η-expansion of functional expressions, reordering of arguments, curry-
ing. . . Moreover, syntactic application receives no special treatment in typing rules: a1 a2

is typable if and only if apply a1 a2 is (apply being λ(f) λ(x) f x). Furthermore, since only
lambda-bound arguments that are used polymorphically need an annotation, it is very easy
for the user to predict where and which annotations to write. Finally, MLF is an impred-
icative type system, which allows for example embedding polymorphism inside containers.
Thus (∀α. α→ α) list is a valid type, quite different from the weaker ∀α. ((α→ α) list).

MLF type inference is decidable. Moreover, it is also principal: every well-typed source
program provided with some annotations has a principal type—i.e. one of which all other
correct types are instances. Interestingly, the typing rules of MLFare a simple generalization

8 Introduction

of the ones of ML, and are quite straightforward: the power of MLF does not come from its
typing rules, but from its types, which are described next.

2.3.2 Enriching the types of System F

MLF achieves the results above, and overcomes the lack of principal types in System F, by
going beyond System F types. We describe MLF types below.

2.3.2.1 Flexible quantification

One solution to the lack of principal types in System F is to enrich the system with a new
form of (bounded) quantification, so that choose id receives the type

τ , ∀ (α > σid) α→ α

Unlike in σid → σid, the two occurrences of σid are linked in τ . Thus it is safe to instantiate
σid in the type above, and the variable α is allowed to range over all the possible instances
of its bound σid, as indicated by the sign >. We say it is flexibly bound. Of course, the two
occurrences of α on both sides of the arrow must simultaneously pick the same instance:
the weaker the argument, the weaker the result.

Afterwards, the type τ can be instantiated in the following ways:

1. We can decide that α can no longer be instantiated, and “freeze” its bound. Thus we
recover the type σid → σid.

2. We can introduce a dummy quantification in front of τ , resulting in ∀ (β) ∀ (α > σid)
α → α, and decide that α is instantiated with β → β—which is indeed an instance
of σid. Then the bound of α can no longer be instantiated, and can safely be inlined.
We thus recover the F type ∀ (β) (β → β)→ (β → β) of choose id

More generally, flexible quantification is used to postpone the moment at which the
operation of taking an instance is applied. The idea is to keep types as polymorphic as
possible, in order to be able to recover later—just by (implicit) instantiation—what they
would have been if some part had been instantiated earlier.

2.3.2.2 Rigid quantification

Flexible quantification, while expressive, is not yet sufficient to encode all of System F. For
example, consider the function

f , λ(x) (x 1, x ’c’)

It is not typable in ML, as the variable x is used on two arguments with incompatible types,
int and char. In System F, it can be given the type

σid → int× char

However, it would be incorrect to give it the type

∀ (α > σid) α→ int ∗ char

2.3. MLF 9

Indeed, this type could be instantiated into

(int→ int)→ int ∗ char

which would erroneously allow the application of the successor function to a character.
For reasons related to type inference (and partially described in the next paragraph), we

do not give to f the System F type above. Instead, MLFuses another form of quantification,
called hereafter rigidly-bounded quantification and written with an “=” sign. Then f is
given the type1

∀ (α = σid) α→ int ∗ char

Rigid quantification cannot be (significantly) weakened by instantiation. Hence, it appears
when polymorphism is required, while flexible quantification is present when polymorphism
is available.

Flexible versus rigid Flexible and rigid quantification are two forms of bounded quantifi-
cation, and share the same syntax. However, there is a deep asymmetry between them:

• flexible quantification is used to obtain more expressive types, in order to have a
system with principal types;

• on the contrary, rigid quantification is used to restrict the expressivity of types: in a
way, the type σid → int ∗ char is more general than the type ∀ (α=σid) α→ int ∗ char.
A system giving to the term f above the type σid → int ∗ char is described by Le Botlan
and Rémy (2007), and forms the basis of the implicit presentation of MLF, in which
type annotations are never needed. However this system is more expressive than
System F, and thus cannot be used to perform type inference—hence the introduction
of rigid quantification.

This question is detailed further in §5.1.

2.3.3 Syntactic MLF types

This section briefly presents the formal definition of MLF syntactic types, as it makes it
easier to refer to the original syntactic definition later on.

MLF types are second-order types, but use the two forms of bounded quantification
described in the previous section

σ ::= t | ⊥ | ∀ (α ⋄ σ) σ
⋄ ::= > | =

A syntactic second-order type σ is a first-order type t, a bottom type ⊥ (which stands for
the System F type ∀α. α), or a quantified type ∀ (α ⋄ σ) σ′. Unlike in System F, variables
are always given bounds (that are themselves second-order types) to range over. Bounds
are called rigid when introduced by the = flag, and flexible when introduced by >.

1More precisely, in MLF a type annotation ∀ (α) α → α must be added on x in f in order to obtain this
type; otherwise f is untypable.

10 Introduction

◮ Examples The type ∀α. α→ α of System F can be represented in MLF as

∀ (α >⊥) α→ α (σid)

We often omit trivial bounds and write ∀ (α) σ for ∀ (α > ⊥) σ.

The System F type (∀α. α → α) → (∀α. α→ α) cannot be represented directly, as the
grammar forbids writing types such as σid → σid. We instead use an auxiliary variable with
a rigid bound and write

∀ (β = σid) β → β (σ1)

Alternatively, we could have used two different bounds, as in

∀ (β = σid) ∀ (γ = σid) β → γ (σ′
1)

From a type-soundness point of view, rigid bounds can always be expanded, and there is no
difference between the two types above. However, this is not the case from a type inference
point of view. This difference is at the heart of MLF, and will be explained later.

In MLF, we can also write the type

∀ (β > σid) β → β (σ2)

This time, σ2 should be understood by the set of its instances, that is, all types ∀ (β = σ)
β → β such that σ is an instance of σid. In fact, σ1 is itself an instance of σ2. The auxiliary
variable β is used to share the two instances of σ on the left and right sides of the arrow.
Thus, σ2 is quite different from the type

∀ (β > σid) ∀ (β′ > σid) β → β′ (σ3)

which stands for all types ∀ (β = σ) ∀ (β′ = σ′) β → β′ such that σ and σ′ are independent
instances of σid.

Combining both forms of quantification, the type

∀ (β = σid) ∀ (β′ > σid) β → β′ (σ4)

may be (roughly) understood as the set of all F-types σid → σ such that σ is an instance
of σid.

2.4 Improving MLF

While MLF is a very powerful system, it could be improved in several ways:

1. The original syntactic presentation of MLF (Le Botlan and Rémy 2003) is quite tech-
nical, and most extensions of the system in this form require a large amount of work.
Indeed, while type instance and a subrelation called abstraction play a key role in
MLF, they are defined by purely syntactic means, with little intuitive support. For
a long time, these relations were mainly justified a posteriori by the properties of
MLF. A more semantic-based definition has been proposed, but only for a significant
restriction of the language (Le Botlan and Rémy 2007).

2.5. Outline of this document 11

2. From an algorithmic point of view, the type inference algorithm based on syntactic
types has obvious sources of inefficiencies. It is likely it would not scale up well to
large, possibly automatically generated programs. Devising a more efficient algorithm
was a question left open by Le Botlan (2004, page 221).

3. Although MLF has been proven sound (Le Botlan 2004; Le Botlan and Rémy 2007),
this has so far been done by proving the soundness of a system larger than the one in
which type inference is performed. Indeed, proving subject reduction of the surface
language requires to maintain—and to actually transform—type annotations during
reduction. So far, finding an appropriate language to transform the annotations was
an open question, precluding the use of MLF as a typed internal language inside a
compiler.

4. The power of MLF has a price: MLF types are more general than System F types,
making them look unfamiliar to the user. Moreover, the bounded quantification used
insides types obfuscates the structure of the type, making them quite difficult to read
and to interpret.

A large part of this work aims at solving the issues above. In particular, Part I of this
document develops an alternative representation of MLF types which drastically simplifies
the meta-theory of MLF, and allows for efficient algorithms. Part III introduces an explicitly-
typed presentation of MLF, suitable for use as the core language of a typed compiler. The
next section, which details our contributions, develop those points further.

The flavours of MLF The different versions of MLF that have been studied so far, including
in this document, are summarized in Appendix A (page 291).

2.5 Outline of this document

This section explains our contributions, as well as how this document is structured. For
each point, we mention the chapter in which it is developed.

2.5.1 Part I: graphic types and type instance

The first part of this document introduces an alternative representation of MLF types as
graphs, and studies the instance relation and unification on this presentation.

• We recall the graphical representation of first-order terms as term-dags, as well as of
the type instance relation on this presentation of types. Term-dags are already used
to represent types in efficient ML type inference, and are well-known (§3).

We generalize this presentation, first to System F, and then to System F , an extension
of System F with flexible quantification (§3).

• MLF types are derived from System F types by adding rigid quantification. We rep-
resent MLF types by graphic types (§4), which are the superposition of a term-dag
(representing the structure of the type) and of a binding tree (which indicates where
and how each node of the graphic type is bound), with further properties relating the

12 Introduction

two. The existence of a graphic presentation for MLF types had already been suggested
(Le Botlan 2004), but it was not sufficiently well-understood to be used formally.

• We express type instance ⊑ on graphic types by adapting the instance relation of Sys-
tem F to rigid quantification (§5). Instance is simply the combination of four simple
atomic operations on graphic types. Two of those operations are already present on
term-dags, and the two others act on the binding tree. Valid instances are controlled
through the use of permissions, which ensure that the operations permitted on a node
are sound.

• Furthermore, we define two équivalece relations ≈ and ⊏−⊐− (§5). The first relation
abstracts over useless binders on monomorphic type constructors such as int; two
types equivalent for ≈ should not really be distinguished. The second relation is
larger, and essentially identifies types that contain the same amount of polymorphism.
The relation (⊑ ∪ ⊏−⊐−)∗ is used to define an implicit version of MLF, in which type
annotations are not needed (but in which type inference is not possible).

• Using permissions avoids the stratification of instance into two relations (abstraction
and instance) present in the syntactic versions of MLF, and permits a simpler study
of the properties of instance (§6). The use of permissions also allows for a natural
extension of the instance relation (compared to the original syntactic relation), with
no technical overhead (§8).2

• Unification on graphic MLF types finds the smallest instance of two types for the
instance relation, and is sound, complete and principal (§7). The algorithm follows
the same pattern as the instance relation: first-order unification on the term-dags,
computation of the least binding tree that is an instance of the ones of the input types,
and a control of permissions rejecting some unsound unifiers. Of these three steps,
only the third is not immediate. Moreover, our unification algorithm has optimal
(linear) complexity.

• We show that graphic types are more canonical than syntactic types, as they factor
out most of the syntactical artifacts present in the latter (§8). We give algorithms
translating to and from syntactic MLF types in linear time (§8). We propose a limited
form of syntactic sugar to display MLF types. Experimentally, using this sugar, most
terms have a System F-like type, much more readable than their real MLF type (§8).

2.5.2 Part II: type inference with graphic constraints

The second part of this document generalizes the graphic types of the first part to graphic
constraints. Indeed, we do not adapt the syntactic type inference algorithm by replacing
its unification algorithm on syntactic types with the unification algorithm on graphic types:
repeatedly translating to and from graphic types would be both inelegant and inefficient,
losing the quite compact representation of graphic types. Moreover, we believe that the
graphic presentation is better suited for studying the meta-theoretical properties of MLF.
Instead, we propose an entirely graphical presentation of type inference.

2The instance relation has also been extended in a new syntactic presentation of MLF (Le Botlan and
Rémy 2007), but this required a more complex definition of the abstraction relation.

2.5. Outline of this document 13

• We propose a small set of graphic constraints, featuring unification and instantia-
tion edges, existential nodes, and generalization levels (§9). Interestingly, graphic
constraints are only a slight generalization of graphic types; thus the study of the
meta-theory of graphic constraints is quite light. Moreover, since our approach to
type inference is constraint-based, it is more general than just a particular type infer-
ence algorithm; for example, we can define different strategies for solving a constraint.

• Graphic constraints are in fact parameterized by a type system and the operation of
taking the instance of a type scheme. We instantiate this framework with the graphic
presentations of both ML and MLF, thus highlighting the strong ties between those
two systems and reproving that the former is a subsystem of the latter (§10). In
particular, typing problems, which are obtained by translating λ-terms into graphic
constraints in a compositional manner, are the same in both ML and MLF (§9)—but
are interpreted with different instance relations.

• Our constraints allow polymorphic recursion, and their solutions are in general unde-
cidable. However, a very natural subset of constraints (called acyclic) has decidable
solutions. This subset includes in particular all the constraints that are obtained when
typing the λ-terms of §1.6, which are not recursive.

We give a very simple algorithm to solve an acyclic constraint (§12). The algorithm
is a simple generalization of the one used for ML type inference, and is based on a
conjunction of unification and type generalization.

• We prove that λ-terms that do not contain type annotations are typable in MLF if and
only if they are typable in ML. Thus the difference between the two systems lies in
the type annotations in source terms, which are only available in their full generality
in MLF (§12).

• We study the theoretical complexity of solving typing constraints (§12). We establish
the complexity of MLF type inference, and observe that our algorithm has optimal
complexity for both ML and MLF. Moreover, under reasonable assumptions, our algo-
rithm for type inference in MLF has linear complexity—as in ML.

• We compare the expressivity of the system we have studied (called gMLF) with the
systems eMLF and iMLF that are obtained by taking as the type instance relation the
relations ⊑≈ and ⊑⊏−⊐− respectively (§13). eMLF and gMLF have the same expressivity.
This justifies our use of⊑, which is simpler from a meta-theoretical standpoint, instead
of ⊑≈. iMLF is strictly more expressive, but this extra expressivity can be recovered
in gMLF through the use of type annotations.

2.5.3 Part III: an explicit language for MLF

The third part of this document introduces an explicit language for MLF, suitable as a typed
internal language.

• We introduce xMLF, a Church-style version of MLF in which all type information is
explicit (§14). Type instantiation in xMLF generalizes type instantiation in System F.
Moreover, all instantiation steps are made entirely explicit through the use of type
computations, which serve as witnesses for type instance.

14 Introduction

• Reduction in xMLF is a combination of the usual β-reduction, and of a set of six
reduction rules for type applications (§14). All the rules preserve typing. Moreover,
reduction is confluent when performing strong reduction.

• We show that xMLF is sound, for both call-by-value and call-by-name semantics (§14).
This is the first time that an MLF-based language is proven sound for call-by-name.
For languages with side effects, we show that the value restriction can be used in
xMLF.

• Finally, we exhibit a translation from a solved typing constraint into a well-typed
xMLF term (§15). This ensures in particular the soundness of our system of graphic
constraints. We also discuss the translation of the syntactic presentations of MLF into
xMLF (§15).

2.5.4 Part IV: conclusions

To conclude this document, §16 discusses related works, while §17 summarizes our contri-
butions and present some research perspectives.

2.6 Published works

A preliminary version of Part I of this document has been published in (Rémy and
Yakobowski 2007), while Part II has been published in (Rémy and Yakobowski 2008);
Part III is currently under submission for publication. The examples used in (Yakobowski
2008) are taken from an MLF type-checker we have developed for this work.

Publications

Didier Rémy and Boris Yakobowski. From ML to MLF: Graphic type constraints
with efficient type inference. In Proceedings of the 13th ACM SIGPLAN International
Conference on Functional Programming (ICFP’08), Victoria, British Columbia, Canada,
pages 63–74. ACM Press, September 2008. doi: 10.1145/1411203.1411216.
http://www.yakobowski.org/icfp08.html

Didier Rémy and Boris Yakobowski. A graphical presentation of MLF types
with a linear-time unification algorithm. In Proceedings of the 2007 ACM SIGPLAN
International Workshop on Types in Languages Design and Implementation (TLDI’07),
pages 27–38. ACM Press, Nice, France, January 2007. ISBN 1-59593-393-X. doi:

10.1145/1190315.1190321.
http://www.yakobowski.org/tldi07.html

Boris Yakobowski. Le caractère ‘ à la rescousse - factorisation et réutilisation de code
grâce aux variants polymorphes. In JFLA 2008 - Dix-neuvièmes Journées Francophones des
Langages Applicatifs, pages 63–77. INRIA, Étretat, January 2008. ISBN 2-7261-1295-11.
http://www.yakobowski.org/jfla08.html

http://dx.doi.org/10.1145/1411203.1411216
http://www.yakobowski.org/icfp08.html
http://dx.doi.org/10.1145/1190315.1190321
http://www.yakobowski.org/tldi07.html
http://www.yakobowski.org/jfla08.html

Part

I

A graphical presentation of

MLF types and type instance

15

3
Representing first- and second-order types

by graphs

Abstract

We introduce the formalism behind the graphs used in this document. Our first
step is to see first-order terms as trees (§3.1), and then as graphs (§3.2). This graph
representation is often used in efficient algorithms for first-order unification. It is also
very well-suited to MLF types, in which sharing is important.

The next two sections are intendedly more informal. We present a graphical rep-
resentation for System F types (§3.3), and extend it with flexible quantification (§3.4).
The graphical representation of MLF types will build upon this presentation.

In order to remain general, §3.1 and §3.2 are parameterized by an algebra Σ of term con-
structors. First-order types can be obtained by taking for Σ the algebra of type constructors
of §1.5.

3.1 First-order terms

3.1.1 Definition of first-order terms

We view first-order terms as trees, which we describe using the notion of paths.

Definition 3.1.1 (Paths) A path π is a sequence of integers. The empty path is written ǫ.
The concatenation of π′ after π is written π · π′. �

The metavariable π ranges over paths. We often write ππ′ for π · π′ when there is no
ambiguity. In fact, since in the examples we never use integers greater than 2, we allow
writing 11 for 1 · 1. We extend concatenation to sets of paths by Π · Π′ = {π · π′ | π ∈
Π, π′ ∈ Π′}.

17

18 Representing first- and second-order types by graphs

A first-order term can be defined as a partial function from the set of paths to the
constructors of the term.

Definition 3.1.2 (First-order terms) A (first-order) term t over a set of variables V is
a finite non-empty mapping from the set of paths to Σ∪V that is prefix-closed and respects
arities. More precisely, t must verify

∀π ∈ dom(t), ∀k ∈ N, (π · k ∈ dom(t) ⇐⇒ 1 ≤ k ≤ arity(t(π))) �

The restriction on the domain of t ensures that there is no gap in the structure of t, and
that the constructors have the correct number of arguments.

For first-order types, this definition coincides with the one given by the BNF grammar
of §1.5 (page 3), although the approaches are quite different. Thus, we use the metavariable
t to range over first-order types, whichever the chosen definition.

◮ Example First-order terms can be understood as trees: the tree (a) of Figure 3.2.1
represents the type

(α→ β)→ (α→ β)

Equivalently, this type is the function




ǫ, 1, 2 7→ (→)
11, 21 7→ α
12, 22 7→ β

This tree representation makes it easy to find the subterm of a term at a given path.

Definition 3.1.3 (Term projection) The projection of a term t at a path π of dom(t) is
the term t/π that maps any π′ such that π · π′ is in dom(τ) to t(π · π′). �

The projection of t at π is also called the subterm of t rooted at π.

◮ Example Projecting the type (a) at paths 1 or 2 yields the same type α→ β.

3.1.2 Instance and unification on first-order terms

Definition 3.1.4 (Substitution) A substitution is a mapping from variables to terms.
They are extended to a mapping from terms to terms by the usual canonical morphism. �

Definition 3.1.5 (Term instance) A term t′ is an instance of a term t, which we write
t 6T t′, if it is the image of t by some substitution ϕ. �

Definition 3.1.6 (Unification on terms) Two terms t and t′ are unifiable if there exists
a substitution ϕ, called a unifier of t and t′, such that ϕ(t) and ϕ(t′) are equal. The unifier ϕ
is said to be principal if any other unifier can be written as ϕ′ ◦ ϕ for some substitution ϕ′.�

Alternatively, if terms are viewed up to α-renaming of their variables, unification can
be defined without explicitly resorting to substitutions. A term t′′ is a unifier of the terms
t and t′ if t 6T t′ and t 6T t′′. It is principal if any other unifier is also an instance of t′′.
This second definition is actually easier to extend to richer types.

3.2. Term-graphs 19

Unification on first-order terms is a well-known problem, which admits principal so-
lutions. It can be solved in linear time, as shown by Paterson and Wegman (1978); in
this algorithm, terms are represented as dags. Other algorithms (Huet 1976; Martelli and
Montanari 1982) use union-find structures and have nα(n) time complexity (where α is the
inverse of the Ackermann function). However, they run faster in practice and are simpler
to implement.

Interestingly, all three algorithms internally use a graph representation of terms, and
reinterpret the resulting graphs as terms. The use of the dag representation may be explicit
when algorithms are described imperatively, or left implicit as in Huet’s algorithm.

3.2 Term-graphs

(a) →

→

1

α

1

β

2

→

2

α

1

β

2

(b) {ǫ} →

{1} →

1

α

→ {2}

2

β

1 21 2

{11,21} {12,22}

(c) {ǫ} →

{1,2} →

1 2

{11,21} α

1

β {12,22}

2

Figure 3.2.1 – Several representations of (α→ β)→ (α→ β).

3.2.1 Definition

When representing first-order terms, it is sometimes convenient (and often more efficient)
to identify all variables with the same name. Following this convention, the representation
of the term (a) in Figure 3.2.1 is the dag (b) in the same figure.

Going one step further, inner nodes with identical subtrees can also be shared, as illus-
trated by graph (c). This enables sharing of common suffixes, hence a more compact—but
also richer—representation, where sharing of nodes asserts the equality of nodes for the
relation « projects to ».

Definition 3.2.1 (Term-graphs) Let t be a term and ∼ an equivalence relation on the
paths in dom(t). The relation ∼ is said to be:

• Congruent if it is closed by suffix, i.e.

∀π, π′, ∀k, π ∼ π′ ∧ {π · k, π′ · k} ⊆ dom(t) =⇒ π · k ∼ π′ · k

• Consistent if the image of an equivalence class by t is a singleton.

• Weakly consistent if the image of an equivalence class by t contains at most one symbol
of Σ (i.e. it possibly contains variables, and at most one constructor).

20 Representing first- and second-order types by graphs

A term-graph is a pair of a term t and a consistent congruence ∼ on dom(t) such that
every variable appears in at most one equivalence class.1 Those equivalence classes are
called nodes. �

Congruent relations ensure that when two paths are shared, the subtrees under those paths
are also shared. Consistent relations guarantee that different constructors are not mixed
together. Weakly consistent relations are used to reason about unification, which fuses
together variables and nodes with identical constructors.

We use the metavariables g and n to range over term-graphs and nodes. We write ġ and
g̃ the underlying term and equivalence relation of g (or −·−gfoo and g̃foo for long names).

The relation g̃ partitions the paths of dom(ġ) into disjoint equivalence classes that con-
stitute the nodes of g. We write dom(g) for this set of nodes. Since ġ is constant on each
node, we may extend it to nodes by mapping each node n to the common value of ṫ on all
paths of n. We simply write g(n) for this value. Similarly, we extend the projection / into
a function from nodes to term-graphs.

◮ Example The dags (b) and (c) on Figure 3.2.1 are two term-graphs representing the
same term (α → β) → (α → β). In the dag (b), only variable nodes are shared. This
term-graph has five nodes {ǫ}, {1}, {2}, {11, 21} and {12, 22}. Here, we have drawn node
names; however, we usually leave them implicit.

Notice that the nodes {1} and {2} of (b) are congruent: for any path π, 1π and 2π have
the same constructor. Moreover, both nodes are labelled with the arrow symbol; hence,
the equivalence relation of (b) could be enriched with 1 ∼ 2 while remaining congruent
and consistent. This results in exactly the equivalence relation of dag (c). Intuitively, the
subgraphs under {1} and {2} were identical in (b), and have been merged in (c).

In this simple example, only the nodes {1} and {2} have been merged; in more complex
cases, entire subgraphs may be shared. Notice that the (name of a) node resulting from the
merge is the union of the (names of the) nodes that have been merged.

3.2.1.1 Designating nodes in graphs

When a graph is known, we often use a single path π as a short-name for the unique node
n to which π belongs, and write 〈π〉 for n. For convenience, we extend this notation to sets
of paths. In particular, 〈n〉 is n itself.

◮ Example In picture (c) of Figure 3.2.1, 〈12〉 and 〈22〉 refer to the same node {12, 22}.

More generally, given two term-graphs g and g′ such that g̃ ⊆ g̃′ (i.e. g′ shares more
nodes than g), a node n of g can be translated unambiguously into a node n′ of g′, by taking
the only node of g′ that is a superset of n. We will often use n instead of n′ when g′ is the
result of a transformation applied to g.

◮ Example If n is the node 〈1〉 of graph (b) in Figure 3.2.1, we will freely use n for the
node {1, 2} of graph (c).

In example drawings we usually leave arities implicit, as we always write outgoing edges
downwards and from left to right.

1This last invariant is not strictly required, but there is no real advantage to using graphs if it is not
enforced (as substitution would then not be noticeably simpler than on first-order terms).

3.2. Term-graphs 21

3.2.1.2 Term-graphs as ordinary graphs

A term-graph g may be read as an ordinary graph whose nodes are the set dom(g), and
whose edges are such that

n
k
−→n′ ⇐⇒ n ∈ dom(g) ∧ 1 ≤ k ≤ arity(g(n)) ∧ 〈n · k〉 = n′

In essence, we forget the underlying structure of nodes as sets of paths, and treat them as
atoms. We use the term standard graphs to refer to this view.

The two representations are isomorphic. The standard view is sometimes necessary for
efficiency of algorithms, since otherwise maintaining the inner structure of nodes as set of
paths could be exponential in the size of the graph. However, the named view is more
convenient in the formal development, for referring to nodes and to keep track of them
during a sequence of graph transformations.

3.2.2 Instance on term-graphs

Unsurprisingly, instance of term-graphs is two-fold: it is either an instance of the underlying
first-order term ġ, which changes the structure of the term, or an instance of the equivalence
relation g̃, which merges more nodes.

Definition 3.2.2 (Instance on term-graphs) A term-graph g′ is an instance of a term-
graph g, written g ⊑G g′, if ġ 6T ġ′ and g̃ ⊆ g̃′. It is a reversible instance if moreover
ġ = ġ′.

The equivalence relation ≡G is the kernel of the instance relation. The similarity relation
≈G is the symmetric reflexive and transitive closure of the reversible instance relation. �

Instance is an oriented relation, and its kernel is quite “small”: two equivalent term-graphs
are in fact equal modulo α-conversion.

Reversible instance only changes the representation of terms (by using more inner, hence
unimportant, sharing), but not their meaning as first-order terms. In particular, g and g′

are similar if and only if ġ = ġ′. Similarity is thus used to abstract over the sharing not
semantically meaningful that is brought by the use of term-graphs.

→

g0

α

1

β

2

→

g1

γ

1 2

→

g2

→

1

α

→

2

β

1 21 2

→

g3

→

1 2

α

1

β

2

→

g4

→

1

δ

→

2

1 2 1 2

→

g5

→

1 2

δ

1 2

Figure 3.2.2 – Term-graph instance.

22 Representing first- and second-order types by graphs

◮ Examples In Figure 3.2.2, the term-graphs g3 and g5 are two instances of g1, through
the substitutions γ 7→ α→ β and γ 7→ δ → δ respectively. The graph g3 is also a reversible
instance of g2, obtained by adding 1 ∼ 2 to g̃2. Thus those two graphs are also similar. In
this simple example, g3 is an instance of g2. In more complicated cases, one graph could
share more in one branch and less in the other.

The term-graph g4 is also an instance of g2, through the substitution α, β 7→ δ. However,
even though ġ3 6T ġ4 holds, g4 is not an instance of g3. Indeed, the nodes 〈1〉 and 〈2〉 are
shared in g3 but not in g4. Similarly, g5 is an instance of g4 but the converse is not true.

g4

g5g0

g1

g2

g3

Figure 3.2.3 – Valid instances in the examples of Figure 3.2.2

The various relations that hold in Figure 3.2.2 are summarized in Figure 3.2.3. Plain
edges represent ⊑G, while dashed ones represent its reversible subset; all transitive or re-
flexive edges have been omitted to simplify the drawing.

Notation We always use 6-derived symbols for instance on syntactic terms (such as 6T

on the terms of the previous section, or 6F for System F types), and ⊑-derived symbols for
instance on terms represented by graphs.

3.2.3 Unification on term-graphs

On term-graphs, unification can be internalized. That is, it may be defined on two nodes
of a same term-graph instead of between two term-graphs.

Definition 3.2.3 (Unification on term-graphs) A term-graph g′ is a unifier of two
nodes n and n′ of a term-graph g if g′ is an instance of g that merges n and n′; i.e.
∃n′′ ∈ g′, n′′ ⊇ n, n′. A unifier g′ of two nodes is principal if any other unifier of those
nodes is an instance of g′. �

◮ Example The term-graphs g1, g3 and g5 are unifiers of the nodes 〈1〉 and 〈2〉 in g0, with
g1 being a principal unifier. Similarly, g4 and g5 are unifiers of the nodes 〈11〉 and 〈12〉 in
g2, and g4 is principal.

The unification of two nodes of g can be computed as the smallest weakly consistent,
congruent equivalence that contains g̃ and identifies both nodes (Huet 1976).

Unification of term-graphs also computes their unification up to similarity, i.e. unifi-
cation on terms. More precisely, if g′ is a (principal) unifier of two nodes n1 and n2 in a
term-graph g, then ġ′/n is a (principal) unifier of ġ/n1 and ġ/n2, n being the node of g′

that is a superset of n1 and n2. This property, often overlooked in the literature, justifies

3.2. Term-graphs 23

the fact that term-graphs can be used instead of first-order terms to perform first-order
unification.

3.2.4 Anonymous variables

The last condition of Definition 3.2.1 implies that a variable is represented by a single node.
If we allow reading term-graphs modulo α-conversion, we may advantageously draw variable
nodes anonymously. For that purpose, we introduce a new kind of node ⊥, called a bottom
node to mean « a variable ». The bottom sign ⊥ is not a true symbol (i.e. it is not an
element of Σ) but a new pseudo-symbol that does not clash with other symbols during
unification.

We call anonymous a term-graph that uses ⊥ nodes instead of named variables. An
example will be given in the next section.

3.2.4.1 Congruent nodes

On anonymous term-graphs, we can identify nodes that are the root of entirely identical
subgraphs. (This was not possible on the named presentation, because we would have
needed to reason up to α-conversion.)

Definition 3.2.4 (Congruent nodes) Given a term-graph g, we say that two nodes n1

and n2 are congruent in g if they are distinct and verify

∧

{
ġ/n1 = ġ/n2

∀π, ∀π′, 〈n1 · π〉 g̃ 〈n1 · π′〉 ⇐⇒ 〈n2 · π〉 g̃ 〈n2 · π′〉
�

The first condition ensures that the subtrees under n1 and n2 have the same shape, and are
labelled by the same constructors. The second condition checks that the amount of sharing
is the same below each node.

By construction, two nodes n1 and n2 congruent in a term-graph g can be merged, by
adding to g̃ the relation 〈n1 · π〉 ∼ 〈n2 · π〉 for any valid π.

Definition 3.2.5 (Fusion) Given two congruent nodes n1 and n2 of a term-graph g, we

call fusion of n1 and n2 in g the term-graph g[n1 = n2] verifying
−−− · −−−
g[n1 = n2] = ġ and

˜g[n1 = n2] = g̃ ∪
{
(π1 · π, π2 · π) | π1 ∈ n1, π2 ∈ n2, π1 · π ∈ dom(g)

}
�

Notice that being congruent is a sufficient condition for two nodes to be unifiable, but not
a necessary one.

◮ Example The nodes 〈1〉 and 〈2〉 are congruent in the anonymous term-graphs g1 and
g2 of Figure 3.2.4. In both cases, their fusion is the term-graph g5. However, even though
n1 and n2 can be unified in g3 and g4, they are not congruent in those two term-graphs.
Indeed, in g2, we have 〈11〉 /∈ dom(g3) but 〈21〉 ∈ dom(g3); hence ġ3/〈1〉 and ġ3/〈2〉 are
distinct. In g4, the amount of sharing between the two nodes differ: we have 〈21〉 g̃4 〈22〉,
but 〈11〉 g̃4 〈12〉 does not hold.

24 Representing first- and second-order types by graphs

→

g1

→

⊥ ⊥

→

⊥ ⊥

→

g2

→

⊥

→

⊥

→

g3

⊥ →

⊥

→

g4

→

⊥ ⊥

→

⊥

→

g5

→

⊥ ⊥

Figure 3.2.4 – Congruent nodes

3.2.4.2 Small-step instance

Definition 3.2.2 is essentially big-step, as it permits instantiating the skeleton and the equiv-
alence relation of a term-graph in a very general way. In the next section we are going to
consider second-order types, on which some instance transformations are not permitted (as
they would be unsound w.r.t. the semantics of the types). However, with a big-step rela-
tion, deciding whether an operation is allowed or not is complicated. Hence we introduce a
small-step relation, in which operations are more atomic—thus more easily checkable.

Definition 3.2.6 (Small-step instance on term-graphs) The small-step instance re-
lation on anonymous term-graphs is the reflexive transitive closure of the two atomic trans-
formations defined below

• grafting a variable node, i.e. replacing a ⊥-labelled node by a term-graph;

• merging two congruent nodes.

An instance operation is reversible if it is a merging that does not merge variable nodes. �

It is straightforward to check that this definition and Definition 3.2.2 coincide: grafting
exactly corresponds to the substitution of a variable by a closed type, and merging merely
instantiates the equivalence relation of the term-graph in an atomic way.

Interestingly, the grafting operation is easier to describe on anonymous term-graphs
than on term-graphs with named variables. Indeed, we need not check that we are not
grafting a term-graph containing a variable already present in the type (which would result
in a term-graph with two nodes for the same variable). Instead, in essence we are always
grafting fresh variables, which can be merged a posteriori with another variable if desired.

3.3 Representing second-order types

When representing types as trees, binders are traditionally represented with an explicit node
labeled with a special symbol ∀ of arity two. For example, the System F type σ defined by

σ = ∀α.α→ (∀β.β → α)

is usually represented as the tree (1) of Figure 3.3.1. Using dags (hence sharing at least the
variables), we obtain the representation (2).

3.3. Representing second-order types 25

∀

α

1

→

2

∀

1

β

1

→

2

β

1

α

2

α

2

(1) Second-order term

∀

→

2

∀

1

→

2

β

1

α

2

1
2

1

(2) Second-order dag

→

→

2

β

1

α

2

1

(3) Binding edges

→

→

2

β

1

α

2

1

(4)

→

→

2

⊥

1

⊥

2

1

(5) Anonymous variables

Figure 3.3.1 – Representations of second-order types.

Notice that all graphs are not correct types, as variables must be used within their scope.
In graph (2), the node 〈211〉 could not have been the second child of node 〈2〉, as β has not
been introduced yet. However, we do not detail which graphs are well-formed any further
in this chapter, as this question will be treated in detail on MLF graphic types in §4.3.

3.3.1 Binding edges

Unfortunately, representing quantifiers as special nodes inserted in the structure—which will
need to be modified, for example when a variable is no longer used—hides the underlying
common structure of all instances. A better solution is to introduce a binding edge between
the bound variable and the node at which it is bound2. This is illustrated in graph (3), in
which there is a binding edge from 〈1〉 to the root for α, and from 〈21〉 to 〈2〉 for β.

We orient the binding edge from the bound variable to its binding node. This is just a
convention, and we could have chosen the opposite direction; our choice is slightly easier to
think about, as each variable node is bound to a single node, but a single node can be a
binding position for several variables.

Notice that this representation looses the order of adjacent binders and makes useless
binders not representable—two artifacts of the syntactic notations that we are quite happy

2Except for nodes representing quantification of the form ∀α. α, which have no binding edge.

26 Representing first- and second-order types by graphs

to eliminate. For instance, the representation of all three types

∀α. ∀β. β → (β → α)
∀β. ∀α. β → (β → α)

∀γ. ∀α. ∀β. β → (β → α)

will be the same, namely the graph (4) of Figure 3.3.1. Notice also that the graphs (3)
and (4), which represent two types differing only by the extrusion of a quantifier, have the
same skeleton. By using binding edges, the instances in the skeleton of a type or in its
binding structure become more orthogonal.

3.3.2 Anonymous variables

As for term-graphs, if we allow reading second-order types modulo alpha-conversion, we
can use anonymous variables; in fact, we do so in the remainder of this document. For the
type σ, we obtain the graph (5) of Figure 3.3.1.

3.3.3 Instantiation on graphic System F types

→

σ

→

⊥

⊥

→

σ′

→

⊥

→

⊥ ⊥

→

σ′′

→

→

⊥ ⊥

⊥

→

⊥

→

σ1

→

⊥ ⊥

→

⊥ ⊥

→

σ′
1

→

⊥ ⊥

Figure 3.3.2 – Instance on graphic System F types

Let us define the instance relation ⊑F on the graphic representation of System F types.
As System F types generalize first-order types, we expect ⊑F to generalize ⊑G. However, in
System F, not all variables can be instantiated. For example, the variable α in (∀α. α →
α) → τ is locked. Naturally, the same distinction exists in the graphical presentation: a
bottom node can be instantiated if and only if it is bound to the root.

Colors In drawings, we remind of the fact that a variable can be instantiated by drawing
it in green; conversely, we draw a locked variable in red. For System F, this might seem
overkill, as the distinction is always easy to make: green variables are those bound on the
root, while red ones are bound on an inner node. However we will gradually expand our
convention to more complicated systems, in which colors will be a useful visual remainder.

3.3. Representing second-order types 27

For brevity, in the text we refer to « green » or « red » variables. This also offers some
form of abstraction over systems that have related instance relations. However, let us stress
that colors are only a visual help, and can always be deduced from the instance relation of
the system under consideration.

3.3.3.1 Grafting

Consider the type σ defined at the beginning of this section, which we have drawn with
colors in Figure 3.3.2. We can instantiate it into the type σ′ of the same figure by replacing
the green variable by the type ∀β. α → β, where α is a fresh variable which is introduced
at the root of σ′. We obtain the syntactic type

∀α. (∀β. α→ β)→ (∀γ. γ → (∀β. α→ β))

Notice in particular that the grafting operation of System F is more complex than the one
on term-graphs, as we must take into account the binding structure of the graphs. When
grafting a type τ at a node n of a type τ ′, τ can have bound variables (which are left
unchanged by the grafting), but also free variables (which should be bound at the root of
τ ′ after the grafting operation).

◮ Example When grafting ∀β. α→ β at 〈1〉 in σ, the (free) variable α becomes bound at
the root of σ′.

3.3.3.2 Merging inner nodes

Interestingly, the graph σ′′ of Figure 3.3.2 is another representation of the syntactic type
given above. This time, the two occurrences of ∀β. α → β are represented by distinct
subgraphs. However, since α is quantified higher in the type, there is still only one node
corresponding to that variable.

As for term-graphs, using a graphic presentation brings some redundancy into the rep-
resentation of types, which might differ by the amount of sharing they contain. As for
term-graphs, we capture those differences by a similarity relation ≈F that is the equiva-
lence relation induced by the reversible subset of this instance relation.

Here, since σ′ and σ′′ represent the same syntactic type, they must be equivalent for
≈F. In this simple example, the difference between the two types is very small: the nodes
〈12〉 and 〈222〉 are shared in σ′, but not in σ′′. In par with the beginning of the chapter, we
choose to make σ′ an instance of σ′′ (i.e. σ′′ ⊑F σ′′) as sharing increases when going from
σ′′ to σ′.

As discussed above, this instance must be reversible. However, two variables (the nodes
〈12〉 and 〈222〉) are merged by the operation. This is in stark contrast with first-order types,
where reversible instance only involves inner nodes, and never variables.

A misleading—and incorrect—intuition would be to think that red variables can be
freely merged. If we consider the type σ1 of Figure 3.3.2, which is a valid type for the
identity function, merging the nodes 〈11〉 and 〈12〉 would result in the syntactic type

(∀α. α→ α)→ (∀β. ∀β′. β → β′)

This is of course unsound with respect to 6F, and such an instance is forbidden. More
generally, merging red variables is not permitted; indeed, it is syntactically the same as

28 Representing first- and second-order types by graphs

substituting one variable by the other, and the System F instance relation does not permit
instance on red variables.

However, we still have not explained why σ′′ ⊑F σ′ holds. The idea is that the two
variables 〈12〉 and 〈222〉 were not directly merged. Instead two subgraphs containing these
two variables and their binders were merged; in this particular case the subgraphs under
〈1〉 and 〈22〉. Thus we have in fact merged two graphs that were α-convertible one into the
other. From a semantic point of view, this kind of sharing in the type cannot be observed.
This is easily seen on σ1; a function of this type returns something that has exactly type
∀α. ∀β. α→ β, and it can only receive as its argument an expression that has exactly the
same type. Whether the representations of the argument and of the return type are shared
or not is unimportant; those two types only contain red variables, and we cannot take a
semantically meaningful instance on those nodes. Thus the relation σ1 ⊑F σ′

1 holds, the
instance being reversible.

A merging can be reversible only if does not result in the indirect merging of nodes
quantified higher in the type. (Indeed, this indirect merging would change the semantics
of the type, and could even be unsound.) We characterize nodes that result in such “well-
behaved” merging by the following definition.

Definition 3.3.1 (Locally congruent nodes) Two nodes n1 and n2 of a graph σ are
locally congruent if

• n1 and n2 are congruent in the term-graph g underlying σ;

• the binding edges under n1 and n2 are compatible with ˜g[n1 = n2]

• for any two distinct nodes n′
1 and n′

2 under n1 and n2 respectively, if n′
1 and n′

2 are
merged in g[n1 = n2], then n′

1 and n′
2 are bound below n1 and n2. �

From an operational point of view, restraining the merging operation to locally congruent
nodes makes this operation more local: only binding edges in the subgraphs under n1 and
n2 can be merged. It makes also easier to verify that red variables are never merged.

→

σ2

→

→

⊥ ⊥

→

⊥ ⊥

σ

→

σ′
2

→

→

⊥ ⊥

→

⊥

σ

→

σ′′
2

→

→

⊥ ⊥

σ

Figure 3.3.3 – Merging locally congruent nodes

◮ Example The nodes 〈11〉 and 〈12〉 are locally congruent in the type σ′
2 of Figure 3.3.3.

Indeed, while the nodes 〈111〉 and 〈121〉 are bound above 〈11〉 and 〈12〉, they are already
equal in σ′

2; meanwhile the nodes 〈112〉 and 〈122〉 are bound under 〈11〉 and 〈22〉. Merging

3.3. Representing second-order types 29

〈11〉 and 〈12〉 results in the type σ′′
2 . Both σ′

2 and σ′′
2 represent the syntactic type

(∀α. (∀β. α→ β)→ (∀β. α→ β))→ τ

Conversely, 〈11〉 and 〈12〉 are not locally congruent in σ2, as 〈111〉 and 〈121〉 are bound
above the former nodes. Indeed, σ2 represents the syntactic type

(∀α. ∀α′. (∀β. α→ β)→ (∀β. α′ → β))→ σ

in which there are two distinct variables (α and α′) quantified on the left of the toplevel
arrow.

3.3.3.3 Summary: instance in graphic System F

We can now formally define the instance relation for the graphical presentation of System F.
Compared to the instance relation on term-graphs, here are the differences:

1. In order to preserve type soundness, grafting is only possible on green variables.
Moreover, it now takes into account the binders of the grafted types, as described
in §3.3.3.1.

2. Merging is limited to locally congruent nodes, in order to be more atomic (§3.3.3.2).
Moreover, red variables cannot be merged, again for soundness related reasons.

Definition 3.3.2 (Instance on graphic F-types) The instance relation ⊑F on graphic
System F types is the reflexive transitive closure of the three following atomic instance
operations:

1. grafting a type σ at a green variable node n; the binding edge of n is implicitly
removed; the free variables of σ are bound at the root of the type in which the
grafting occurs.

2. merging two locally congruent non-variable nodes;

3. merging two green variable nodes.

An instance operation is reversible if and only if it of the second form, and we write ≈F

the symmetric reflexive transitive closure of reversible instance. Finally, we write ⊑≈
F the

instance modulo reversible instance relation (⊑F ∪ ≈F)∗. �

We do not specifically require the merging of variables to be on locally congruent nodes, as
it is in fact always the case (given the definition of local congruence).

Notice that ⊑F and ≈F subsume (i.e. extend) the relations ⊑G and ≈G of §3.2.2 when
the variables in the term-graph are considered to be implicitly bound to the root. Moreover,
⊑≈

F is sound and complete w.r.t. to the instance relation 6F on syntactic System F types:
given two syntactic F-types τ1 and τ2, and σ1 and σ2 two graphic representations of those
types, we have τ1 6F τ2 if and only if σ1 ⊑≈

F σ2.

30 Representing first- and second-order types by graphs

3.4 Adding flexible quantification to second-order graphic types

3.4.1 Beyond system F

System F is poorly suited as a programming language with type inference since, as we
mentioned in the introduction, it lacks principal types. Even simple terms such as

K ′ , λ(x) λ(y) y

can be typed with incomparable types, e.g.

∀α. ∀β. α→ (β → β) (σ1)

and ∀α. α→ (∀β. β → β) (σ2)

System Fη One solution to remedy this problem is the system Fη, proposed by Mitchell
(1988). Roughly, the instance relation 6Fη of Fη allows to soundly instantiate types along
6F on the right of an arrow (i.e. in a covariant position), and along >F on the left of an
arrow (i.e. in contravariant position). In particular, the second type above is more general
than the first:

∀α. α→ (∀β. β → β) 6Fη ∀α. ∀β. α→ (β → β)

Yet, Fη is not quite satisfactory. First, the contravariance of the instance relation is often
too powerful (and in fact rarely needed). Moreover, it goes against the idea of unification-
based type inference, which is at the heart of ML. Indeed, this would require performing
unification on the right of an arrow, but anti-unification on the left.

More problematic, Fη still does not have principal types. Even though ∀α. (α→ α)→
(α → α) is a principal type for choose id in Fη (while this expression does not have a
principal type in System F), this property does not generalize to more complex examples.
For example, the term choose (choose id), can receive in particular the System F types

∀α. ((α→ α)→ (α→ α))→ ((α→ α)→ (α→ α)) (ρ1)
(∀β. (β → β)→ (β → β))→ (∀β. (β → β)→ (β → β)) (ρ2)
((∀γ. γ → γ)→ (∀γ. γ → γ))→ ((∀γ. γ → γ)→ (∀γ. γ → γ)) (ρ3)

In System Fη we can derive ρ1 6Fη ρ2, but not ρ1 6Fη ρ3 or ρ2 6Fη ρ3: indeed, we can
instantiate covariantly on the right of the toplevel arrow, resulting in

ρ2 6Fη (∀β. (β → β)→ (β → β))→ ((∀γ. γ → γ)→ (∀γ. γ → γ))

but we cannot transform ∀β. (β → β) → (β → β) into (∀γ. γ → γ)→ (∀γ. γ → γ) on the
left of the arrow.

As in System F, the lack of principal types in Fη stems from the fact that we cannot
express the correlation between two sub-types (e.g. the various instances of σid in the
examples above). We believe that this limitation is in fact inherent to using F types.

Flexible quantification MLF follows an entirely different solution, and enriches the types
of System F with a new construction that indicates what parts of a type can be soundly

3.4. Adding flexible quantification to second-order graphic types 31

→

σ1

⊥ →

⊥

→

σ2

⊥ →

⊥

→

σ3

⊥ →

⊥

→

σ′
1

⊥ →

⊥

Figure 3.4.1 – MLF types for K ′

instantiated. In particular, unlike in Fη, this information is added explicitly, and is not
linked to the variance of the arrow constructor.

Let us give some examples, using the types of K ′. We have represented σ1 and σ2 in
Figure 3.4.1. However, in MLF, K ′ has principal type σ3, which differs from σ2 by adding
a binding edge from the node 〈2〉 to the root. The node 〈2〉 corresponds to the root of the
type ∀ (β) β → β; since the binding edge of 〈2〉 goes to the root, it indicates that 〈2〉 can be
instantiated. Then, by transitivity, the node 〈21〉, which is bound at 〈2〉 and corresponds
to β, can also be instantiated. Hence both 〈2〉 and 〈21〉 are green. (Since the root allows
the nodes bound at it to be instantiated, we also draw it in green. This is essentially a
convention.)

Extending System F with binding edges to non-variable nodes can either be seen as a
restriction of MLF, or as a system in its own right. In this document we follow the second
approach, as it permits explaining MLF in a much simpler way. We call the resulting system
System F , where the curly F stands for « flexible F ». However, we intendedly remain
informal, as studying System F is not the goal of this document:

• most of the interesting properties of System F can be deduced from those of MLF;

• System F has been studied in detail by Le Botlan and Rémy (2007), albeit on a
restricted version of the system presented here.3 We will present one important result
in §3.4.3.

Instead, we use System F as an intermediary step to gain better intuitions.

3.4.2 Type instance in System F

Let us review the operations that compose the instance relation ⊑F of System F . We will
start by examining the types of K’ given in Figure 3.4.1. Since σ3 is the principal type of
K ′ in MLF, σ3 ⊑F σ1 and σ3 ⊑F σ2 must hold.

3In Le Botlan and Rémy (2007), System F is called iMLF. However, in this document we use MLF

derived names, including iMLF, for systems based on graphic types.

32 Representing first- and second-order types by graphs

3.4.2.1 Weakening

The operation transforming σ3 into σ2 is the removal of the binding edge leaving from 〈2〉.
From a semantic point of view, it relinquishes the right to instantiate 〈2〉 (and 〈21〉 by
transitivity). We call this operation a weakening.

Of course, it is sound only because 〈2〉 is green.4 Otherwise, by weakening a red node
not bound at the root of the type, we could require a different amount of polymorphism
than what was requested, which is unsound. The inverse operation (adding binding edges)
is unsound for the same reason.

3.4.2.2 Raising

The operation transforming σ3 into σ1 can actually be decomposed into two atomic steps.
At first, we instantiate the type ∀β. β → β under 〈2〉 into the type γ → γ, where γ is a new
type variable introduced at the root. This results in the type σ′

1.
5 Next, we can remove the

binding edge of 〈2〉 by a weakening. Thus the following relation holds

σ3 ⊑F σ′
1 ⊑F σ1

From an operational standpoint, σ′
1 is obtained by extruding the binding edge of 〈21〉

along the binding edge of 〈2〉 (i.e. the node on which 〈21〉 is bound). We call this operation
raising.

Raising is sound only when n is green. Indeed, from a semantical standpoint, raising a
node n loses the ability to quantify variables at the level of the binder of n. Hence it can
be permitted only if the node can be instantiated.

3.4.2.3 Grafting

→

σ3

⊥ →

⊥

→

σ4

→

⊥

→

⊥

→

σ5

→

⊥

→

⊥

→

σ′
5

→

⊥

→

⊥

Figure 3.4.2 – Grafting in System F

Interestingly, compared to System F, raising and weakening simplify the operation of
replacing a green bottom node by a type. Indeed, instead of (1) adding a new type, (2)
binding its free variables to the root and (3) removing the binding edge, it is now possible
to replace the bottom node by a closed type. The free variables (if there are any) can be

4This is actually an over-simplification. We will come back on this point later.
5The reason why 〈2〉 is hollow in σ′

1 is linked to previous footnote, and will be explained later.

3.4. Adding flexible quantification to second-order graphic types 33

raised in a second time, and the binding edge of the bottom node can finally be removed
by weakening, if needed. An example is given in the derivation

σ3 ⊑F σ4 ⊑F σ5 ⊑F σ′
5

of Figure 3.4.2, where we substitute the variable α of σ3 (i.e. the node 〈1〉) by σid, raise the
newly introduced type variable (node 〈11〉), and finally weaken 〈1〉.

Moreover, flexible quantification and raising allow quite a bit more freedom w.r.t. to
where to bind nodes. Indeed, after grafting a type τ at a node n of a type τ ′, the nodes
bound on the root of τ can be raised to any of the nodes on which n is transitively bound,
instead of only to the root of τ ′ or to n.

3.4.2.4 Merging

→

σ6

→

→

⊥

→

→

⊥

→

σ7

→

→

⊥

→

→

σ′
7

→

→

⊥

→

σ8

→

⊥

Figure 3.4.3 – Merging in System F

Let us now consider the merging of congruent nodes. As in System F, the nodes must
be locally congruent, so as not to merge nodes indirectly—thus potentially losing some
polymorphism. Of course, this includes not indirectly merging variables. However, in
System F , this is also the case for inner nodes with binding edges. Indeed, by merging two
inner nodes, we lose the ability to instantiate the subgraphs under them in incompatible
ways.

◮ Example It is not possible to directly merge the nodes 〈1〉 and 〈2〉 in the type σ6 of
Figure 3.4.3: those two nodes are not locally congruent, as the nodes 〈12〉 and 〈21〉 are
bound above them.

Thus, as in System F , we only allow the merging of locally congruent nodes. Moreover,
the merging is reversible if and only the two nodes at the root of the merging are unbound,
i.e. if we only alter the representation of types, not their meaning from a semantic stand-
point. Finally, for the usual soundness-related reasons, the merging of bound nodes is only
permitted if they are green.

◮ Example (continued) Let us consider again the merging of 〈1〉 and 〈2〉 in σ6. Although
a direct merging is impossible, it is possible to start by merging 〈11〉 and 〈21〉, as they are
both green and locally congruent. The resulting type is σ7, which can now be (reversibly)
instantiated into σ′

7.

34 Representing first- and second-order types by graphs

As mentioned above, the step σ6 ⊑F σ7 is not reversible. Indeed, even though it merges
inner nodes (and not variables), those nodes are green, and allow the instantiation of the
nodes bound on them. In this case, the difference in the amount of sharing can be observed.
Let us illustrate this by showing that splitting green nodes would be unsound. For the sake
of simplicity, we use a slightly simpler example. Consider the type σ8 of Figure 3.4.3, which
verifies

σ3 ⊑F σ4 ⊑F σ8

(σ8 being the result of merging 〈1〉 and 〈2〉 in σ4). Thus σ8 is a valid type for K ′, since σ3

is the principal type of K ′.
Moreover, σ8 is actually the principal type of the term choose id. In this case, it is

crucial for the two occurrences of σid on each side of the arrow to be correlated: choose id

could potentially return its argument. Thus, if σ8 is a valid type for this term, σ4 is not;
indeed

σ4 ⊑F (int→ int)→ (char→ char)

holds, and the latter type is not valid for choose id. Hence σ8 ⊑F σ4 cannot hold, as it
would be unsound.

3.4.2.5 Inert nodes

→

σ9

→

int int

→

σ10

→

⊥

→

σ′
10

→

⊥

→

σ11

→

→

⊥

→

σ11′

→

→

⊥

→

σ′′
11

→

→

⊥

→

σ′′′
11

→

→

⊥

Figure 3.4.4 – Inert nodes

Perhaps surprisingly, not all binding edges are semantically meaningful. As a simple
example, consider the nodes 〈11〉 and 〈12〉 of the type σ9 of Figure 3.4.4. Binding them
brings no additional expressivity to the type, as they are labelled by the monomorphic type
int, which contains no polymorphism. Thus, even though they are red, it is safe to weaken
them, and we allow this transformation. Moreover, this operation is reversible.

As a slightly more involved example, consider the type σ10 of this figure. Even though
〈1〉 is bound, no node is bound on it. Thus, the presence or the absence of the binding
edge does not allow taking semantically different instances.6 In particular, given a term a
of type σ10, any term a′ such that a a′ is well-typed can also be soundly applied to a term

6Of course, this is true only because no instance operation allows introducing a variable bound on 〈1〉.
However, this property is true in System F .

3.4. Adding flexible quantification to second-order graphic types 35

of type σ′
10—and conversely. Moreover, in both cases, the return type is the same: the type

of a′.
This means that we should not distinguish these two types for type soundness; therefore,

they must be in relation by the reversible part of the instance relation. To do so, we allow the
weakening of 〈1〉; furthermore, unlike proper weakenings—that really change the semantics
of the type by requiring different amount of polymorphism—this operation is reversible.

As a last example, consider σ11. We can slightly generalize the reasoning above, by
considering applications of the form a a′ a′′. This shows that the binding edge of the
node 〈11〉 is not semantically meaningful. In turn, σ′

11 shows that the one of 〈1〉 is also
unimportant. Thus, we allow both the weakenings of 〈1〉 and 〈11〉 in σ11 (represented by
σ′

11 and σ′′
11) as reversible operations. Notice that weakening 〈1〉 transforms 〈11〉 into a red

node: nevertheless, when a node does not permit semantically meaningful instantiations,
its color is actually unimportant, as it can be soundly weakened.

Finally, generalizing one more step, it is actually safe to add or remove a binding edge
on all the nodes that will never permit instantiating a variable, which we call inert. This
also means that it is safe to raise or merge those nodes.

Definition 3.4.1 (Inert nodes) A bound node n of a type σ is inert if there is no variable
transitively bound on it. �

In the figures of this section, all hollow-colored nodes were inert.

3.4.2.6 Summary

Let us summarize what operations are in the instance relation of System F , as well as those
that are reversible.

Definition 3.4.2 (Instance in System F) The instance relation of System F , written
⊑F , is the transitive reflexive closure of the relation defined by the following atomic instance
operations:

• grafting a closed type under a green bottom node;

• raising a green or inert node;

• merging two green, inert, or unbound nodes that are locally congruent;

• weakening a green or inert node.

The operations on unbound and inert nodes are reversible, and we write ≈F the transitive
symmetric reflexive closure of this relation. We write ⊑≈

F the instance modulo similarity
relation of System F , defined as (⊑F ∪≈F)∗. �

◮ Examples The various instances that hold in the figures of this section are summarized
in Figure 3.4.5. Plain edges represent ⊑F , while dashed ones represent its reversible subset;
all transitive or reflexive edges have been omitted to simplify the drawing. For example,
σ′

11 ≈F σ′′
11 holds, since σ′

11, σ
′′
11 ⊑F σ′′′

11 hold, and both instances are reversible.

Importantly, ⊑≈
F extends ⊑≈

F :

Lemma 3.4.3 Consider two System F types σ and σ′. If σ ⊑≈
F

σ′, then σ ⊑≈
F σ′. �

36 Representing first- and second-order types by graphs

σ3

σ2

σ′
1 σ1

σ4

σ8 σ10 σ11

σ′
11

σ′′
11

σ′
10

σ5 σ′
5

σ6 σ7

σ′
7

σ′′′
11

Figure 3.4.5 – Instances in the examples of §3.4

Proof: All atomic operations of ⊑≈
F σ′ are in ⊑≈

F , except for grafting which can be simu-
lated by grafting, raising and weakening.

3.4.3 An informal semantics for the types of System F

A syntactic presentation of a restriction of System F , which we call Shallow-F has been
studied in detail by Le Botlan and Rémy (2007, §3). More precisely, the instance relations
of the two systems are the same, but the types of Shallow-F are a restriction of those of
System F (modulo the translation into syntactic types):

Definition 3.4.4 (Shallow types) A System F type σ is shallow if all its red nodes are
variables. �

In other words, shallow types disallow flexible quantification of inner nodes in red positions:
projecting a type on an unbound node results in a System F type. This means that types
are stratified, with flexible quantification at the top, and System F types at the bottom.
By contrast, in System F alternating unbound and bound non-variables nodes is possible.

◮ Example The type σs of Figure 3.4.6 is shallow, but σns is not: the projection of σns at
the unbound node 〈11〉 is not an F type.

From a theoretical point of view, Shallow-F is an interesting restriction of System F ,
as it is possible to give a semantics to Shallow-F types as a set of System F type. We refer
to (Le Botlan and Rémy 2007, §3.2) for the exact definition, and will only give the general
idea below (adapting it to graphic types):

Definition 3.4.5 (Informal semantics of shallow types) Let σ be a shallow type.
The semantics {{n}} of a green node n of σ is the set of F-types recursively defined by:

3.4. Adding flexible quantification to second-order graphic types 37

σs
→

→

→

⊥ →

⊥ ⊥

σns
→

→

→

⊥ →

⊥ ⊥

Figure 3.4.6 – Shallow and non-shallow types

• if n is a bottom node, {{n}} is the set of all System F types;

• if n is a non-variable node n with n1, . . . , nk nodes bound at n, {{n}} is the closure
by ⊑≈

F of the set of (graphic System F) types obtained by replacing each ni with an
instance of a type in the semantics of ni.

The semantics of σ is the semantics of its root. Two shallow types σ and σ′ are in semantic
instance relation if {{σ′}} ⊆ {{σ}} holds. �

It is proven by Le Botlan and Rémy (2007) that the syntactic MLF relation ⊑⊏−⊐−, which
corresponds to the relation ⊑≈

F in System F , is sound w.r.t. to the semantic instance
relation defined above. Completeness is conjectured.

◮ Examples Let us write F for the set of all syntactic System F types (including types
with free variables). Using the semantics above, it is possible to prove that {{σ3}} and {{σ8}}
(i.e. the principal types for λ(x) λ(y) y and choose id) are the types of the form

{∀α. σ1 → (∀β. σ2 → σ2) | σ1, σ2 ∈ F} and {∀α. (∀β. σ → σ)→ (∀β. σ → σ) | σ ∈ F}

Thus flexible quantification captures the properties System F lacks:

• for λ(x) λ(y) y, the type variables in the instance of σid can be bound either at the
root of the type, or under the arrow;

• for choose id, the two instances of σid on both sides of the arrow are the same.

◮ Example: semantics of raising As a more complex example, the semantics of the type
σs of Figure 3.4.6 is the set of closed types of the form

∀α. (∀γ. σ11 → σ11)→ (∀γ. σ11 → σ11)

where σ11 is in the semantics of 〈11〉, i.e. in the set

{
∀β. σ → (∀δ. σ′ → σ′′) | σ, σ′, σ′′ ∈ F, ftv(σ) # β, ftv(σ′) # δ

}

38 Representing first- and second-order types by graphs

Notice the restrictions on the variables that can occur in σ and σ′. This is due to the fact
that 〈111〉 is bound above 〈11〉, (hence σ cannot refer to β). Similarly, 〈1121〉 is bound
above 〈112〉 and σ′ cannot use a variable of δ. Of course, the four occurrences of σ11 are
the same.

Let us now consider the semantics of the type obtained by raising 〈111〉 in σs. In this
case, the free variables of σ in σ11 can only be quantified at the root, and the semantics is
now of the form

∀α. (σ11 → σ11)→ (σ11 → σ11)

with σ11 ranging over the same set as previously.

The difference between the shallow and non-shallow versions of MLFare discussed further
in Appendix A.

4

MLF graphic types

Abstract

In order to obtain MLF graphic types, we add rigid quantification to the types
of System F (§4.1). We characterize those types as the superposition of a first-order
skeleton and of a binding tree (§4.2), and isolate the graphs that are well-scoped (§4.3).
Finally we present a few operators to transform MLF graphic types (§4.4).

The syntactic presentation of MLF types includes the flexible quantification seen in the
previous chapter. However, polymorphism is requested through the use of rigid quantifica-
tion, and not by removing binding edges, as in System F . We follow the same approach in
graphic MLF types, and use a second type of binding edge. However we will not develop the
reasons behind this choice here, and postpone the explanations to §5. This chapter instead
focuses on the formal definition of graphic types.

4.1 Representing MLF graphic types

From a representational standpoint, the main difference between (graphic) System F and
MLF types is the introduction of a new kind of binding edge for rigid quantification; in
drawings we use dashed lines.1

◮ Example Consider the types σ1, σ2, σ3, and σ4 of Figure 4.1.1. The node 〈1〉 is rigidly
quantified in both σ1 and σ4, and flexibly quantified in σ2 and σ3.

1In generic diagrams where an edge can be indifferently flexible or rigid, we use dashed-dotted edges.

39

40 MLF graphic types

→

σ1

→

1 2

⊥

1 2

→

σ2

→

1 2

⊥

1 2

→

σ3

→

1

⊥

1 2

→

2

⊥

1 2

→

σ4

→

1

⊥

1 2

→

2

⊥

1 2

σ1 = ∀ (α = σid) α→ α σ3 = ∀ (α > σid) ∀ (β > σid) α→ β
σ2 = ∀ (α > σid) α→ α σ3 = ∀ (α = σid) ∀ (β > σid) α→ β

Figure 4.1.1 – Examples of graphic MLF types.

4.1.1 From syntactic to graphic

The four types above are actually the graphic representation of the types introduced in
§2.3.3 and whose definition is recalled in the figure. For readers familiar with the syntactic
presentation of MLF, we describe here how to translate a quantified type ∀ (α ⋄ σ) σ′; the
full algorithm is given in §8.2.2, but uses a few notations not yet introduced:

1. translate σ′ as if α was a variable;

2. translate σ;

3. replace the node corresponding to α in σ′ by σ;

4. bind that node to the root of σ′ according to ⋄.

◮ Example The graph representing σ3 contains at the node 〈1〉 a subgraph representing
the bound σid of the variable α, and it is bound by a flexible edge.

◮ Another example The syntactic definition of the graphic type τ on the left of Fig-
ure 4.2.1 is given at the bottom of the figure. The node 〈11〉 corresponds to the variable γ.
This variable is flexibly quantified at the level of β, which is represented by the node 〈1〉;
hence there is a flexible binding edge from 〈11〉 to 〈1〉. Similarly, β is rigidly quantified at
the toplevel of τ , hence the rigid edge from 〈1〉 to 〈ǫ〉.

The structure of the underlying graph of τ can also be read directly in the syntactic
MLF type. For example, the equation for the root of τ is the rightmost part of the syntactic
definition of τ , i.e. β → δ. Likewise, the equation for the node corresponding to δ is α→ α,
as indicated by the bound ∀ (β > α→ α).

Syntactic and graphic sharing MLF syntactic quantification ∀ (α ⋄ τ) τ is used in particular
to denote sharing. In graphs, it is directly captured by the intrinsic sharing of dags—hence
our use of this representation. In both MLF and System F , the type σ3 of Figure 4.1.1, in
which the two occurrences of σid may be instantiated separately, is quite different from σ2,
in which both sides of the arrow must be instantiated simultaneously. This is reflected in
the graphic presentation by the fact that there are two copies of the graph representing σid

in σ3, but only one in σ2.

4.2. Pre-types 41

4.2 Pre-types

→

A pre-type τ

→

⊥

→

⊥

= →

Its skeleton

→

⊥

→

⊥

+ ·

Its binding tree

β ·

=

γ ·

>

· δ

>

· α

>

∀ (α) ∀ (β = ∀ (γ) γ → γ) ∀ (δ > α→ α) β → δ

Figure 4.2.1 – Decomposition of an MLF graphic type

The formal definition of MLF graphic types is given in two steps. We start by defining a
set of graphs that contains all graphic types. Afterwards, we give a criterion characterizing
graphic types as well-scoped graphs (§4.3).

Definition 4.2.1 A (graphic) pre-type τ is a triple composed of:

1. A first-order anonymous term-graph τ̆ , called the skeleton of τ .

2. A set of binding edges τ̂ , that forms an upside-down tree of domain dom(τ̆) rooted
at 〈ǫ〉.

3. A set of binding flags for all the nodes of τ̆ but the root, i.e. a function ⋄
τ mapping

each node in dom(τ̆) \ {〈ǫ〉} to one of the binding flags > or =.2

The union of τ̂ and ⋄
τ is called the binding tree of τ . �

The term-graph τ̆ is the structure of the pre-type. It is first-order: all the information
related to binders, in particular where and how each node is bound, is contained in the
binding tree.

◮ Example The decomposition of the pre-type τ of Figure 4.2.1 is given in the same figure.
For the binding tree, we have exceptionally annotated the nodes of the binding tree with the
name of the corresponding syntactic type variable, and the binding edges with the binding
flags of the nodes they correspond to.

Notations In the text, we write n −−⊸ n′ ∈ τ (resp. n −−_ n′ ∈ τ) to mean that there
is a structure edge (resp. a binding edge) from n to n′ in τ . We often drop “∈ τ ” when τ
is clear from the context. Notice that −−⊸ arrows are downwards oriented, while −−_ ones
are upwards oriented. If π is a path, we write n π−−⊸ n′ ∈ τ to denote the fact there exists
a (structure) path π from n to n′ in τ̇ , i.e. that n′ = 〈n · π〉. We write n b−−_ n′ if n −−_ n′

and ⋄
τ(n) = b. If n −−_ n′ ∈ τ , we also write τ̂(n) (or simply n̂) for n′; we call n′ the binder

of n and we say that n is bound at n′.

2While we have chosen to attach the binding flags to the nodes instead of to the binding edges, this
is purely a matter of convention, as both views are isomorphic. Our definition allows us to define some
operations on pre-types in a simpler way, as τ̂ and

⋄
τ sometimes change independently.

42 MLF graphic types

We write τ̇ and τ̃ for the term and equivalence defining τ̆ , and τ(n) for τ̇(n), i.e. the

symbol on the node n. We use the notations −−⊸τfoo,
−−_
τfoo and −−⋄−−τfoo instead of τ̆foo, τ̂bar and

⋄
τfoo for wide arguments.

◮ Examples Consider the pre-types of Figure 4.3.1. We have 〈1〉 =−−_ {ǫ} ∈ τ1. Hence,
the binder of 〈1〉 is τ̂1〈1〉 = {ǫ}, and ⋄

τ1(〈1〉) is =. We also have 〈ǫ〉 −−⊸ 〈1〉 −−⊸ 〈12〉 ∈ τ2

or, leaving τ2 implicit, 〈ǫ〉 12−−⊸ 〈12〉.

4.2.1 Why binding all nodes

The definition of graphic types implies that all nodes but the root have a binding edge.
From a theoretical standpoint, some nodes, such as those labelled with ground types like
int, need not be bound. However, this makes reasoning on the meta-theoretical properties
of graphic types more complicated. Instead, we require that all nodes be bound, and define
the instance relation so that the additional binding edges can be freely transformed (§5.3.4).
Then we prove that those supplementary edges are unimportant, as they “commute” with
type inference in a certain sense (§13.2). Finally, when translating graphic types into
syntactic types, for example for display purposes, those edges are entirely removed (§8.3.3).

4.3 Well-formedness of graphic types

(τ1) →

→

⊥

→

⊥

(τ2) →

→

→

⊥ ⊥

Figure 4.3.1 – Invalid graphic types.

4.3.1 Well-formed pre-types

All pre-types are not well-formed types. Indeed, graphic types must have a binding tree
compatible with the lexical scoping of variables. Two ill-formed binding trees are presented
in Figure 4.3.1:

1. In the pre-type τ1, the node 〈21〉 is bound at a node that is not among its ancestors.
This is not permitted; in a syntactic presentation, the variable would be bound on
the left branch and used on the right branch, out of its scope.

2. In the pre-type τ2, the bounds of the nodes 〈1〉 and 〈11〉 both depend on the bound
of the other node:

4.3. Well-formedness of graphic types 43

• if 〈1〉 is bound first: the equation of its bound is 〈11〉 → 〈11〉, but 〈11〉 has not
been bound yet;

• if 〈11〉 is bound first: its bound is 〈111〉 → 〈112〉, which refers to the node 〈112〉.
This node is itself bound at 〈1〉, which has not been bound yet.

In both cases, a variable is used outside of its scope. The second example is merely a
generalization of the first one to graphs with internal quantification and internal sharing
of nodes. The invariant that variables are used in their scope is generally captured by the
notion of domination: a bound must be dominated by its binder. The very same invariant
exists for the graphic types of MLF, up to the fact that we must take into account binding
edges.3

Definition 4.3.1 (Mixed paths) Let −̂⊸ be the relation (−−⊸) ∪ (−̂−). Given some
nodes n1, ..., nk, we say that the sequence n1 −̂⊸ n2 . . . −̂⊸ nk−1 −̂⊸ nk is a mixed path
from n1 to nk; this path is said to contain n if n = ni for some 1 ≤ i ≤ k. �

◮ Example In the pre-type τ2 of Figure 4.3.1, the relations {ǫ} −̂− 〈11〉 2−−⊸ 〈112〉 hold,
and form a mixed path from {ǫ} to 〈112〉.

Definition 4.3.2 (Domination for −̂⊸) Let τ be a pre-type, n and n′ two nodes of τ .
We say that n dominates n′ and we write n −̂≫−⊸ n′ if every mixed path from the root to
n′ contains n. �

◮ Example (continued) Consider again the pre-type τ1 of Figure 4.3.1; the mixed paths
between {ǫ} and 〈11〉 are

{ǫ} 1−−⊸ 〈1〉 1−−⊸ 〈11〉 {ǫ} −̂− 〈1〉 1−−⊸ 〈11〉

{ǫ} 1−−⊸ 〈1〉 2−−⊸ 〈11〉 {ǫ} −̂− 〈1〉 2−−⊸ 〈11〉

{ǫ} 1−−⊸ 〈1〉 −̂− 〈11〉 {ǫ} −̂− 〈1〉 −̂− 〈11〉

All six paths contain 〈1〉. Hence node 〈1〉 dominates node 〈11〉. Conversely, node 〈1〉 does
not dominate 〈21〉, as evidenced by the path {ǫ} 2−−⊸ 〈2〉 1−−⊸ 〈21〉. Similarly, in τ2, 〈1〉
does not dominate 〈112〉, since {ǫ} −̂− 〈11〉 2−−⊸ 〈112〉.

Well-formed types are simply the pre-types in which the binder of a node dominates the
node for the relation −̂≫−⊸.

Definition 4.3.3 (Graphic types) The binding tree of a pre-type τ is well-dominated if
every bound node is dominated by its binder, i.e. for all n and n′ in τ , n −−_ n′ implies
n′ −̂≫−⊸ n. A (graphic) type is a pre-type whose binding tree is well-dominated. �

In the following, we will nearly always consider MLF graphic types and, unless specified
otherwise, we abbreviate “graphic type” by “type”. The metavariable τ is used to range over
types.

3Or, more generally, for the types of System F and F in §3.3 and §3.4.

44 MLF graphic types

◮ Example (continued) As seen in the example above, neither τ1 nor τ2 are types, as they
are not well-dominated. In particular, τ̂1(〈21〉) does not dominate 〈21〉 in τ1 and τ̂2(〈112〉)
does not dominate 〈112〉 in τ2. Conversely, one can check that the pre-type τ in Figure 4.2.1
is well-dominated.

4.3.2 Invariants induced by well-formedness

Well-domination is a fairly strong property, and it creates several invariants relating the
structure and the binding tree of a type. We give one of them below, which we often use
inside proofs.

n′′

n′

+ +

n

∗
+

Figure 4.3.2 – Invariant induced by well-domination

Lemma 4.3.4 For any type τ , if n +−−_ n′′ +−−⊸ n′ ∗−−⊸ n, then n′ +−−_ n′′. �

This lemma is shown graphically in Figure 4.3.2, the conclusion being the highlighted edge.
Notice in particular that, by well-domination, n′′ dominates n′.

Proof: The proof is by induction on the integer k such that n (−−_)k n′′.

⊲ Case k = 1: since n′ ∗−−⊸ n, there exists a mixed path P of the form 〈ǫ〉 +−̂− n′ ∗−−⊸ n.
By well-domination, n̂ (which is also n′′ in this subcase) is in P . Since by hypothesis
n′′ is strictly above n′, n′′ is in the subpath 〈ǫ〉 +−̂− n′ (and is not n′). This proves
n′ +−−_ n′′, which is the desired result.

⊲ Case k = k′ + 1 > 1:

Let n′′′ be the node such that n +−−_ n′′′ −−_ n′′. Consider a mixed path {ǫ} ∗−−⊸
n′′ +−−⊸ n′ ∗−−⊸ n. By iterating the well-domination property, this path must contain
n′′′. Since n′′′ −−_ n′′, n′′′ is strictly under n′′. We compare the relative positions of
n′′′ and n′ in the path n′′ +−−⊸ n′ ∗−−⊸ n.

◦ If n′′′ = n′: the result is proven, as n′′′ −−_ n′′ by hypothesis.

◦ If n′′′ is strictly between n′′ and n′: the conclusion is by induction hypothesis ap-

plied to n (−−_)k′

n′′′ +−−⊸ n′ ∗−−⊸ n.

◦ If n′′′ is strictly between n′ and n: the conclusion is by induction hypothesis ap-

plied to n′′′ (−−_)1 n′′ +−−⊸ n′ ∗−−⊸ n′′′.

4.4. Operators for building and transforming types 45

→

⊥

(τg)

→

⊥

(τ ′
g)

→

→

⊥

(τ ′′
g)

→

→

⊥ ⊥

→

⊥ ⊥

(τ)

→

→

⊥ ⊥

→

⊥

(τm)

→

→

⊥ ⊥

(τm′)

→

→

⊥ ⊥

→

⊥ ⊥

(τr)

Figure 4.4.1 – Operations on graphs

4.4 Operators for building and transforming types

We conclude this chapter by defining a few operators to transform graphic types. Most of
them closely follow the instance operations of System F . However, the definitions of this
section do not take into account the fact that the operation is sound, as this point will be
treated in §5.

4.4.1 Grafting

We write τ [τ ′/n] for the replacement of a bottom node n of a type τ by a type τ ′; the
resulting type is described by τ ′ for nodes below n and by τ for the other nodes.

◮ Example In Figure 4.4.1, grafting the type τ ′
g at the node 〈1〉 in the type τg results in

the type τ ′′
g .

Definition 4.4.1 (Grafting) The grafting τ [τ ′/n] of a type τ ′ at a node n in a type τ is
defined by:

•
−− · −−
τ [τ ′/n] maps nm to τ ′(m) for m ∈ dom(τ ′), and maps m in dom(τ) \ {n} to τ(m);

• τ̃ [τ ′/n] is equal to τ̃ ∪ n · τ̃ ′ where n · τ̃ ′ is the set of pairs (n ·m, n ·m′) for m and m′

verifying m τ̃ ′ m;

•
−−−⋄−−−
τ [τ ′/n] maps m in dom(

⋄
τ) to ⋄

τ(m) and nm to ⋄
τ ′(m) for all m ∈ dom(

⋄
τ ′);

•
−−−−_
τ [τ ′/n] is τ̂ extended with the edges nm −−_ nm′ for all m −−_ m′ ∈ τ ′. �

Property 4.4.2 Given two types τ and τ ′, and n a bottom node of τ , τ [τ ′/n] is a type. �

Proof: Let us call τ ′′ the grafting τ [τ ′/n]. The fact that τ ′′ is a pre-type is immediate,
and it remains to prove that τ ′′ is well-dominated. Let n′ be a node of τ ′′.

⊲ If n′ ∈ dom(τ), all the mixed paths from 〈ǫ〉 to n′ are mixed paths in τ . We conclude
by well-domination of τ .

⊲ Otherwise, n′ is of the form n · n′′. By construction of τ ′′, all mixed paths from 〈ǫ〉 to
n′′ are the concatenation of a mixed path from 〈ǫ〉 to n in τ and of a mixed path from
〈ǫ〉 to n′′ in τ ′. The conclusion is thus by well-domination of τ ′.

46 MLF graphic types

4.4.2 Projection

Definition 4.4.3 (Closed nodes) A node n is closed if all the nodes in the subgraph
under n are transitively bound at n, i.e. if n +−−⊸ n′ implies n′ +−−_ n. �

Given a closed node n, we write τ/n for the projection of τ at n, obtained by removing
all the nodes not under n and all the dangling edges, and renaming nodes accordingly (thus
making n the root node of the resulting graph).

◮ Example In Figure 4.4.1, projecting at the node 〈1〉 in τ ′′
g yields the type τ ′

g. Projecting
at 〈1〉 or 〈2〉 in τ is impossible, as 〈11〉 is not bound under 〈1〉 (and the resulting graph
would be ill-bound).

Definition 4.4.4 (Projection) The projection τ/n of a type τ at a closed node n of τ is
defined by:

•
−·−
τ/n is τ̇/n.

• τ̃/n is such that π τ̃/n π′ if and only if nπ τ̃ nπ′.

•
−−⋄−−
τ/n maps a node m to ⋄

τ(nm)

•
−−_
τ/n is defined by m −−_ m′ ∈ τ/n if and only if nm −−_ nm′ ∈ τ . �

Property 4.4.5 Let n be a closed node of a type τ . The projection τ/n is a type. �

Proof: Let τ ′ be τ/n. The fact that τ ′ is a pre-type is immediate. For domination, consider
a node n′ of τ ′ and a mixed path P from 〈ǫ〉 to n′. Let P ′ be a mixed path from 〈ǫ〉 to n
in τ . By well-domination of τ , n̂′ is in P ′ · P . Since n is closed, n̂′ cannot be contained in
P ′; hence it is in P . This is the desired result.

4.4.3 Fusion

Fusion is the generalization of the fusion operation on term-graphs to graphs with binding
edges. We formalize the fact that two nodes are congruent in such a graph by the following
definition.

Definition 4.4.6 (Binding-congruent nodes) Consider two nodes n1 and n2 of a type

τ congruent in τ̆ . Let ∼′ be ˜τ̆ [n1 = n2]. Then n1 and n2 are binding-congruent in τ if

∀n, ∀n′, n ∼′ n′ =⇒ ∧

{
τ̂(n) ∼′ τ̂(n′)
⋄
τ(n) =

⋄
τ(n′)

�

The first condition asserts that binding edges can be merged, while the second checks that
this is also the case for binding flags. The fusion operation is possible on binding-congruent
nodes, and merges them.

4.4. Operators for building and transforming types 47

◮ Example In Figure 4.4.1, fusing the nodes 〈11〉 and 〈21〉 in τ yields type τm. More
interestingly, the nodes 〈1〉 and 〈2〉 can be fused in both τ and τm, resulting in τm′ . Notice
that the binding edges 〈11〉 −−_ {ǫ} and 〈21〉 −−_ {ǫ} of τ are fused in τm′ , as a side-effect
of fusing 〈1〉 and 〈2〉.

Definition 4.4.7 (Fusion) The fusion τ [n1 = n2] of two binding-congruent nodes n1 and
n2 of τ is defined by

•
−−−−−−−⊸
τ [n1 = n2] is τ̆ [n1 = n2];

•
−−−−⋄−−−−
τ [n1 = n2] is the quotient of ⋄

τ by ˜τ [n1 = n2]

•
−−−−−−−_
τ [n1 = n2] is the quotient of τ̂ by ˜τ [n1 = n2] �

The result below (which we afterwards use to prove that fusion returns types) expresses
that fusion preserves domination.

Lemma 4.4.8 Let τ be a type, n1 and n2 two binding-congruent nodes of τ . Let τ ′ be
τ [n1 = n2]. Let −−≫−→ be the domination relation corresponding to either −̂−, −−⊸ or
−̂⊸. For any n and n′ of τ if n −−≫−→ n′ in τ , then n −−≫−→ n′ in τ ′. �

Proof: Consider a mixed path P ′ between {ǫ} and n′ in τ ′. We rewrite the nodes in P
by removing all the occurrences of the paths under n2 (for example {ǫ} −̂− n1 ∪ n2 −̂−
(n1 ∪ n2) · P

′ is rewritten into {ǫ} −̂− n1 −̂− n1 · P
′′). Let us justify that the resulting

path P is valid in τ .

⊲ An edge −−⊸ of τ ′ is rewritten into a valid edge −−⊸ of τ by congruence of n1 and n2.

⊲ An edge −̂− of τ ′ is rewritten into an edge −̂− of τ by well-domination of τ and
binding-congruence of n1 and n2.

Thus P is a correct path from {ǫ} to n′ in τ . By the hypothesis n −−≫−→ n′ ∈ τ , P
contains n. Thus P ′ also contains n, which is the desired result.

Property 4.4.9 Let τ be a type, n1 and n2 two binding-congruent nodes of τ . The fusion
τ [n1 = n2] is a type. �

Proof: Let τ ′ be τ [n1 = n2]. The well-formedness of τ̆ ′, τ̂ ′ and
⋄
τ ′ are by definition of

binding-congruent nodes. The preservation of well-domination is by Lemma 4.4.8.

4.4.3.1 Local congruence

The definition of locally congruent nodes (Definition 3.3.1) is still correct on graphic MLF

types. However, we give an alternative, slightly more formal, definition below.

Definition 4.4.10 (Locally congruent nodes) Two nodes n1 and n2 of a type τ are
locally congruent if they are binding-congruent in τ and

∀π 6= ǫ, 〈n1π〉 τ̃ 〈n2π〉 ∨ 〈n1π〉
+−−_ n1 ∧ 〈n2π〉

+−−_ n2 �

48 MLF graphic types

4.4.4 Raising

Given a node n of a type τ such that n ⋄−−_ n′ ⋄′

−−_ n′′ holds, the operation of raising n
consists in lifting the binding edge n −−_ n′ above the edge n′ −−_ n′′, resulting in the edge
n ⋄−−_ n′′. The resulting pre-type is called the raising of n in τ , and is written τ ↑ n.

◮ Example In Figure 4.4.1, the type τr is the raising of the node 〈22〉 in τ .

Definition 4.4.11 (Raising) The raising τ ↑ n of a node n in a type τ is the pre-type
defined by

•
−−⊸
τ ↑ n is τ̆ ;

•
−−⋄−−
τ ↑ n is ⋄

τ(n);

•
−−−_
τ ↑ n is τ̂ , except on n where it is n −−_ τ̂(τ̂(n)). �

τ →

→

⊥

→

τi →

→

⊥

→

τ ′ →

→

⊥

→

τ ′′ →

→

⊥

→

Figure 4.4.2 – Raising and well-domination

Raising and well-domination Raising at arbitrary nodes can result in ill-dominated pre-
types. In the type τ of Figure 4.4.2, raising the node 〈12〉 results in the ill-dominated type
τi, as shown by the mixed path

〈ǫ〉 −̂− 〈12〉 −−⊸ 〈11〉

which does not contain the binder of 〈11〉, i.e. the node 〈1〉.
In the case of τ and τ i, the structure path 〈12〉 −−⊸ 〈11〉 prevents the raising of 〈12〉.

Syntactically, the bound of 〈12〉 depends on the bound of 〈11〉, and 〈12〉 cannot thus be
introduced first. This property can be generalized, and exactly characterizes the set of
nodes n which can be raised while preserving well-domination.

Definition 4.4.12 (Raisable node) Given a type τ and a bound node n ∈ τ , n is raisable
in τ if no other node bound on n̂ can be reached from n. Formally,

∀n′, n′ −−_ n̂ =⇒ n 6+−−⊸ n′ �

4.4. Operators for building and transforming types 49

◮ Example The node 〈11〉 is raisable in the type τ of Figure 4.4.2, but not 〈12〉. However,
〈12〉 is raisable in τ ′, since 〈11〉 and 〈12〉 are no longer bound at the same node.

Property 4.4.13 τ ↑ n is a type iff n is raisable in τ . �

Proof: We let τ ′ = τ ↑ n, n′ = τ̂ (n), n′′ = τ̂ (n′) (in particular, n′′ = τ̂ ′(n)).

⊲ If n is not raisable: we show that τ ′ is not well-dominated.

Let m be a node bound on n′ in τ such that n +−−⊸ m. Thus, in τ ′ we have mixed paths
of the form {ǫ} ∗−̂⊸ n′′ −̂− n +−−⊸ m. Those mixed path does not contain τ̂ ′(m) = n′,
as n′ is strictly under n′′ and strictly above n’. Hence τ ′ is not well-dominated.

⊲ If n is raisable: It is immediate to see that τ̆ ′ and
⋄
τ ′ are correct, as they are unchanged

by the raising. The fact that τ̂ ′ forms a tree is also immediate. Let us show that τ ′ is
well-dominated. We consider a node m and a mixed path π′ from {ǫ} to m in τ ′. Let
π be the mixed path obtained by replacing the edge n −̂− n′′ by n −̂− n′ −̂− n′′ (if it
appears in π′). By construction, π is a valid mixed path between {ǫ} and m in τ . We
must prove that τ̂ ′(m) is in π′.

◦ If m = n and n −−_ n′′ is in π′: by the first hypothesis τ̂ ′(m) is n′′, hence the con-
clusion by the second.

◦ If m = n (1) and n −−_ n′′ is not in π′ (2): By well-domination of τ and (1), n′

and n′′ are in π. By (1), n′′ is τ̂ ′(m). Hence τ̂ ′(m) is in π′, since π = π′ by (2).

◦ If m 6= n and n −−_ n′′ is not in π′: by those hypotheses, τ̂ (m) = τ̂ ′(m) and π =
π′. We conclude by well-domination of τ .

◦ If m 6= n, n −−_ n′′ is in π′ and τ̂ (m) 6= n′:

By well-domination of τ , m′ = τ̂ (m) is in π. Since m′ is not n′, then m′ is in π′ too
(as this part of π is shared with π′). Since m 6= n, m′ is τ̂ ′(m), hence the conclusion.

◦ If m 6= n (3), n −−_ n′′ is in π′ (4) and τ̂ (m) = n′ (5): by (4), n −−_ n′ −−_ n′′ is

in π. Thus π is in particular of the form 〈ǫ〉 ∗−̂⊸ n′′ −̂− n′ −̂− n ∗−̂⊸ m. By (3),
we moreover have n +−̂⊸ m, hence also n +−−⊸ m. Together with (4), this contradicts
the fact that n is raisable in τ .

4.4.4.1 Raising multiple nodes

Instead of raising a single node, we are sometimes interested in raising all the nodes bound
on a given node n.4 We call this operation a multi-raising.

Definition 4.4.14 (Multi-raising) Given a type τ and a node n of τ different from the
root, the multi-raising of n in τ is the graph τ ′ verifying τ̆ = τ̆ ′, ⋄

τ =
⋄
τ ′ and

∀n′, τ̂ ′(n′) = ∨

[
τ̂(n) if n′ −−_ n ∈ τ
τ̂(n′) if n′ 6−−_ n ∈ τ

�

4This operation will mostly be useful in Part II, when we compare type inference in ML and in MLF.

50 MLF graphic types

◮ Example Multi-raising the node 〈1〉 of the type τ of Figure 4.4.2 results in the type
τ ′′. Notice that raising n changes the binding edge of n, while multi-raising it changes the
binding edges of the nodes bound on n.

Multi-raising is an interesting operation, because it does not require checking for rais-
ability (or equivalently for well-domination).

Property 4.4.15 Given a type τ and a node n of τ , the multi-raise of n in τ is a type. �

Proof: Let S be the set of nodes bound on n in τ . It suffices to order this set by −−⊸τ

(the lowest nodes being first), and to raise the nodes of S in this order.

5

Instance on MLF graphic types

Abstract

We explain the introduction of rigid quantification in MLF types (§5.1). The in-
stance relation of MLF is obtained by adapting the instance relation of System F to
this form of quantification (§5.2). In fact, we obtain two relations, one permitting type
inference, but not the other. We formally define the first one in §5.3.3, the second in
§5.3.5. A third relation, designed to abstract over inessential details on nodes without
polymorphism is also introduced (§5.3.4).

5.1 Why rigid quantification?

The System F instance modulo reversible instance relation⊑≈
F generalizes the corresponding

relation ⊑≈
F of System F (Lemma 3.4.3). Moreover, ⊑≈

F is sound and complete w.r.t. the
syntactic instance relation 6F of System F. Hence ⊑≈

F extends this last relation. In parallel,
MLF is designed to be an extension of ML and the syntactic typing rules of MLF are those of
ML, modulo the richer types and type instance relation—exactly as is the case for System F.
Thus, if the instance relation on MLF graphic types ⊑ allowed all the operations of ⊑≈

F , type
inference in MLF would likely be undecidable—just as in System F (Wells 1994).

Rigid quantification is introduced in MLF to find a retriction of ⊑≈
F suitable for type

inference. Thus, although the two forms of quantification share a similar syntax, there is a
profound asymmetry between them:

• flexible quantification is introduced to obtain more expressive types, and more prin-
cipal type derivations;

• rigid quantification is used to restrict the expressiveness of types, in order make type
inference decidable.

51

52 Instance on MLF graphic types

From a semantic point of view, and without delving too much into the details yet, rigid
edges have the same role as the absence of binding edges in System F graphic types: they
forbid the merging or the instantiation of variables. Hence, there is a very simple way to
transform an MLF type into the corresponding System F type.

Definition 5.1.1 (Mapping from MLF to System F) We write ⇓ the injection from
MLF types to System F graphic types that removes all rigid edges from its argument. �

The MLF instance relation is obtained by adapting ⊑≈
F to the richer binding structure

of graphic types. In fact, we simultaneously define two relations:

⊑⊏−⊐− is the largest relation of the two, and comprises all the possible transformations: it is
designed to be sound and complete w.r.t. ⊑≈

F (modulo ⇓).

⊑ is a restriction of ⊑⊏−⊐− that permits type inference.

Those two relations define two different versions of MLF, with type inference being possible
only in the smallest of the two. The interest of the first system lies mainly in its expressivity.

The decision to put a transformation in ⊑⊏−⊐− but not in ⊑ is somewhat arbitrary at this
point. Indeed, by definition it cannot be explained by type soundness, and is only justified
by the fact that the system based on ⊑ allows type inference. Another design guideline is
that ⊑ should be as large as possible, in order to obtain a system as expressive as possible.

5.2 Shaping the instance relation

In this section, we review informally the operations of ⊑≈
F and adapt them to rigid quan-

tification.
Nodes are partitioned according to the operation they permit. As in System F , this

partition includes red, green and inert nodes. There is also a new category, called orange
nodes. For type inference purposes we also isolate a subset of inert nodes, called monomor-
phic. This section also makes precise whether or not an operation is allowed in both ⊑⊏−⊐−

and ⊑, or only in ⊑⊏−⊐−. A formal definition of ⊑ and ⊑⊏−⊐− is also given in §5.3.3 and §5.3.5.
In the first three subsections below, we suppose that the nodes discussed are not inert.

They will be handled separately in §5.2.4.

5.2.1 Green MLF nodes

In MLF, green nodes are the same as in System F : they are transitively bound to the root:

(>−−_)∗〈ǫ〉

Three operations on green variables and green inner nodes (grafting, merging, raising)
are directly “inherited” from ⊑≈

F , and are all in ⊑. Moreover, since the symmetric operations
are unsound in general (thus not in ⊑≈

F), they are neither in ⊑ nor in ⊑⊏−⊐−.
Weakening a green node (i.e. removing its binding edge in F) is also possible, but we

must change it slightly, as we require all nodes to be bound. Thus, on graphic MLF types, we
change the (flexible) binding edge into a rigid one; we again call this operation weakening.
Notice that it exactly corresponds to the informal semantic of rigid edges.

Weakening is in both ⊑ and ⊑⊏−⊐−. Moreover, as in F , the symmetric operation would be
unsound (once polymorphism is requested, it must be given), and it is forbidden.

5.2. Shaping the instance relation 53

5.2.2 Red MLF nodes

In System F , the red nodes are the bound nodes which are not connected to the root by
binding edges. It is straightforward to adapt this definition to graphic types: red nodes are
flexibly bound nodes with a rigid edge above them, i.e.

>−−_ (⋄−−_)∗ =−−_ (⋄−−_)∗ 〈ǫ〉

Remember that, in the general case, transforming such a node is unsound, as its polymor-
phism is requested—in MLF by the rigid edge above. Thus no instance operation is allowed
on those nodes.

5.2.3 Nodes with a rigid edge

The handling of the nodes that have no binding edge in System F—i.e. that have a rigid
binding edge in MLF graphic types—is more subtle. The easy cases are the transforma-
tion of a rigid edge into a flexible one, and the substitution of a rigidly bound variable,
which would for example allow to transform (∀ (α) α) → (∀ (α) α) into int → (∀ (α) α).
Both operations are clearly unsound, as they would allow requiring less polymorphism than
originally requested, and they are forbidden.

Next, merging of locally congruent unbound nodes is possible in System F , and is part
of the reversible instance relation. In order to allow the same expressiveness, the relation
⊑⊏−⊐− allows raising and merging, but also lowering and splitting, the nodes with rigid edges.
However our key design choice is to disallow the last two operations in ⊑, i.e. to only allow
in this relation the raising and merging of nodes with rigid edges. This very restriction is
what keeps type inference decidable.

In the following, we draw nodes with rigid edges in orange, thus completing our “traffic
lights” metaphor. Green nodes allow true instances (that change the semantics of the type),
orange nodes only allow transformations changing the representation of types (but not their
semantics, and types are in particular invariant modulo ⇓) and red nodes disallow instance
entirely.

5.2.4 Inert and monomorphic nodes

In order to be slightly more general, we add the possibility for a type constructor to be
intrinsically polymorphic.

Definition 5.2.1 (Polymorphic symbols) The set of type constructors Σ is supposed to
be partitioned into two sets of regular and polymorphic type constructors, the→ constructor
being regular. The symbol ⊥ is considered to be polymorphic.1 We write Poly the set of
polymorphic symbols. �

This definition allows to easily model type constructors representing polymorphic type ab-
breviations, such as type t = ∀α. α→ α. However, in the remainder of this section we will
not use this possibility in the examples, and ⊥ can safely be thought as the only polymorphic
symbol.

1We recall that ⊥ is not part of Σ

54 Instance on MLF graphic types

→

σ

→

→

⊥

→

⊥

→

int int

→

τ1

→

→

⊥

→

⊥

→

int int

→

τ2

→

→

⊥

→

int int

→

τ3

→

→

⊥

→

int

Figure 5.2.1 – Inert and monomorphic nodes

Terminology In the following, we say that n is an intrinsically polymorphic node in τ if
τ(n) is a polymorphic symbol.

5.2.4.1 Inert nodes

Let us adapt the definition of inert nodes to rigid quantification and polymorphic symbols.
In System F , a node is inert if there is no variable transitively (flexibly) bound on it. In MLF

graphic types, a node is inert if all the polymorphic symbols below the node are protected
by at least one rigid edge.

Definition 5.2.2 (Inert nodes) Let τ be a graphic type. A node n of τ is inert if it is not
intrinsically polymorphic, and if there is a rigid edge between n and any other intrinsically
polymorphic node n′ below n. Formally,

∀n′, n′ ∗−−_ n ∧ τ(n′) ∈ Poly =⇒ n′ ∗−−_ =−−_ ∗−−_ n �

◮ Example Figure 5.2.1 shows the System F type

σ , (σid → σid)→ (int→ int)

as well as three possible MLF graphic representations of this type τ1, τ2 and τ3. Indeed, the
relation ⇓ (τi) ≈F σ holds for i in 1 . . . 3. Moreover, all the hollow-colored nodes in the MLF

types are inert.

As defined by the previous sections, ⊑⊏−⊐− is too restrictive. Indeed, we have not permitted
transforming inert nodes, which is permitted by ⊑F . Indeed, ⊑≈

F also allows to raise, lower,
merge, split, weaken and strengthen (the inverse operation of weaken) those nodes. Thus
⊑⊏−⊐− also allows all those transformations, and τ1 ⊑⊏−⊐− τ2 ⊑⊏−⊐− τ3 ⊑⊏−⊐− τ1 holds.

Conversely, in order to preserve the decidability of type inference, ⊑ only allows merging,
raising and weakening inert nodes. (However, this means that τ1 ⊑ τ2 ⊑ τ3 still holds.)

5.2.4.2 Monomorphic nodes

The fact that inert nodes cannot be e.g. unmerged or lowered by ⊑ may seem unfortunate.
Indeed, it means that the binding edge of a node labelled by a ground type constructor such
as int is significant. Thus, we should distinguish the types τ2 and τ3 of Figure 5.2.1.

5.3. Formal definition of the instance relations 55

Happily, this is in fact not the case. On a subset of inert types—those with no variables
under them—we can allow unmerging, unraising and unweakening without losing decidabil-
ity of type inference.

Definition 5.2.3 (Monomorphic nodes) Let τ be a graphic type. A node n is
monomorphic if n and all the nodes bound under it have non-polymorphic symbols. For-
mally,

∀n′, n′ ∗−−_ n =⇒ τ(n′) /∈ Poly �

Of course, as for inert nodes, this definition only involves the binding tree. In particular,
there can be polymorphic symbols under n for −−⊸. However, since polymorphism is only
requested through the binding tree, we need not make such a distinction.

Perhaps surprisingly, we nevertheless do not add unmerging, unraising and unweakening
on monomorphic nodes in ⊑. Indeed, it in fact holds (§13.2) that this would not add
expressiveness to the type system. Hence we keep ⊑ as simple as possible. Moreover, as
it is oriented towards “more sharing”, we can use efficient first-order unification algorithms
that implement unification exactly for ⊑.

Representing inert and monomorphic nodes In the following, we represent monomorphic
nodes in white. Inert nodes, which allow the same transformations as orange nodes, are
represented as hollow orange nodes.

5.3 Formal definition of the instance relations

5.3.1 Permissions

In the syntactic presentation of MLF, finding what transformations are allowed at a given
position in a type is not readily apparent, at it is determined by contextual inference rules
and the stratification between the abstraction and instance relations. In graphic types, the
allowed transformations are obtained by looking at the color of the node. However, as we
stressed in §3, colors are only a visual help. Indeed, they are solely determined by the shape
of the binding tree above the node (for green, orange and red) or below the node (for white,
i.e. inert nodes). We introduce the notion of flag path to determine the non-white colors.

Definition 5.3.1 (Flag path) Let τ be a type, n a node of τ . The flag path of n in τ ,
written ⋄τ (n) is the sequence of binding flags ⋄ such that 〈ǫ〉 ⋄−̂− n. �

We write ⋄(n) when τ is implicit from context. Notice that the flag path is read by following
binding edges in the inverse direction of the one in τ .

◮ Example In the type τ1 of Figure 5.2.1, ⋄τ1
(〈11〉) = (>=)

The definition below gives the exact definition of colors as we have used them so far.
Since colors define which operations are allowed on a given node, we also use the term of
permission. Permissions are also summarized in Figure 5.3.1.

56 Instance on MLF graphic types

Permission Name Flag Path

G Green >∗

O Orange ⋄∗ =

R Red ⋄∗ = >+

I Inert Definition 5.2.2

M Monomorphic Definition 5.2.3

G

O

R

Figure 5.3.1 – Permissions

Definition 5.3.2 (Permissions) A node n of a type τ is said to have permission p if

p = M: n is monomorphic in τ
p = I: n is inert in τ
p = G: n is not inert in τ and ⋄τ (n) is of the form >∗

p = O: n is not inert in τ and ⋄τ (n) is of the form (>|=)∗=
p = R: n is not inert in τ and ⋄τ (n) is of the form (>|=)∗ = >+

The permissions of n in τ are written Pτ (n). If n has permission p, it is said to be a p node.�

Notice that G, O, R and I are disjoint sets of nodes (and that each node has exactly one of
those permissions), as they usually require distinct treatment in proofs. However I nodes
can be M nodes. Those two choices are only a matter of presentation; we could have instead
said that all nodes at >∗ flag path have G permission, or that I and M nodes are distinct.

Disregarding the fact it can be inert, a simple way to find whether a node is G, O or R

is to follow its flag path in the automation given at the right of Figure 5.3.1. The state G

is the initial state, i.e. the permission of the root.

◮ Example Consider the node 〈11〉 of type τ1 in Figure 5.2.1, whose flag path is >=. We
first follow the flexible edge from G to itself, and then the rigid edge from G to O; 〈11〉 is
indeed orange, as it is not inert,

5.3.2 Atomic instance operations

Instance is composed of the four operations grafting, merging, raising and weakening in-
troduced in the previous sections and formally defined below. All four transformations are
displayed schematically in Figure 5.3.2, with the permissions permitting the transformation.
Nodes in blue have either green, orange or inert permission. Smaller nodes, in light grey,
have permissions either irrelevant or unconstrained by the other nodes and edges in the
drawing.

◮ A concrete example Figure 5.3.3 introduces a sequence of types, each of which is in a
particular form of instance relation with it successor. The type τ1 is actually a valid type
(albeit not the principal one) for the term K ′ defined by

λ(x) λ(y : ∀ (α) α→ α) y (K ′)

5.3. Formal definition of the instance relations 57

⊥
⊑G

τ ′′
·n1

⋄

τ

· n2

⋄

τ

⊑M

· n

⋄

τ

· n

⋄

⊑R

· n

⋄

·

n ·

>

⊑W

·

n ·

=

n ·

>

⊑W

n ·

=

n .

>

⊑W

n .

=

Figure 5.3.2 – Schematic depiction of the atomic instance operations

By construction of instance, all the types τ2 . . . τ8 are instances of τ1, hence valid types
for K ′. In τ8 the nodes 〈1〉 and 〈2〉 are merged. Thus, schematically, the instance steps
of Figure 5.3.3 prove that K ′ and the identity function can be put inside an homogeneous
container such as a list. Indeed, τ8 is a common instance of τ1 and of the principal type
∀ (β) β → β of the identity function.

5.3.2.1 Grafting

Definition 5.3.3 (Grafting) A type τ ′ is the (instance-)grafting of τ ′′ at n in τ if n is a
bottom node with green permission in τ and τ ′ is τ [τ ′′/n]. We write Graft(τ ′′, n) for the
function τ 7→ τ ′. �

Notice that a node can become inert or monomorphic by grafting, if the root of τ ′′ is itself
inert or monomorphic.

◮ Example In Figure 5.3.3, τi = Graft(τi/〈1〉, 〈1〉)(τ1) holds for 2 ≤ i ≤ 7.

58 Instance on MLF graphic types

(τ1) →

⊥ →

→

⊥

→

⊥

(τ2) →

→

→

⊥ ⊥

→

⊥ ⊥

→

→

⊥

→

⊥

(τ3) →

→

→

⊥ ⊥

→

⊥ ⊥

→

→

⊥

→

⊥

(τ4) →

→

→

⊥ ⊥

→

⊥ ⊥

→

→

⊥

→

⊥

(τ5) →

→

→

⊥ ⊥

→

⊥ ⊥

→

→

⊥

→

⊥

(τ6) →

→

→

⊥

→

⊥

→

→

⊥

→

⊥

(τ7) →

→

→

⊥

→

⊥

→

→

⊥

→

⊥

(τ8) →

→

→

⊥

→

⊥

Figure 5.3.3 – Example of type instance.

5.3.2.2 Merging

As in Systems F and F , merging is only possible on locally congruent nodes—otherwise the
control of permissions would much more complicated.

Definition 5.3.4 (Merging) A type τ ′ is the (instance-)merging of the nodes n1 and n2

in τ if:

1. τ ′ is τ [n1 = n2];

2. n1 and n2 have non-red permissions2;

3. n1 and n2 are locally congruent.

We write Merge(n1, n2) for the function τ 7→ τ ′. �

As usual, some subparts of the subgraphs under n1 and n2 can already be shared, hence
the overlap in the sketch of Figure 5.3.2.

2By definition, n1 and n2 have the same permissions: their flag path and the binding tree under them
are identical.

5.3. Formal definition of the instance relations 59

(τ) →

→

⊥ ⊥

→

⊥ ⊥

(τm) →

→

⊥ ⊥

→

⊥

(τm′) →

→

⊥ ⊥

Figure 5.3.4 – Merging and local congruence.

◮ Examples In Figure 5.3.3, the following two relations are verified:

τ6 = (Merge(〈111〉, 〈112〉) ; Merge(〈121〉, 〈122〉))(τ5) τ8 = Merge(〈1〉, 〈2〉)(τ7)

Consider next the types τ , τm and τm′ of Figure 5.3.4. The type τm′ is τ [〈1〉 = 〈2〉] but
not Merge(〈1〉, 〈2〉)(τ). Indeed the nodes 〈11〉 and 〈21〉 fail condition 3, since they are not
bound under 〈1〉 and 〈2〉 in τ .

In this particular case, the transformation can be decomposed into two atomic mergings
that both satisfy condition 3:

τm = Merge(〈11〉, 〈21〉)(τ) τm′ = Merge(〈1〉, 〈2〉)(τm)

However, such a decomposition does not always exist. In our example, had 〈11〉 and 〈21〉
been red, the first merging would not have been possible.

5.3.2.3 Raising

Definition 5.3.5 (Raising) A type τ ′ is the (instance-)raising of n in τ if n has non-red
permissions in τ , and τ ′ = τ ↑ n. We write Raise(n) for the function τ̂ 7→ τ̂ ′. �

◮ Example In Figure 5.3.3, τ3 is the raising of 〈121〉 in τ2, while τ4 is the raising of 〈122〉
in τ3.

5.3.2.4 Weakening

Definition 5.3.6 (Weakening) A type τ ′ is the (instance-)weakening of n in τ if n has

green or inert permissions in τ , and τ and τ ′ coincide except for the binding edge n >−−_ n′

in τ , which is replaced by n =−−_ n′ in τ ′. We write Weaken(n) for the function τ 7→ τ ′. �

◮ Example In Figure 5.3.3, τ7 is the weakening of 〈11〉 in τ6, while τ5 is the weakening of
the inert node 〈12〉 in τ4.

In the following, we order binding flags by (>) < (=), following the transformation
induced by a weakening.

Definition 5.3.7 (Order on binding flags) We write
⋄
< the order defined by (>)

⋄
< (=),

(>)
⋄
< (>) and (=)

⋄
< (=). �

60 Instance on MLF graphic types

5.3.3 The instance relation

Definition 5.3.8 (Instance subrelations) We write ⊑G, ⊑M , ⊑R and ⊑W for the re-
flexive transitive closures of the relations respectively defined by

τ ⊑G
1 τ ′ , ∃n, ∃τ ′′, τ ′ = Graft(τ ′′, n)(τ)

τ ⊑M
1 τ ′ , ∃n1, n2, τ ′ = Merge(n1, n2)(τ)

τ ⊑R
1 τ ′ , ∃n, τ ′ = Raise(n)(τ)

τ ⊑W
1 τ ′ , ∃n, τ ′ = Weaken(n)(τ) �

Instance is simply the union of all forms of instance operations.

Definition 5.3.9 (Instance) The instance relation on types ⊑ is the reflexive transitive
closure (⊑G ∪ ⊑M ∪ ⊑R ∪ ⊑W)∗ of all forms of instances. �

◮ Example Coming back to Figure 5.3.3, we have seen in the previous section that

τ1 ⊑
G τ2 ⊑

R τ3 ⊑
R τ4 ⊑

W τ5 ⊑
M τ6 ⊑

W τ7 ⊑
M τ8

holds. Hence, τ1 ⊑ τ8 holds by definition of ⊑. A shortened decomposition of this fact is

τ1 ⊑
G τ7 ⊑

M τ8

Moreover, some operations could be performed in a different order. However, the weakening
of node 〈21〉 must always be performed after the nodes 〈211〉 and 〈212〉 have been merged.
Indeed, both nodes are red after the weakening, which prevents any further operation on
them.

Notations Consider a ⊏-like relation symbol such as⊑. In the remainder of this document,
for any valid X and Y, we let ⊏XY be ⊏X ⊙ ⊏Y. Thus ⊑ is just ⊑GRMW . We also let ⊐X be
the symmetric relation of ⊏X, and allow any meaningful combinations of those notations,
as well as with the relations ⊏X

1 .

By construction, the instance relation of MLF is a refinement of the instance relation on
term-graphs.

Property 5.3.10 Given two types τ and τ ′, τ ⊑ τ ′ implies τ̆ ⊑G τ̆ ′. �

Proof: By induction on a derivation of τ ⊑ τ ′. Once the binding tree and the permissions
checks are removed, ⊑G and ⊑M become subrelations of ⊑G, while ⊑R and ⊑W do not
change the underlying term-graph at all.

Instance is an oriented relation. Since graphic types have anonymous variables, α-
conversion is directly captured by the representation of types, and non-reflexive instance
steps permanently change the type.

Lemma 5.3.11 The kernel of ⊑ is equality. �

5.3. Formal definition of the instance relations 61

Proof: Non-reflexive instance strictly decreases lexicographically the measure (−N1(τ),
N2(τ)), where

N1(τ) is the number of paths π such that τ (π) is not ⊥.
Raise, Merge and Weaken leave N1 unchanged. For Graft, suppose the operation is
Graft(τ, n):

⊲ if τ is reduced to ⊥, the instance is reflexive;

⊲ if τ is not ⊥, the number of non-bottom paths strictly increases, as all paths π such
that π ⊆ n are no longer labelled by ⊥.

N2(τ) is the sum of the binding heights of the nodes of τ plus the number of flexibly bound
nodes of τ .

Raising strictly decreases at least one binding height, and does not change the number
of flexible nodes. Merging strictly decreases the number of nodes, hence the sum of
the binding heights (and possibly the number of flexible nodes). Weakening keeps the
binding height unchanged and strictly decreases the number of flexible nodes.

Notice that this measure is not well-founded, as N1(τ) can grow arbitrarily.

5.3.4 Instance modulo similarity

As in the systems seen in §3, the instance relation is too fine-grained: we wish to read types
modulo some inessential details, using a similarity relation that abstracts over them.

By design, MLF similarity only captures “simple” semantic equivalences. In particular,
reasoning modulo similarity preserves decidability of type inference. Precisely, similarity
captures the differences in both the sharing and the binding of monomorphic nodes.

Definition 5.3.12 (Similarity) We write ⊑m, ⊑r and ⊑w for the subrelations of ⊑M , ⊑R

and ⊑W that only merge, raise or weaken monomorphic nodes, i.e. the transitive closures
of the relations

τ ⊑m
1 τ ′ , ∃n1, n2 monomorphic in τ , τ ′ = Merge(n1, n2)(τ),

τ ⊑r
1 τ ′ , ∃n monomorphic in τ , τ ′ = Raise(n)(τ)

τ ⊑w
1 τ ′ , ∃n monomorphic in τ , τ ′ = Weaken(n)(τ)

We call reversible instance the subrelation ⊑rmw of ⊑. We call similarity, written ≈,
the equivalence relation (⊑rmw ∪ ⊒rmw)∗ and instance modulo similarity, written ⊑≈, the
relation (⊑ ∪ ≈)∗. �

Types are meant to be understood modulo similarity; in fact, when we display them in
syntactic form, we entirely remove the binding edges and the sharing on monomorphic
nodes. However, we often express results for ⊑ alone, as they are both stronger than for
⊑≈, and easier to establish.

◮ Example Consider again Figure 5.2.1. The relation

τ3 = (Raise(〈21〉) ; Raise(〈22〉) ; Merge(〈21〉, 〈22〉))(τ2)

holds, and all the nodes involved are monomorphic. Thus τ3 is a reversible instance of
τ2, and both types are similar. Likewise, in Figure 5.3.3, the types τ4 and τ5 are similar,

62 Instance on MLF graphic types

since τ5 = Weaken(〈12〉)(τ4) holds, and this weakening is monomorphic. Of course, in more
complicated cases one type is not necessarily a reversible instance of the other.

Unsurprisingly, ≈ is exactly the reversible part of ⊑≈.

Lemma 5.3.13 The kernel of ⊑≈ is ≈. �

Proof: Consider two types τ and τ ′ such that τ ⊑≈ τ ′ ⊑≈ τ , and a derivation I of this
result. We show that an operation of ⊑ \ ⊑rmw cannot be undone, and hence cannot
appear in I .

⊲ I cannot contain a non-reflexive grafting (1), as τ̇ and τ̇ ′ would be different.

⊲ the binding heights of non-monomorphic nodes (and the fact that the nodes are non-
monomorphic) are preserved by ⊑M , ⊒m, ⊑W , ⊒w and strictly decrease for at least one
node by ⊑R \ ⊑r. Moreover, they are preserved by ⊑r and ⊒r: since non-monomorphic
paths are upwards-closed for −−_, those two operations cannot be used to lower or raise
a node above a non-monomorphic node to change the binding height of the latter. Thus,
together with (1), I cannot contain a non-monomorphic raising (2).

⊲ the number of non-monomorphic nodes is preserved by ≈ and ⊑W , and strictly decreases
by ⊑M \ ⊑m. Thus, by (1) and (2), I cannot contain a non-monomorphic merging.

⊲ the number of paths π such that
⋄
τ (π) = (>) and 〈π〉 is non-monomorphic is stable by

≈ and ⊑M , and strictly decreases by ⊑W \ ⊑w. Thus, by (1) and (2), I cannot contain
a non-monomorphic weakening.

Thus, by the four points above, I only contains similarity steps.

5.3.5 Instance modulo abstraction

The (instance modulo) abstraction relation is used to abstract over all the notational details
brought by the introduction of rigid quantification to System F types. In particular, it
allows freely transforming nodes with rigid edges, as well as all inert nodes.

Definition 5.3.14 (Abstraction) We write ⊏−M , ⊏−R and ⊏−W for the subrelations of ⊑M ,
⊑R and ⊑W that only merge, raise and weaken inert or orange nodes, i.e. the transitive
closures of the relations

τ ⊏−M
1 τ ′ , ∃n1, n2 inert or orange in τ , τ ′ = Merge(n1, n2)(τ),

τ ⊏−R
1 τ ′ , ∃n inert or orange in τ , τ ′ = Raise(n)(τ)

τ ⊏−W
1 τ ′ , ∃n inert in τ , τ ′ = Weaken(n)(τ)

We call abstraction the subrelation ⊏− of ⊑ defined as ⊏−MRW . We write ⊏−⊐− the equivalence
relation defined by (⊏− ∪ ⊐−)∗. We call instance modulo abstraction, written ⊑⊏−⊐−, the relation
(⊑ ∪ ⊏−⊐−)∗. �

◮ Example In Figure 5.2.1,

τ2 = (Weaken(〈1〉) ; Merge(〈11〉, 〈12〉))(τ1)

Since 〈1〉 is inert and both 〈11〉 and 〈12〉 are orange, this operations is an abstraction. Thus
both τ1 ⊏− τ2 and τ1 ⊏−⊐− τ2 hold.

5.4. Instance and permissions 63

Notice that the following inclusions hold by construction:

(≈) ⊂ (⊏−⊐−) (⊑rmw) ⊂ (⊏−) ⊂ (⊑) ⊂ (⊑≈) ⊂ (⊑⊏−⊐−)

The relation ⊑⊏−⊐− defines the implicit version of MLF, where type annotations are not needed
in source terms. Conversely, type inference is no longer decidable in this system.

We conclude this section by proving that ⊏−⊐− is exactly the reversible part of ⊑⊏−⊐−.

Lemma 5.3.15 The kernel of ⊑⊏−⊐− is ⊏−⊐−. �

Proof: The proof is the same as for Lemma 5.3.13, replacing “non-monomorphic” by “green”
and the subrelations of ≈ by the corresponding relations in ⊏−⊐−. The only difference is the
fact that green paths and nodes are not stable, but instead decrease, by ⊑W .

5.4 Instance and permissions

In this last section, we characterize instance through an entirely operational point of view—
as opposed to the semantic one used when defining instance in the previous sections. We
also characterize how permissions evolve through instance.

5.4.1 Change in permissions

As a small (but important) technical result, we identify all the atomic instance operations
that change the permissions of a node. This result is particularly useful inside proofs, when
we need to assert that some permissions do not change. (However we will also use a more
abstract presentation, given in §5.4.3.)

Lemma 5.4.1 (Change in permissions) Let τ be a type, and n a type of τ such that an
atomic instance operation o is applied to n. Let τ ′ be o(τ). If there exists a node n′ of τ ′

with different permissions in τ and τ ′, then necessarily one of the following holds

• o = Graft(τ ′′, n) for some type τ ′′, n and n′ are green in τ , n ∗−−_ n′, and n′ is
monomorphic or inert in τ ′.

• o = Weaken(n), n and n′ are green in τ and one of the following holds:

– n′ = n and n′ is orange in τ ′

– n′ +−−_ n and n′ is red in τ

– n +−−_ n’ and n′ is inert in τ

• o = Raise(n), n′ = τ̂(n) and either

– n is orange or inert in τ , n′ is inert in τ and monomorphic in τ ′, or

– n and n′ are green in τ , and n′ is monomorphic or inert in τ ′ �

64 Instance on MLF graphic types

Proof: Since the permissions of a node n′′ are entirely determined by the binding edges
and the binding flags of the nodes above and below n′′ (for −−_), we have necessarily either
n ∗−−_ n′ or n′ ∗−−_ n. The proof is by case disjunction on o.

⊲ If o is a merging: the binding tree and the binding flags are entirely unchanged in τ ′,
hence n′ has exactly the same permissions in τ and τ ′.

⊲ If o is a grafting: by definition of grafting, n has green permissions. The nodes above
n (which are necessarily also green) can become inert or monomorphic depending on
the binding tree of the type grafted, or remain green. There is no node under n, since
it is a variable.

⊲ If o is a weakening: we proceed by case disjunction on the permissions of n in τ .

◦ If n is green: by definition of green, there exists an intrinsically polymorphic node

n′′ such that n′′(>−−_)∗n in τ . This path still exists in τ ′, thus n is orange in τ ′.

Next, consider a node n′ such that n +−−_ n′. Necessarily, it is green. Hence, it can
only remain green, or become inert if n is in the only flag path to an intrinsically
polymorphic node.
Finally, consider a node n′ such that n′ +−−_ n in τ . If n′ is inert or monomorphic in τ ,
it is also inert or monomorphic in τ ′: the binding tree under this node is unchanged

in τ ′. Otherwise, there exists an intrinsically polymorphic node n′′ such that n′′(>−−_

)∗n′, in both τ and τ ′ (1). If n′ is red, since n is green, we have n′ >⋄−−_ n ∈ τ , with
(=) somewhere in ⋄. This binding path is the same in τ ′; together with (1), this

shows that n′ is red in τ ′. If n′ is orange, we have n′ =⋄−−_ instead, but the reasoning
is the same. If n′ is green, it becomes red in τ ′.

◦ If n is red: the weakening is forbidden.

◦ If n is orange: the weakening is impossible, as n is already rigidly bound.

◦ If n is monomorphic: the permissions of n and of the nodes below are unchanged,
since monomorphic nodes are only concerned with binding edges, not with binding
flags. For the nodes above, consider n′ such that n +−−_ n′.

◦ If n′ is not inert: the flag path witnessing this fact cannot go through n. Hence
this flag path still exists in τ ′, and since the flag path above n′ is unchanged, n′

has the same permissions in τ ′.

◦ If n′ is monomorphic: the binding edges under it are unchanged (only the binding
flag of n is changed), and it is still monomorphic in τ ′.

◦ If n′ is inert: there are already rigid edges on all the flag paths under n′; adding
a new rigid edge under n′ does not change this fact.

◦ If n is inert: the permissions of n and of the nodes below are unchanged, since the
binding trees under all those nodes are unchanged. The conclusion for the nodes
above n is the same as in the previous case.

⊲ If o is a raising: The automaton of Figure 5.3.1 does not “count” the number of binding
flags it sees, but merely their alternation. Thus it returns the same color for n in τ and
τ ′ (2): the only problematic case would be if n was flexibly bound, and if it was bound
above a rigid edge (making it possibly green after the raising), but this case is forbidden
by permissions. Since the binding tree and the binding edges below n are unchanged,
by (2), n and the nodes bound on it have the same permissions in τ and τ ′.

The permissions of the nodes n′ above n̂ are unchanged:

◦ if n′ is monomorphic in τ : the result is immediate, as no polymorphic node can be
transitively bound on n′ in τ ′, since none exists in τ

5.4. Instance and permissions 65

◦ if n′ is non-inert in τ : there exists a flexible flag path to an intrinsically polymor-
phic node n′′ in τ . In τ ′ this flag path might have changed through the raising of
n, but n′′ is still accessible from n′. Since the flag path above n′ is unchanged, the
permissions of n′ are unchanged.

◦ if n′ is inert but not monomorphic in τ ′: there is a flag path to an intrinsically
polymorphic node n′′ in τ ′, this flag path containing an edge =. After the raising
this path might have changed, but at least one edge = still exists, as permissions
disallow raising a flexible edge above a rigid one. Hence n′ is still inert in τ ′.

For n̂ itself, since the flag path above n̂ is unchanged in τ ′, the color returned by
the automation for n′ is the same in τ and τ ′. Hence, n can only become inert or
monomorphic (3), which is possible since n is no longer bound on it. We proceed by
case analysis on the permissions of n in τ .

◦ If n is green: n̂ must also be green, which is the desired result together with (3).

◦ If n is orange: n̂ can be anything but monomorphic (monomorphic nodes are down-
wards closed). If it is inert, it can become monomorphic, or remain inert. It it is not
inert, the flag path witnessing this fact cannot involve n (which is rigidly bound),
and n̂ has the same permissions in τ ′.

◦ If n is inert and not monomorphic: as above n̂ can be anything but monomorphic.
If it is inert, the result is also as above. If it is not inert, the flag path still cannot
involve n, as n is inert. The conclusion is as above.

◦ If n is red: this case is impossible by permissions.

◦ If n is monomorphic: raising n does not change the permissions of n̂ at all. Indeed,
the flag path above n′ is unchanged, and so are all the flag paths to a polymorphic
node under n′.

Notice a very important corollary of this result: red nodes never disappear through an
instance operation (and they only appear through weakening). This result is not overly
surprising, as it already holds in System F , and the interpretations of red nodes in MLF and
this system are supposed to be the same.

Property 5.4.2 Nodes with red permissions are preserved by ⊑⊏−⊐−. �

Proof: By Lemma 5.4.1, it is immediate that instance preserve red nodes, as the only nodes
for which permissions change are green or inert ones. It remains to prove the result for
⊐−. The only problematic case is for weakenings, which can introduce red nodes. However,
this is only the case for the weakening of a green node, which is not part of ⊏−; hence, the
inverse operation is not part of ⊐− either.

5.4.2 Ordering permissions

An interesting way to characterize permissions is to order them according to the operations
they allow.

Definition 5.4.3 (Order on permissions) Let ⊏ be a subrelation of ⊑⊏−⊐−. We say that
< is an order on permissions for ⊏ if P < P′ implies that any operation of ⊏ possible on a
node with permission P is also possible on a node with permission P′. �

66 Instance on MLF graphic types

In particular, two different permissions can be equal for ⊏ if they allow the same transfor-
mations.

◮ Example We have R < O < G for ⊑. Moreover, I and M are equal for this relation.

Unsurprisingly, the ordering between permissions change depending on whether we con-
sider ⊑, ⊑rmw, ⊏−, ⊑≈ or ⊑⊏−⊐−. We give five suitable orders below.

Lemma 5.4.4 The transitive and reflexive closure of the orders ≺⊑, ≺rmw, ≺⊏−, ≺≈ and
≺⊏−⊐− of Figure 5.4.1 are correct permission orders for the relations ⊑, ⊑rmw, ⊏−, ⊑≈ and
⊑⊏−⊐− respectively. �

≺⊑

M, I, G

O

R

≺rmw

M

G, I, O, R

≺⊏−

M, I, O

G, R

≺≈

M

I, G

O

R

≺⊏−⊐−

M, I

G O

R

An arrow from P to P′ means that P < P′

Figure 5.4.1 – Order on permissions

The proof of this result is immediate by examining the five relations; we however give some
details below.

In each case, R is the lowest permission, as it never permits any operation. The order
≺rmw is the simplest: ⊑rmw only allows transformations on monomorphic nodes. Similarly,
⊏− only allows raising, merging and weakening, and only on monomorphic, inert or orange
nodes.

For ≺⊑, as expected we have G > O > R. At first, it might seem strange to also
have G equal to I or M, as the first permission allows grafting but not the last two. But
G ≺⊑ I, M also holds by reasoning as follows: grafting can be vacuously said to be allowed on
monomorphic or inert nodes, as it is only possible on variables, which cannot be momorphic
or inert. Moreover, our convention of making G, I and M equal is much more convenient to
work with. The order ≺≈ is essentially similar to ≺⊑, except that it distinguishes M from
I and G. Indeed, M nodes can be freely transformed by ⊒rmw in ⊑≈, which is not the case
for I and G nodes.

The ordering for ≺⊏− is quite different. First, we cannot merge G with I and M: the last
two permissions allow unsharing along ⊐−, but not G. In parallel, we cannot merge O with
I or M, as O does not allow grafting. As a result, G and O are incomparable, and both less
general than M and I, resulting in the order ≺⊏−. (Another possibility would be to merge

5.4. Instance and permissions 67

M, I and O, as we did for ≺⊏−, and to make G incomparable with those three permissions,
as the first three allow unsharing and G allows grafting. However this order would be less
practical to work with for the use we present in the next section.)

5.4.3 Evolution of permissions through instance

Armed with those orders, we can study how permissions change when a type is transformed
by an instance operation. The results are mostly as one would expect. In particular, all
the transformations but weakening preserve permissions, or slightly increase them (because
some nodes can become inert or monomorphic). Weakening decreases permissions for ≺⊑,
≺rmw and ≺≈; we discuss weakening for ≺⊏−⊐− below.

Property 5.4.5 Let τ be a type, τ ′ another type obtained by transforming τ . Let π be a
path of τ . Let P (resp. P’) be the permissions of the node at π in τ (resp. τ ′).

• if τ ⊑M τ ′ then P’ = P for all five orders

• if τ ⊑G τ ′ then P’ > P for all five orders.

• if τ ⊑R τ ′ then P’ > P for all five orders

• if τ ⊑W τ ′ then P’ < P for ≺⊑, ≺rmw and ≺≈

• if τ ≈ τ ′, then P’ = P for all the orders

• if τ ⊏−⊐− τ ′, then P’ = P for ≺⊏−⊐−. �

Proof: All the results are direct consequences of Lemma 5.4.1; we however give some details
below.

Merging does not change permissions at all. Grafting can change green nodes into
monomorphic or inert nodes, which increases or preserves permissions for all the orders.
Raising changes green or inert nodes into inert or monomorphic ones, i.e. it increases
permissions for all the orders. Weakening changes green nodes into red, orange or inert
ones, which indeed decreases permissions for the given orders.

For ≈: grafting is no longer possible; weakening and raising do not change permissions, as
they only do so when applied on green, orange or inert nodes, which cannot be changed
by ⊑rmw. Thus ⊑rmw does not change permissions at all, and thus ⊒rmw does not either.

For ⊏−⊐−: by the same reasoning as above, only the raising of an orange node can change
permissions. This operation can only change an inert node into a monomorphic one, but
we have I = M for ≺⊏−⊐−, hence the result.

This result is quite useful in proofs, as it is a good layer of abstraction on top of Lemma 5.4.1.

Notice that weakening is not monotonic for ≺⊏−⊐−: green nodes can become orange, red
or inert. This is a beginning of explanation on why type inference is not possible when ⊑⊏−⊐−

is used as the instance relation. Since weakening increases the permissions of some nodes,
using a weakening during type inference (on a node on which this weakening is not strictly
required as this step) might yield a better type. However this could also make type inference
fail later, since weakening also decreases permissions. Thus, in order to be complete, type
inference would at least need to backtrack sometimes during inference.

68 Instance on MLF graphic types

Convention In the following, we almost always reason on ⊑. Hence, when we write that
permissions increase, decrease, or remain stable, this must be understood with respect to
≺⊑. There are a few exceptions, explicitly mentioned in the text.

6
Properties of the instance relations

Abstract

In this chapter, we study the various instance (sub)relations. Since instance is not
noetherian, we isolate some subrelations of instance that have this property (§6.1). We
show that ⊑ can be reorganized so that instance derivations always follow a certain
order (§6.2). We characterize “big-step” versions of ⊑R and ⊑MW , thus removing the
need for decomposing an instance derivation into atomic operations (§6.3). For grafting
(which is already a big-step operation), we instead show that we can proceed by small,
atomic steps (§6.4). We show that, under certain conditions, an instance operation
inside an instance derivation can be brought at the beginning of the derivation (§6.6).
Finally, we show that most of the subrelations of instance are confluent, and that ⊑≈

and ⊑⊏−⊐− can be reorganized so that all instance operations are performed first (§6.7).

The results of this chapter are mostly technical, and used mainly inside proofs. However
the definitions of §6.3 and §6.4 are used when discussing the unification algorithm in §7.

Proving instance-related results Many proofs of this document have similar structure, as
they proceed by induction on a given instance derivation. However, very often, we need
the derivation to be constrained. For example, some operations need to appear before
some others. The results of this chapter are in particular used to obtain those constrained
derivations.

6.1 Reasoning on restricted instance

Grafting can increase the size of the skeleton of a type in an arbitrary way, and ⊑ is not a
noetherian relation. However, all other instance subrelations are noetherian. This provides
a powerful reasoning mechanism whenever the structure of the types is guaranteed not to
grow arbitrarily.

69

70 Properties of the instance relations

Definition 6.1.1 (Structure definedness) Consider two types τ and τ ′. We say that τ
is structurally less-defined than τ ′ if

∀π ∈ dom(τ), ∧





π ∈ dom(τ ′)

∨

[
τ(π) = ⊥
τ(π) = τ ′(π)

�

It is immediate that only grafting changes structure-definedness.

Property 6.1.2 Let τ and τ ′ be two types. If τ ⊑G τ ′, then τ is less-defined than τ ′. If
τ (⊑RMW ∪ ⊒RMW) τ ′, τ and τ ′ have the same structure definedness. �

In particular, structure-definedness is completely invariant by ≈ and ⊏−⊐−.

Definition 6.1.3 (Restricted instance) Consider a type τ . We write ⊑|τ the restriction
of the instance relation to graphic types with structure less-defined than the one of τ , i.e.

τ1 ⊑|τ τ2 , τ1 ⊑ τ2 ∧ τ2 is structurally less-defined than τ �

Of course, this implies that τ1 is also less-defined than τ .

Property 6.1.4 Let τ be a type. The restriction of ⊑|τ to non-reflexive instance steps is
noetherian. �

Proof: The result is immediate by the proof of Lemma 5.3.11, as the lexicographic order
of this proof becomes well-founded: for any type τ ′ and τ ′′ such that τ ′ ⊑|τ τ ′′, −N1(τ

′)
and -N1(τ

′′) are greater than −N1(τ).

6.2 Ordering the instance operations

The subrelations of the instance relation are almost entirely orthogonal: grafting only in-
volves τ̆ (and mainly changes τ̇), while merging, raising and weakening only alter τ̃ , τ̂ and
⋄
τ respectively. This orthogonality is quite convenient when studying the properties of ⊑, as
it makes commutations between the different operations quite simple. In fact, it is possible
to strongly constrain the instance relations and subrelations so as to obtain more canonical
derivations (resulting in much simpler proofs): graftings can always occur first, followed by
raisings, and then mergings and weakenings interleaved. This flexibility is actually one of
the keys to an efficient implementation of unification (§7).

Lemma 6.2.1 The instance relation ⊑ is equal to the relation ⊑G ;⊑R ;⊑MW . �

Proof: The inclusion ⊑G ;⊑R ;⊑MW ⊆ ⊑ is by definition of ⊑. For the other inclusion,
Figure 6.2.1 shows that ⊑1 ; ⊑1 is included in ⊑G ; ⊑R ; ⊑MW (1): provided the left-hand
side of the equations is defined, the equalities presented in this figure hold. All cases use
Property 5.4.5 to justify that there are enough permissions to do the rewriting. In all the

6.2. Ordering the instance operations 71

• Raise(n) ; Graft(τ ′, n′)
→
= Graft(τ ′, n′) ; Raise(n)

Raising does not create new green nodes, hence the grafting can be done first.

• Weaken(n) ; Graft(τ ′, n′)
→
= Graft(τ ′, n′) ; Weaken(n)

• Merge(n1, n2) ; Graft(τ ′, n′)
→
=





Graft(τ ′, n′) ; Merge(n1, n2)

if n′ 6+−−_ 〈n1 ∪ n2〉 after merging

Graft(τ ′, n1π) ; Graft(τ ′, n2π) ; Merge(n1, n2)

if after merging n′ +−−_ 〈n1 ∪ n2〉

and 〈n1 ∪ n2〉
π−−⊸ n′

• Weaken(n) ; Raise(n′)
→
= Raise(n′) ; Weaken(n)

• Merge(n1, n2) ; Raise(n′)
→
=





Raise(n′) ; Merge(n1, n2)

if after merging n′ 6∗−−_ 〈n1 ∪ n2〉

Raise(n1) ; Raise(n2) ; Merge(n1, n2)

if after merging n′ = 〈n1 ∪ n2〉

Raise(n1π) ; Raise(n2π) ; Merge(n1, n2)

if after merging n̂′ +−−_ 〈n1 ∪ n2〉
π−−⊸ n′

Raise(n1π) ; Raise(n2π) ; Merge(n1π, n2π) ; Merge(n1, n2)

if after merging n̂′ = 〈n1 ∪ n2〉
π−−⊸ n′

Figure 6.2.1 – Reordering instance

cases but the first (which is justified in the figure), we move an operation restricting or
preserving permissions behind an operation increasing or preserving permissions.

Next, consider two types τ and τ ′ such that τ ⊑ τ ′, and a derivation I of this result.
We must show that rewriting I according to the rules of Figure 6.2.1 terminates. No-
tice that these rules either preserve the number of atomic instance steps or strictly in-
crease this number, and that no reflexive step is introduced. By (1), it is immediate that
(⊑1 |τ ′ ; ⊑1 |τ ′) ⊆ (⊑G |τ ′ ; ⊑R |τ ′ ; ⊑MW |τ ′). Since ⊑|τ ′ is noetherian, the rewriting rules
that strictly increase the number of atomic instance steps can only occur finitely many
times. Hence it suffices to show that the rules that preserve the number of instance op-
erations can also be applied only finitely many times; we call these rules R. Let us write
I as o1 ; o2 ; . . . ; ok, i.e. as the sequence as atomic instance steps that transform τ into
τ ′. The rules of R are such that they rewrite op ; oq into oq ; op. It is immediate that
each application of a rule strictly decreases the number of inversions between the instance
operations w.r.t. the correct order, i.e. the well-founded measure s defined by

s(o1 ; o2 ; . . . ; ok) = |{(p, q) | op ; . . . ; oq is not of the form
Graft(·, ·)∗ ; Raise(·)∗ ; (Merge(·, ·) ∪Weaken(·))∗}|

Other simple decompositions (e.g. ⊑R ; ⊑MW ; ⊑G) are not possible in the general case.
Grafting must occur first, as it introduces new nodes which might need to be raised later.

72 Properties of the instance relations

Weakening must occur last, because it restricts permissions. Merging and weakening must
be interleaved because the former requires the binding flags to be congruent—hence the
need to weaken some nodes.

Definition 6.2.2 (Ordered instance derivations) A sequence of elementary instance
transformations is called ordered when it respects the ordering of Lemma 6.2.1. �

◮ Example The proof of τ1 ⊑ τ8 in Figure 5.3.3 is ordered.

6.3 Big-step instance subrelations

Proving that two types are in instance relation a priori requires to exhibit a derivation
of this result in term of atomic instance steps. Since this can become quite tedious, we
introduce “big-steps” relations that compare the shapes of two types and asserts they are
instance of one another.

6.3.1 Big-step raising

Raising can only be applied to raisable nodes. In order to prove that τ ⊑R τ ′, we should
thus prove that all nodes raised in the derivation are raisable (or alternatively that all
intermediary types are well-dominated); this makes proofs quite complicated. An alternative
is to define a relation that compares the binding trees of two well-dominated types, and
asserts that one is the result of performing multiple raising in the other.

Definition 6.3.1 (Big-step raising) Given two types τ and τ ′, we say that τ ′ is a big-
step raising of τ , written τ ⊑R♮ τ ′, if and only if

∧





(1) τ̆ = τ̆ ′

(2)
⋄
τ =

⋄
τ ′

(3) τ̂ ′ ⊆ (τ̂)+

(4) ∀n, τ̂ ′(n) 6= τ̂(n) =⇒ Pτ (n) 6= R

�

The first two points assert that the underlying term-graphs and all the binding flags are
equal in τ and τ ′. The third point verifies that a binding edge of τ ′ is in the transitive
closure of the binding edges of τ . The fourth point ensures that a raised node has enough
permissions.

Next, we characterize raisings in which the nodes lowest in the type are raised first.

Definition 6.3.2 (Bottom-up raising) A sequence Raise(n1) ; . . . ;Raise(nk) is said to be
a bottom-up raising if

i > j =⇒ ¬(nj
+−−⊸ ni) �

If two types verify τ ⊑R♮ τ ′, it is easy to obtain a bottom-up raising for τ ⊑R τ ′: we can
raise any node amongst the lowest ones, and iterate this step until no node remains to be
raised. This is not the case if e.g. we choose a top-down ordering, as some nodes might not
be raisable at first.

6.3. Big-step instance subrelations 73

Lemma 6.3.3 Consider two types such that τ ⊑R♮ τ ′. Then there exists a bottom-up
derivation Raise(n1) ; . . . ; Raise(nk) such that τ ′ = (Raise(n1) ; . . . ; Raise(nk))(τ) and which
proves τ ⊑R τ ′. �

Proof: Let m(τ, τ ′) be the measure defined by

m(τ, τ ′) =
∑

n∈dom(τ)

k | n ⋄1···⋄k−−−−−−−−−−−−−−_ τ̂ ′(n) ∈ τ

The proof is by induction on m(τ, τ ′). If this number is 0, all the nodes of τ are bound at
the same node in τ and τ ′. Since τ ⊑R♮ τ ′ holds, τ = τ ′ and the empty sequence proves
the result. Otherwise, let n be a node lowest for −−⊸ among those such that τ̂ (n) 6= τ̂ ′(n).
Let us first prove that n can be raised in τ .

⊲ n is raisable in τ : we proceed by contradiction, and assume there exists n′ bound at
τ̂ (n) in τ such that n +−−⊸ n′. The mixed path 〈ǫ〉 ∗−−⊸ τ̂ ′(n) −̂− n +−−⊸ n′ is valid in
τ ′. Moreover this path does not contain τ̂ ′(n′): this node is equal to τ̂ (n) (as otherwise
n′ would be raised before n), and τ̂ (n) is strictly above n and strictly below τ̂ ′(n)
(indeed, τ̂ (n) 6= τ̂ ′(n) by hypothesis, and point 3 of the definition of ⊑R♮ implies that
n +−−_ τ̂ ′(n) ∈ τ). Thus τ ′ would not be well-dominated: contradiction.

⊲ n is not red in τ : by point 4 of the definition of ⊑R♮.

Let τ ′′ be Raise(n)(τ). We have proven τ ⊑R τ ′′. Let us next prove τ ′′ ⊑R♮ τ ′. All points
but the third in the definition of ⊑R♮ are immediate since τ ⊑R♮ τ ′ holds. For point 3,
consider a binding edge n′ −−_ τ̂ ′(n′) of τ ′. By hypothesis, n′ +−−_ τ̂ ′(n′) ∈ τ and we must
prove that n′ +−−_ τ̂ ′(n′) ∈ τ ′′. In τ , if n′ +−−_ τ̂ ′(n′) is not of the form n′ ∗−−_ n −−_ τ̂ (n),
the result is immediate. Suppose then that we have n′ ∗−−_ n −−_ τ̂ ′(n′) ∈ τ . The node n′

cannot be n: we have τ̂ (n) 6= τ̂ ′(n) by hypothesis on n. Thus n′ is strictly below n, which
contradicts the choice of n as lowest node. Thus τ ′′ ⊑R♮ τ ′ holds.

Finally, we have m(τ ′′, τ ′) = m(τ, τ ′)−1 by definition of τ ′′ and m. Since τ ′′ ⊑R♮ τ ′ holds,
by induction hypothesis there exists a bottom-up raising for τ ′′ ⊑R τ ′. Together with
Raise(n)(τ), this forms a bottom-up derivation for τ ⊑R τ ′, which is the desired result.

As ⊑R is also included in ⊑R♮, we can prove the equality of these two relations.

Lemma 6.3.4 The relations ⊑R and ⊑R♮ are equal. �

Proof: The direction τ ⊑R♮ τ ′ =⇒ τ ⊑R τ ′ is by Lemma 6.3.3.

The direction τ ⊑R τ ′ =⇒ τ ⊑R♮ τ ′ is by induction on a derivation of τ ⊑R τ ′. If τ = τ ′,
the result is immediate. Otherwise, let τ ′′ be such that τ ⊑R

1 τ ′′ ⊑R τ ′. By induction
hypothesis, τ ′′ ⊑R♮ τ ′ holds (1). By definition of raising, it is immediate that τ ⊑R♮ τ ′′.
Thus it suffices to show that ⊑R♮ is transitive. For the first two points of the definition,
this is by transitivity of equality. For the fourth point, it is a consequence of the fact that

raising does not remove or introduce red nodes. For the third point, we have τ̂ ′′ ⊆ (τ̂)+

and τ̂ ′ ⊆ (τ̂ ′′)+ by τ ⊑R♮ τ ′′ and τ ′′ ⊑R♮ τ ′. Then (τ̂ ′′)+ ⊆ ((τ̂)+)+ by the first inclusion,
this last expression being equal to (τ̂)+. By transitivity of inclusion we have τ̂ ′ ⊆ (τ̂)+,
which is the desired result.

74 Properties of the instance relations

6.3.2 Big-step merging and weakening

As we have done for ⊑R, we can characterize a big-step merging and weakening operation,
and prove that it is derivable using the usual atomic operations. We also isolate derivations
that occur bottom-up. We moreover require that weakenings in those derivations occur
before mergings.

Definition 6.3.5 (Big-step merging-weakening) We say that τ ′ is a big-step merging-
weakening of τ , written τ ⊑MW♮ τ ′ if

∧





(1) τ̇ = τ̇ ′

(2) τ̂ = τ̂ ′

(3) τ̃ ⊆ τ̃ ′

(4) ∀n, ∀n′, ∧





n 6τ̃ n′

n τ̃ ′ n′

τ̂(n) = τ̂(n′)
=⇒ Pτ (n) 6= R

(5) ∀n,
⋄
τ(n)

⋄
<

⋄
τ ′(n)

(6) ∀n,
⋄
τ ′(n) 6=

⋄
τ(n) =⇒ Pτ (n) 6= R

�

The first two points ensure that the underlying tree and the binding edges are unchanged.
The third point ensures that τ ′ merges more nodes than τ , while the fourth verifies that
permissions are verified for the merging. The condition τ̂(n) = τ̂(n′) makes sure that we
do not check permissions for nodes that are indirectly merged. The fifth point checks that
binding flags are either unchanged, or that flexible edges are transformed into rigid ones.
The last point checks that all the weakenings are allowed.

Definition 6.3.6 (Bottom-up merging-weakening) A sequence i1 ; . . . ; im is a bottom-
up merging-weakening if it verifies

• for any p, op is either Merge(n1, n2) or Weaken(n)

• if np is transformed by op and nq is transformed by oq (e.g. np = Merge(np, n) or
Merge(n, np) or Weaken(np)), and if np

+−−⊸ nq, then p > q

• if op is Merge(n, n′) or Merge(n′, n) and oq is Weaken(n), then q < p �

Given a derivation τ ⊑MW♮ τ ′, we can find a derivation of this result in terms of a
bottom-up derivation τ ⊑MW τ ′. It is simply obtained by finding the lowest node to
transform, and performing the required operation.

Lemma 6.3.7 Consider two type τ and τ ′ such τ ⊑MW♮ τ ′ holds. Then there exists a
bottom-up merging-weakening derivation o1 ; . . . ;ok such that τ ′ = (o1 ; . . . ;ok)(τ) and which
witnesses τ ⊑MW τ ′. �

Proof: Let m be the measure defined by

m(τ, τ ′) =
∣∣{(n, n′) | n 6τ̃ n′ ∧ n τ̃ ′ n′}

∣∣ +
∣∣{n | ⋄τ (n) = (>) ∧

⋄
τ ′(n) = (=)}

∣∣

6.3. Big-step instance subrelations 75

The proof is by induction on m(τ, τ ′). If this number if 0, we have τ = τ ′ since τ ⊑MW♮ τ ′,
and the empty derivation proves the result. Otherwise, let n be a node lowest in τ for −−⊸
among the nodes n such that either

1.
⋄
τ (n) 6=

⋄
τ ′(n)

2. there exists n′ distinct from τ such that n τ̃ ′ n′ and τ̂ (n) = τ̂ (n′).

Let us justify that n exists: if
∣∣{n | ⋄τ (n) = (>) ∧

⋄
τ ′(n) = (=)}

∣∣ is not 0, at least one node
verifies point 1. Otherwise, |{(n, n′) | n 6τ̃ n′ ∧ n τ̃ ′ n′}| is not 0. Let n1 and n2 be two
nodes merged in τ but not in τ ′. If they are not bound to the same node in τ , we consider
their binders. Necessarily, they must be merged in τ ′, as otherwise τ̂ ′ would not be a tree.
Moreover, by hypothesis, τ̂ (n1) and τ̂ (n2) are distinct. We can thus iterate this step until
we find two binding ancestors n′

1 and n2’ of n1 and n2 bound on the same node, and n′
1

and n′
2 verify point 2.

There are now two cases:

⊲ n verifies point 1: we let τ ′′ be Weaken(n)(τ). The relation τ ⊑W τ ′′ holds by point 6

of the definition of ⊑MW♮. Notice also that we have m(τ ′′, τ ′) = m(τ, τ ′)− 1
Let us show that τ ′′ ⊑MW♮ τ ′. All points of Definition 6.3.5 but the permissions related
ones are immediate, since τ ⊑MW♮ τ ′′ and

⋄
τ ′(n) = (=). By Lemma 5.4.1, a node n′ of

τ becomes red in Weaken(n)(τ) only if n′ +−−_ n. But n′ cannot verify the hypotheses of
points 4 and 6 of the definition of ⊑MW♮, as otherwise we would have chosen it before
n. Thus points 4 and 6 still hold in τ ′′, and τ ′′ ⊑MW♮ τ ′ holds.

⊲ n verifies point 2 but not point 1: we let τ ′′ be Merge(n, n′)(τ). The nodes n and
n′ are binding-congruent, as the subgraphs under them is the same as the subgraph
under the node in which they are merged in τ ′. They are also locally congruent, as
otherwise we could have chosen a node strictly under n to merge. Moreover n and n′

are not red by point 4 of the definition of ⊑MW♮. Thus τ ⊑M τ ′′ holds. We also have
m(τ ′′, τ ′) < m(τ, τ ′), since at least two more nodes are merged. Finally, τ ′′ ⊑MW♮ τ ′

holds: all points are immediate since τ ⊑MW♮ τ ′′, n and n′ are merged in τ ′, and
merging preserves permissions.

In both cases we have proven τ ⊑MW
1 τ ′′, τ ′′ ⊑MW♮ τ ′ and m(τ ′′, τ ′) < m(τ, τ ′). By

induction hypothesis we obtain a bottom-up derivation of τ ′′ ⊑MW τ ′. Together with the
operation transforming τ into τ ′′, this forms a bottom-up derivation of τ ⊑MW τ ′, which
is the desired result.

Notice that a top-down approach woul be impossible in general, as weakening a node higher
in the type might prevent further merging or weakening some lower nodes.

Lemma 6.3.8 Given two types τ and τ ′, τ ⊑MW♮ τ ′ if and only if τ ⊑MW τ ′. �

Proof: The direction τ ⊑MW♮ τ ′ =⇒ τ ⊑MW τ ′ is by Lemma 6.3.7.

For the direction τ ⊑MW τ ′ =⇒ τ ⊑MW♮ τ ′, we proceed by induction on τ ⊑MW τ ′. If
τ = τ ′ the result is immediate. Otherwise, let τ ′′ be such that τ ⊑MW τ ′′ ⊑MW τ ′. By
induction hypothesis, we have τ ′′ ⊑MW♮ τ ′, and we must prove that τ ⊑MW♮ τ ′ holds.
All the cases of Definition 6.3.5 except cases 4 and 6 are immediate by definition of ⊑MW .
For those points: any node not red in τ ′′ is not red in τ either, as merging and weakening
restrict permissions. Moreover, the nodes transformed between τ and τ ′′ are not red either,
by definition of ⊑MW . This is sufficient to conclude.

76 Properties of the instance relations

6.4 Grafting atomic types

6.4.1 Widening

Lemma 6.2.1 implies that instance derivations may always start by performing all the graft-
ing. However there are many possibilities as to which type to graft. As already mentioned,
in Figure 5.3.3, the relation τ1 ⊑G τi holds for 2 ≤ i ≤ 7. In τ2, we have grafted a “big”
type (in terms of number of nodes), but with a simple structure: there is no sharing, and
all binders are flexible. Conversely, in τ7 we have directly grafted a complicated type. Even
though this makes the derivation τ1 ⊑ τ8 shorter, from a reasoning point of view working
with τ2 is much easier than with τ7. This section shows that this form of “simple” graftings
is always possible.

Definition 6.4.1 (Widening) Given a first-order term with anonymous variables t, we
define its widening △(t) by:

•
−−⊸
△(t) is the unique tree-like term-graph whose skeleton is t, and such that every node

is reduced to a single path in △̃(t).

•
−−_
△(t) binds all the nodes to their ancestor, i.e.

−−_
△(t) = {n −−_ n′ | n′ −−⊸ n};

•
−−⋄−−
△(t) binds all the nodes with a flexible flag. �

◮ Example In Figure 5.3.3, the subgraph τ2/〈2〉 is exactly the widening of τ̇2/〈2〉.

Lemma 6.4.2 Let τ be a type. The relation △(τ̇) ⊑ τ holds. �

Proof: Let τ ′ be △(τ̇). We are going to exhibit an ordered derivation of τ ′ ⊑ τ . Let τr be
the pre-type that has the structure of τ ′, but in which the nodes have been raised as in τ .
Formally, τ̆r = τ̆ ′,

⋄
τr(n) = (>) for any n, and n −−_ n′ ∈ τ̂r ⇐⇒ n′ +−−⊸ n ∈ τr ∧ n −−_

n′ ∈ τ̂ . It is immediate that τ̂r is well-formed, as it binds any node which is not the root
to one of its ancestors.

Let us first prove that τr is well-dominated. Consider a node n and a mixed path P from
{ǫ} to n in τr. Since τ shares more nodes than τr, P is also a valid path in τ . By well-
domination of τ , τ̂ (n) is contained in P . Since there is no sharing in τr, the node of P
which extends to τ̂ (n) is restricted to a single path, and is also τ̂r(n) by definition of the
binding tree of τr. Thus τ̂r(n) is in P , which is the desired result.

Let us now show that τ ′ ⊑R τr ⊑
MW τ holds. All the nodes of τ ′ are bound to their

immediate ancestor. Hence we have τ̂r ⊆ (τ̂ ′)+. Moreover, all the nodes of τ ′ have a
flexible flag, hence non-red permissions. Thus the instance τ ′ ⊑R♮ τr holds, and τ ′ ⊑ τr

holds by Lemma 6.3.4.

We also have τ̃r ⊆ τ̃ , since τ̃r = τ̃ ′ and no node is shared in τ ′, and
⋄
τr(n)

⋄
<

⋄
τ (n) for any

n, as all nodes of τr are flexibly bound. Finally, no node of τr is red, since they all are
flexibly bound. Thus the relation τr ⊑

MW♮ τ holds, and τr ⊑
MW τ holds by Lemma 6.3.8.

More generally, given a node n grafted inside an instance derivation, we can isolate the
tree under n and graft its widening.

6.4. Grafting atomic types 77

Lemma 6.4.3 Let τ ′ be an instance of a type τ , and n a bottom node of τ that is not a
bottom node in τ ′. Let τn be △(τ̇ ′/n). Then τ ⊑G τ [τn/n] ⊑ τ ′. �

Proof: For τ ⊑G τ [τn/n]: necessarily n must be green in τ , as it is grafted between τ and
τ ′ and no instance operation transforms a non-green node into a green one. Thus n can
be grafted in τ .

For τ [τn/n] ⊑ τ ′: consider an ordered derivation (Lemma 6.2.1) of τ ⊑ τ ′, and let τg be
the type such that τ ⊑G τg ⊑

R ; ⊑MW τ ′. Without loss of generality, we can suppose that
all the graftings under n occur first, as grafting under two distinct nodes commute. Let τ ′

g

be the type after those grafting. It suffices to prove that τ [τn/n] ⊑ τ ′
g to obtain the result.

By definition of grafting, n is closed in τ ′
g, and we can project τ ′

g at this node. Then it
suffices to prove that △(τ̇ ′/n) ⊑ τ ′

g/n (which we do below). Indeed, we can transform such
a derivation I into a derivation I ′ of τ [τn/n] ⊑ τ ′

g by changing any operation o of I on a
node n′ in an operation on n · n′.

By Lemma 6.4.2, we have △(
−·−
τ ′

g/n) ⊑ τ ′
g/n. Since no grafting occurs under n between τ ′

g

and τ ′, we have τ̇ ′/n = τ̇g
′/n. Since moreover

−·−
τ ′

g/n is equal to τ̇g
′/n, we have △(τ̇ ′/n) =

△(τ̇g
′/n) = △(

−·−
τ ′

g/n). This proves △(τ̇ ′/n) ⊑ τ ′
g/n, which is the desired result.

As a direct consequence:

Definition 6.4.4 (Minimal grafting) Let τ and τ ′ be two types such that τ ⊑ τ ′. Let
ni∈1..k

i be the bottom nodes of τ that are not bottom nodes in τ ′. The minimal grafting of
τ w.r.t. τ ′, written τ [τ ′/⊥], is defined by1

τ [τ ′/⊥] , τ [τn1
/n1] . . . [τnk

/nk] where τni = △(τ̇ ′/ni) �

Corollary 6.4.5 Let τ ′ be an instance of a type τ . The relation τ ⊑G τ [τ ′/⊥] ⊑ τ ′ holds.�

Notice that τ [τ ′/⊥] is the smallest type τ ′′ (w.r.t. the ordering induced by the instance
relation) such that τ ⊑G τ ′′ ⊑ τ ′ holds and τ̇ ′ and ˙τ ′′ coincide. Indeed, the derivation of
τ [τ ′/⊥] ⊑ τ ′ does not use any grafting, as both sides already have the same skeleton.

6.4.2 Constructor type

In order to be even more small-step, we further decompose the grafting operation: instead
of grafting the entire widening of a term, we create the widening node by node.

Definition 6.4.6 (Constructor type) Let C be a type constructor. The constructor type
for C is the type whose root is labelled by C, and whose children are all distinct, flexibly
bound, and labelled by ⊥. �

1The definition does not depend on the order of ni∈1..k
i as grafting at nodes n1, . . ., nk commutes.

78 Properties of the instance relations

◮ Example The constructor type for the type int is the type reduced to a single node
labelled by int. The constructor type for the arrow constructor is the type →

⊥ ⊥

.

Lemma 6.4.7 Given an instance τ ′ of a type τ , there exists instance derivation of τ ⊑ τ ′

of the form τ ⊑G τg ⊑RMW τ ′, with all operations in τ ⊑G τg grafting constructor types.�

Proof: By Lemma 6.2.1 we can consider an ordered derivation τ ⊑G τg ⊑
R ; ⊑MW τ of

τ ⊑ τ ′. It is then immediate that τ ⊑G τg can have the required shape, by Corollary 6.4.5,
the definition of widening and the definition of constructor types.

6.5 Canonical derivations

As a summary of §6.2, §6.3 and §6.4, we introduce the notion of canonical derivations.
(The name is slightly improper, as there usually exists more than one canonical derivation.
Derivations can be made fully canonical by adding e.g. a left-to-right bias.)

Definition 6.5.1 (Canonical instance derivation) An instance derivation τ ⊑ τ ′ is
canonical if it is of the form τ ⊑G τg ⊑R τr ⊑MW τ ′, and if

• all types grafted in τ ⊑G τg are constructor types;

• the raisings in τ ⊑R τr are done bottom-up, as per Definition 6.3.2;

• the operations in τr ⊑MW τ ′ are done bottom-up, as per Definition 6.3.6. �

As an immediate corollary of our previous results, we can always assume without loss of
generality that an instance derivation is canonical.

Property 6.5.2 Given an instance τ ′ of a type τ , there exists a canonical derivation of
τ ⊑ τ ′. �

6.6 Performing an instance operation early

Given a derivation τ ⊑ τ ′ containing an operation o, it is sometimes necessary to move this
operation at the beginning of the derivation. This section shows that, when this operation
can be applied to τ , the relation τ ⊑ o(τ) ⊑ τ ′ holds, with some restrictions only if o is a
weakening.

Lemma 6.6.1 Let τ and τ ′ be such that τ ⊑ τ ′. Let n be a node of τ such that τ(n) = ⊥ and
τ ′(n) 6= ⊥. Let τn be the constructor type for τ ′(n). The relation τ ⊑G

1 Graft(τn, n)(τ) ⊑ τ ′

holds. �

Proof: Necessarily n has green permissions in τ , as it must be grafted in the derivation
τ ⊑ τ ′. Hence τ ⊑G

1 Graft(τn, n)(τ) holds. For the second part of the conclusion, consider a

6.6. Performing an instance operation early 79

canonical derivation τ ⊑G τ ′
g ⊑

R ; ⊑MW τ ′. The type grafted under n in this derivation is
τn by construction of canonical derivations. We can move this grafting first, by commuting
it with the other graftings. Thus, Graft(τn, n)(τ) ⊑ τ ′

g holds, which implies the result.

Lemma 6.6.2 Let τ and τ ′ be such that τ ⊑ τ ′. Let n be a node such that τ ⊑R
1 Raise(n)(τ)

holds, and τ̂(n) 6= τ̂ ′(n). Then Raise(n)(τ) ⊑ τ ′ holds. �

Proof: Let us call τ ′′ = Raise(n)(τ). Consider a canonical derivation τ ⊑G τg ⊑
R τr ⊑

MW

τ ′ of τ ⊑ τ ′. It is sufficient to prove τ ′′ ⊑G ; ⊑R τr.

The grafting operations IG transforming τ into τg can be applied unchanged to τ ′, as
grafting and raising commute. Thus, let τ ′

g be IG(τ ′′), which is also equal to Raise(n)(τg)
(1). The relation τ ′′ ⊑G τ ′

g holds: raising increases permissions. Hence it suffices to prove
τ ′

g ⊑
R τr, or equivalently τ ′

g ⊑
R♮ τr (Lemma 6.3.4).

The points 1 and 2 of Definition 6.3.1 are immediate. For point 4, let us prove that all the
nodes bound differently in τ ′

g and τr are also bound differently in τg and τr, which implies
the result as τg ⊑

R♮ τr. By (1), this result is immediate for all the nodes but n. For n, by
hypothesis τ̂ (n) 6= τ̂ ′(n), and moreover τ̂ (n) = τ̂g(n) and τ̂ ′(n) = τ̂r(n), by definition of
canonical derivations. Thus τ̂g(n) 6= τ̂r(n) (2).

Thus it remains to prove that τ̂r ⊆ (τ̂g
′)+ (for point 3). Since τg ⊑

R τr, we also have
τg ⊑

R♮ τr and τ̂r ⊆ (τ̂g)
+. The binding trees of τg and τ ′

g differ only by the binding edge
on n. Suppose τ̂r ⊆ (τ̂g

′)+ does not hold. Then, there necessarily exists a node n′ of
τg such that n′ ∗−−_ n −−_ τ̂g(n) ∈ τg (3) and n′ −−_ τ̂g(n) ∈ τr (4). By (2) we have
n′ 6= n. Hence n′ +−−_ n −−_ τ̂g(n) ∈ τg. In τr, consider a mixed path P of the form
〈ǫ〉 ∗−̂− τ̂r(n) −̂− n +−−⊸ n′. By (4), τ̂r(n

′) = τ̂g(n), and this node is strictly below τ̂r(n)
(by (3) and because n is raised at least once between τg and τr), and strictly above n.
Hence P does not contain τ̂r(n

′): this contradicts the well-formedness of τr.

Lemma 6.6.3 Let τ and τ ′ be such that τ ⊑ τ ′. Suppose there exists n1 and n2 merged in
τ ′ such that τ ⊑M

1 Merge(n1, n2)(τ) holds. Then Merge(n1, n2)(τ) ⊑ τ ′ holds. �

Proof: Let τ ′′ be Merge(n1, n2)(τ). Consider a canonical derivation τ ⊑G τg ⊑
R τr ⊑

MW

τ ′ of τ ⊑ τ ′. We are going to prove that τ ′′ ⊑G τ ′
g ⊑

R τ ′
r ⊑

MW♮ τ ′, where τ ′
g = τg[n1 = n2]

and τ ′
r = τr[n1 = n2]. (It is immediate that n1 and n2 are binding-congruent in τg and τr,

as they can be merged in τ , and are merged in τ ′.) We call twin nodes two distinct nodes
n′

1 and n′
2 such that there exists π such that n′

1 = 〈n1 · π〉 and n′
2 = 〈n2 · π〉. Notice that

n′
1 cannot be above n′

2, as τ ′ would be cyclic; symmetrically, n′
2 cannot be above n′

1.

Let us consider a derivation Ig of τ ⊑G τg. We can commute the grafting in Ig such that
two twin nodes are grafted immediately one after the other, as the graftings of two nodes
where neither one is above the other commute. Then, the derivation I ′

g defined by removing
from Ig the occurrences of Graft(τ ′

2, n
′
2) when Ig contains Graft(τ ′

1, n
′
1) ; Graft(τ ′

2, n
′
2), and

n′
1 and n′

2 are twin nodes is a witness of τ ′′ ⊑G τ ′
g.

Next, consider a derivation Ir of τr ⊑
R τr. Again, we can commute the different raisings

so that two twin nodes are raised one after the other, as raising two nodes not one above
the other commute. As above, we can transform Ir into I ′

r by removing the raising of the
second twin node, and I ′

r is a witness of τ ′
g ⊑

R τ ′
r.

80 Properties of the instance relations

It remains to prove that τ ′
r ⊑

MW♮ τ ′. By Lemma 6.3.8, we already have τr ⊑
MW♮ τ ′ (1).

The points 1, 2, 5 and 6 of Definition 6.3.5 are immediate. For point 3, the relation τ̃r
′⊆ τ ′

is a consequence of (1) and of the fact that n1 and n2 are merged in τ ′. Finally, consider
two nodes n′

1 and n′
2 verifying the hypotheses of point 4 in τ ′

r, i.e. n′
1 6τ̃r

′ n′
2 (2), n′

1 τ̃ ′ n′
2

(3) and τ̂r
′(n′

1) = τ̂r
′(n′

2) (4). We need to prove that n′
1 and n′

2 are not red in τ ′
r. Without

loss of generality, we assume that n′
1 and n′

2 are expressed as nodes of τr.

By (2) and the definition of τ ′
r, we have n′

1 6τ̃r n′
2 (5). If τ̂r(n

′
1) = τ̂r(n

′
2), by (1), (5)

and (3), n′
1 and n′′

2 are not red in τr (6). Otherwise, if τ̂r(n
′
1) 6= τ̂r(n

′
2), by (4) and the

definition of τ ′
r, the nodes n′

1, n′
2 are under n1 and n2 respectively. Moreover, since n1 and

n2 are binding congruent in τr, the binders in τr of n′
1 and n′

2 must also be under and n1

and n2 (otherwise, we would have τ̂r(n
′
1) = τ̂r(n

′
2)). In this case, n′

1 and n′
2 are indirectly

merged, and we cannot use (6). However there exists two nodes symmetrical to n′
1 and n′

2

which are merged directly. We detail this case below.

Let π, π1 and π2 be such that τ̂r(n
′
i) = 〈ni ·π〉 for 1 ≤ i ≤ 2,

n′
1 = 〈n′′

1 · π1〉 and n′
2 = 〈n′′

2 · π2〉. Let also n′′′
2 be 〈n′′

1 · π2〉.
Since n1 and n2 are merged in τ ′, and by (3), we have n′

1 τ̃ ′

n′′′
2 (7). Moreover, n′

1 and n′′′
2 are distinct in τr (8), as

otherwise (2) would not hold. Finally, τ̂r(n
′
1) = τ̂r(n

′′′
2) (9),

by definition of π, π1 and π2 and τr. Thus, by (1), (8), (7)
and (9), n′

1 and n′′′
2 are not red in τr (and by symmetry n′

2

is not red in τr either) (10).

.

n1

n′′
1

π∗

n′
1

π1

n′′′
2

π2

n2

n′′
2

π∗

n′
2

π2

In both cases ((6) and (10)), n′
1 and n′

2 are not red in τr. Fusion preserves permissions as
it does not change the binding tree. Hence n′

1 and n′
2 are not red in τ ′

r either, which is the
desired result.

For weakening, the result does not hold in the general case: by weakening too early, we
might prevent some valid transformations later in the derivation. However, if the node n to
be weakened must be merged with a rigidly bound node n′, and both nodes are congruent
(up to the binding edge of n), we can use n′ as a “witness”: indeed, the transformations
which would become impossible under n are already impossible under n′. Alternatively, if
n is inert, weakening n does not change the permissions of the other nodes, and the result
also holds.

Lemma 6.6.4 Let τ and τ ′ be such that τ ⊑ τ ′. Let n be a node flexibly bound in τ and
rigidly bound in τ ′. Suppose that τ ⊑W

1 Weaken(n)(τ) holds. Suppose also that either

1. n is inert;

2. there exists a node n′ rigidly bound in τ , merged with n in τ ′, such that the subgraphs
consisting of the nodes transitively bound on n or n′ are the same in τ .

Then Weaken(n)(τ) ⊑ τ ′ holds. �

Proof: In this proof proof, we use «under» for «transitively bound on».

Let τ ′′ be Weaken(n)(τ). Consider a canonical derivation τ ⊑G τg ⊑
R τr ⊑

MW τ ′ of
τ ⊑ τ ′. Let τ ′

g be Weaken(n)(τg) and τ ′
r = Weaken(n)(τr). Those types exist, as n is

flexibly bound in both τg and τr, as it is flexibly bound in τ . We are going to prove that
τ ′′ ⊑G τ ′

g ⊑
R τ ′

r ⊑
MW♮ τ ′.

6.7. Reorganizing the instance modulo relations 81

Consider three instance derivations Ig, Ir and Im transforming τ into τg, τg into τr and τr

into τ ′ respectively. We first prove that none of these derivations can contain an operation
on a green node under n (1).

⊲ Subcase 1 (n is inert): immediate, as there is no green node under n.

⊲ Subcase 2: Let Gτ (n) be the subgraph of the nodes under n in τ . Since Gτ (n) = Gτ (n′)
and n and n′ are merged in τ ′, Gτ ′

g
(n) = Gτ ′

g
(n′) and Gτ ′

r
(n) = Gτ ′

r
(n′) necessarily

hold. (2). Thus, the symmetrical node under n′ needs to be transformed in the same
way. However, since n′ is rigidly bound in τ and Gτ (n) = Gτ (n′), this symmetrical
node is red in τ (and in all its instances, since instance preserve red nodes).

Next, by Lemma 5.4.1, permissions decrease for ≺⊑ in τ ′
g and τ ′

r (compared to τg and τr)
only for n and the green nodes under n (3). Moreover, by the same lemma, n itself is
either orange (if it was green in τ), or has the same permissions in τ and τ ′′ (in all the
other cases). In particular, n is not red (4).

Let us now prove our main result. By (1), no grafting takes place under n; hence Ig

witnesses τ ′′ ⊑G τ ′
g. Moreover, by (1), (3) and (4), all the nodes under n and raised

between τg and τr can still be raised in τ ′
r, as they are not red. Hence I ′

r witnesses
τ ′

g ⊑
R τ ′

r.

It remains to prove that τ ′
r ⊑

MW τ ′. We cannot use Im, as n is already red in τ ′
r.

However, by Lemma 6.3.8, we have τr ⊑
MW♮ τ ′ (5), and it suffices to prove τ ′

r ⊑
MW♮ τ ′.

The points 1, 2, 3 and 5 of Definition 6.3.5 are immediate by (5) and the definition of τ ′
r

(for point 5). For points 4 and 6, the nodes to transform between τ ′
r and τ ′ are the same

as those that must be transformed between τr and τ ′, up to n. All those nodes but n still
have non-red permissions in τ ′

r by (1) and (3), while n is not red by (4). Thus τ ′
r ⊑

MW♮ τ ′

holds, which is the desired result.

6.7 Reorganizing the instance modulo relations

In this section, we study the relationships between ⊑, ⊑≈ and ⊑⊏−⊐−, and show that the last
two relations can be reorganized so that all the instance steps can occur first. In particular,
this is the first step in proving that using ⊑≈ as the instance relation does not significantly
increase the expressiveness of MLF.

6.7.1 Confluence of the instance relations

As a preliminary result, this section studies the confluence of all the subrelations of instance,
including the subrelations of ⊏− and ⊑rmw. Since we reason simultaneously on ⊑, ⊏− and
⊑rmw, we must consider all three orders ≺⊑, ≺⊏− and ≺rmw. By Property 5.4.5, we thus
have the following results for those orders:

• grafting and raising increase or preserve permissions;

• merging preserves permissions;

• weakening is not monotonic w.r.t. those three orders.

In the following, we consider two relations ⊏· and ⊏·· which range independently over ⊑, ⊏−
and ⊑rmw. As usual, we write e.g. ⊏· 1 the restriction of ⊏· to one-step instance, and ⊏··X

for X ∈ {G, R, M, W} the relation ⊏·· ∩ ⊑X . Our goal is to show that, if ⊏· and ⊏·· are not

82 Properties of the instance relations

simultaneously ⊑, they are locally confluent. The remainder of the section proceeds by case
disjunction on the subrelations of ⊏· and ⊏·· . However, before doing so, we introduce a small
technical result which rules out some impossible cases.

Lemma 6.7.1 Consider a type τ , and two nodes n and n′ such that n ∗−−_ n′. Let o and o′

be two operations of ⊏· and ⊏·· respectively, such that τ ⊏· o(n)(τ) and τ ⊏·· o′(n′)(τ). Then
we also have τ ⊏·· o(n)(τ). �

Proof: We proceed by case disjunction on ⊏·· and ⊏· .

⊲ Case ⊏·· = ⊑rmw: then n′ is a monomorphic node. So is n, as monomorphic nodes are
downwards-closed. Thus o(n) is also in ⊏·· .

⊲ Case ⊏·· = ⊏− and ⊏· = ⊑: then n′ is orange or inert. Green nodes are upwards-closed,
hence n is not green. This shows that o(n) is also in ⊏·· .

⊲ In all the other cases: we have ⊏· ⊆ ⊏·· , hence the result.

Lemma 6.7.2 The following diagram is verified

τ τ12

τ34 ·

⊏·M1

⊏··M1

⊏·M

⊏··M
�

Proof: Let n1, n2, n3 and n4 be the four nodes such that τ12 = Merge(n1, n2)(τ) and
τ34 = Merge(n3, n4)(τ) (in particular, n1 6= n2 and n3 6= n4). The degenerate case where
{n1, n2} = {n3, n4} is immediate, as τ12 = τ34. We proceed by case disjunction.

⊲ If n1
+−−_ n3 holds (or one of the symmetrical cases):

By definition of merging, n2
+−−_ n3 also holds. The type

τ ′ = Merge(n1, n2)(τ34) = (Merge(n′
1, n

′
2) ; Merge(n3, n4))(τ12)

(where n′
1 and n′

2 are the nodes corresponding to n1 and n2 under n4) closes the diagram.
Indeed, by definition of τ ′, τ34 ⊏·M τ ′ and τ12 (⊏·M ; ⊏··M) τ ′ hold, since merging
preserves permissions. Lemma 6.7.1 shows that τ12 ⊏··M τ ′ holds.

⊲ In all the other cases: we show that the two operations commute, i.e. that the type

τ ′ = Merge(n1, n2)(τ34) = Merge(n3, n4)(τ12)

closes the diagram. Since merging preserves permissions, it suffices to prove that one of
the merging does not prevent the other by changing the term-graph under only one of
the two nodes.
Without loss of generality, suppose that merging n1 and n2 changes the term-graph
under n3 or n4; we can also suppose that n3

+−−⊸ n1. Let π be such that n3
π−−⊸ n1.

Since n1 6+−−_ n3 (otherwise we would be in the first case), by well-domination we have
n̂1

+−−⊸ n3. By Lemma 4.3.4, we have n3
+−−_ n̂1. By local congruence of n3 and n4,

since n1 is not transitively bound on n3, we have 〈n3π〉 = 〈n4π〉. Since 〈n3π〉 is n1, the
subgraph under n1 is shared between n3 and n4, which is the desired result.

6.7. Reorganizing the instance modulo relations 83

Lemma 6.7.3 The following diagram is verified

τ τ1

τ2 ·

⊏· R1

⊏··R1

⊏· R

⊏··R
�

Proof: Let n1 and n2 be the two nodes such that τ1 = Raise(n1)(τ) and τ2 = Raise(n2)(τ).
The degenerate case n1 = n2 is immediate. We distinguish between two cases:

⊲ If n1 −−_ n2 ∈ τ (or the symmetric case): we show that τ ′ below closes the diagram

τ ′ = Raise(n1)(τ2) = (Raise(n1) ; Raise(n2))(τ1)

This type is well-dominated. Indeed, n1 is raisable in τ2 as n1 is raisable in τ , τ̆ = τ̆2,
and the nodes bound on τ̂ (n1) (which is also n2 and τ̂2(n1)) are the same in τ and τ2.
Since raising increases permissions, we have so far proven τ2 ⊏· R τ ′ and τ1 (⊏· R ; ⊏··R) τ ′.
Lemma 6.7.1 shows that τ1 ⊏··R τ ′ holds.

⊲ In all the other cases: we show that the two operations commute, and that the diagram
is closed by

τ ′ = Raise(n1)(τ2) = Raise(n2)(τ1)

Since raising increases permissions, it suffices to justify that τ ′ is well-dominated. We
do this by showing that n2 is raisable in τ1. Consider n3 = τ̂1(n2). This node is also
τ̂ (n2), as n2 has not been raised in τ1. Let n′

2 be a node bound on n3 in τ1 other than
n2. We need to show that n2

+−−⊸ n′
2 ∈ τ1 does not hold.

◦ If n′
2 is n1: by case hypothesis, we know that n1 was not bound on n2 in τ . Thus,

let n′′
2 be the node such that n1 −−_ n′′

2 −−_ n3 ∈ τ . By contradiction, suppose
that n2

+−−⊸ n1 holds in τ1. This relation also holds in τ . Consider a mixed path
〈ǫ〉 ∗−̂⊸ n3 −̂− n2

+−−⊸ n1 in τ . By well-domination, n′′
2 is contained in this path.

Necessarily, it is in the path n2
+−−⊸ n1 (as it is below n3). Thus, since n2 6= n′

2, we
have n2

+−−⊸ n′′
2 in τ , both nodes being bound on n3. This contradicts the fact that

n2 is raisable in τ , and n2
+−−⊸ n1 does not hold.

◦ If n′
2 is not n1: then n′

2 is also bound on n3 in τ . Since n2 is raisable in τ , we have
n2 6−−⊸ n′

2. This relation still holds in τ1.

Lemma 6.7.4 The following diagram is verified

τ τm

τr ·

⊏·M1

⊏··R1

⊏·

⊏··
�

Proof: Let n1, n2 and n be such that τm = Merge(n1, n2)(τ) and τr = Raise(n)(τ). We
proceed by case disjunction on the position of n w.r.t. n1 and n2. In the following we do
not detail permissions, as raising and merging increase them.

84 Properties of the instance relations

⊲ If n ∗−−_ n1 (or the symmetric case): we show that the type below closes the diagram

τ ′ = Raise(n)(τm)

Let us first justify that n is raisable in τm. By contradiction, suppose there exists n′

bound on
−_
τm(n) such that n +−−⊸ n′ ∈ τm. Let π be such that n′ = 〈n ·π〉. By definition

of congruent nodes, the node 〈n · π〉 is also in τ . Moreover, by definition of binding
congruent-nodes, we have τ̂ (n) = τ̂ (n′). This contradicts the fact that n is raisable in
τ . Hence n is indeed raisable in τm and τm ⊏··R τ ′ holds.
Next, we prove that τr ⊏· τ ′. We proceed by case disjunction on n ∗−−_ n1.

◦ Case n = n1: then τ ′ = (Raise(n2) ; Merge(n1, n2))(τr)
The fact that n2 is raisable in τr is by symmetry with n1 in τ , as the subgraph
under n2 in τr is the same as the subgraph under n1 in τ . Moreover, n1 and n2 are
locally congruent in Raise(n2)(τr), as the subgraphs under them are unchanged from
τ . Thus τr ⊏··R ; ⊏·M τ ′ holds. Lemma 6.7.1 shows that τr ⊏· τ ′ also holds.

◦ Case n −−_ n1: then τ ′ = (Raise(ns) ; Merge(n, ns) ; Merge(n1, n2))(τr), ns being
the node symmetric to n under n2.
ns can be raised in τr by symmetry with n in τ . Let τ ′

r be Raise(ns)(τr) and τ ′′
r =

Merge(n, ns)(τ ′
r). The nodes n and ns are binding-congruent in τ ′

r, since n1 and n2

are binding-congruent in this type, and n and ns are under n1 and n2. Similarly, n1

and n2 are binding-congruent in τ ′′
r . Let us prove that both sets of nodes are locally

congruent.

◦ Merging n and ns in τ ′
r: Consider a non-empty path π such that 〈nπ〉 and 〈nsπ〉

are distinct in τ ′
r. Let us call n′

1 and n′
2 those two nodes; we must prove that they

are bound on n and ns respectively.
By definition of τ ′

r, for 1 ≤ i ≤ 2, we have τ̂r
′(n′

i) = τ̂ (n′
i). By local congruence

of n1 and n2 in τ , we have n′
i

+−−_ ni. The case n′
i −−_ ni is impossible, as n and

ns would not have been raisable in τ . Thus n′
i

+−−_−−_ ni. By well-domination,
necessarily the nodes under ni in those paths are n and ns, i.e. n′

1
+−−_ n and

n′
2

+−−_ ns. This is the desired result.

◦ Merging n1 and n2 in τ ′′
r : Consider a non-empty path π such that 〈n1π〉 and

〈n2π〉 are distinct in τ ′′
r . Necessarily, 〈n1π〉 and 〈n2π〉 are not n, ns as those nodes

are merged in τ ′′
r (1). By local congruence of n1 and n2 in τ , for 1 ≤ i ≤ 2.

〈niπ〉
+−−_ ni ∈ τ . Since τ̂ (niπ) = τ̂ ′′

r (niπ) (by (1)), we have 〈niπ〉
+−−_ ni ∈ τ ′′

r .
This is the desired result.

So far, we have proven τr (⊏··R ; ⊏··M ; ⊏·M) τ ′. By Lemma 6.7.1, we have in fact
τr ⊏· τ ′, which is the desired result.

◦ Case n +−−_−−_ n1: then τ ′ = (Raise(ns) ;Merge(n, ns))(τ), ns being again the node
symmetric to n under n2. This case is similar to the two above.

⊲ In all the other cases: we show that the two operations commute, and that the diagram
is closed by

τ ′ = Merge(n1, n2)(τr) = Raise(n)(τm)

Raising n does not change the fact that n1 and n2 are locally congruent, as n is either
strictly above n1 and n2, or on disjoint binding paths (and local congruence is only
concerned with the nodes below n1 and n2). This shows that τ ′ is a correct type,
which implies that n is raisable in τm by Property 4.4.13. Thus we have τm ⊏··R τ ′ and
τr ⊏·M τ ′, which is the desired result.

6.7. Reorganizing the instance modulo relations 85

The three previous results have shown that raising and merging are locally confluent. The
confluence itself is immediate by Newman’s Lemma, as raising and merging are noetherian.

Similar results do not hold for ⊑G and ⊑W : grafting two different types at the same node
usually results in incompatible types, while weakening two different nodes one above the
other must be done bottom-up, as the top-down strategy is often forbidden by permissions.
However, if at least one of the operations is an abstraction step, the various relations are
confluent. The remainder of this section considers these subcases.

Lemma 6.7.5 The relation ⊑G
1 commutes with ⊏− and ⊑rmw. �

Proof: Immediate: the grafting takes place on a green bottom node, and this part of the
type cannot be transformed by ⊏− or ⊑rmw.

(More generally, ⊑G
1 together with ⊑M

1 or ⊑R
1 are locally confluent. Since this result is not

useful to us, we do not prove it here. However the proof is very similar to all the other
proofs in this section.)

Lemma 6.7.6 If (⊏· , ⊏··) 6= (⊑,⊑), the following diagram is verified

τ τr

τw ·

⊏· R1

⊏··W1

⊏· R1

⊏··W1
�

Proof: Let n and n′ be such that τ ⊏· R1 τr and τ ⊏··W1 τw. The type

τ ′ = Raise(n)(τw) = Weaken(n′)(τr)

closes the diagram. Indeed:

⊲ n′ has more permissions in τr than in τ (raising increases permissions), and it is still
flexibly bound. Hence it can be weakened by ⊏··W in τr.

⊲ If ⊏··W is ⊏−W or ⊑w, n has the same permissions in τw and in τ , as only the weakening
of a green node changes permissions (Lemma 5.4.1). Moreover n is still raisable in τw,
as both τ̆ = τ̆w and τ̂ = τ̂w.
If ⊏··W is the weakening of a green node, ⊏· R is either ⊑r or ⊏−R, and the permissions of
orange, inert and monomorphic nodes are unchanged by ⊏··W (Lemma 5.4.1).
In both cases n can be raised by ⊏· R in τw.

Lemma 6.7.7 If (⊏· , ⊏··) 6= (⊑,⊑), the following diagram is verified

· ·

· ·

⊏·W1

⊏··W1

⊏·W1

⊏··W1
�

86 Properties of the instance relations

Proof: As for Lemma 6.7.6, the two operations commute. The reasoning on the permissions
after the weakening is also the same.

Lemma 6.7.8 If (⊏· , ⊏··) 6= (⊑,⊑), the following diagram is verified

τ τm

τw ·

⊏·M1

⊏··W1

⊏·

⊏··
�

Proof: Let n, n1 and n2 of τ be such that τr = Merge(n1, n2)(τ) and τw = Weaken(n)(τ).
We distinguish whether n is under or above n1 or n2:

⊲ If n ∗−−_ n1 (up to permutation of n1 and n2): We prove that the graph

τ ′ = Weaken(n)(τm) = (Weaken(ns) ; Merge(n1, n2))(τw)

where ns is the node symmetric to n under n2 closes the diagram. It is immediate that
τm ⊏··W τ ′, as merging preserves permissions.
For τw ⊏· τ ′, we first have τw ⊏··W Weaken(ns)(τw) (we call this last type τ ′′): ns has
the same permissions as n in τ by symmetry, and it also has the same permissions in
τ and τw, as the weakening of n does not change the permissions of ns, which is not
above or below n. By Lemma 6.7.1, τw ⊏·W τ ′ also holds.
It remains to prove that τ ′′ ⊏·M τ ′. The local congruence of n1 and n2 in τ ′′ is an

immediate consequence of the local confluence of those nodes in τ , as τ̆ ′′ = τ̆ and

τ̂ ′′ = τ̂ . For permissions, by Lemma 5.4.1, weakening only changes the permissions of
green nodes, and only if the weakening occurs on a green node. If ⊏··W is ⊏−W or ⊑w,
the weakening is not on a green node. If ⊏··W is ⊑W , ⊏·M is not ⊑M , and n1 and n2

are not green. Thus the permissions of n1 and n2 are the same in τ , τw and τ ′, and
τ ′′ ⊏·M τ ′ holds.

⊲ If n1
+−−_ n (up to permutation of n1 and n2): the two operations commute, and the

type τ ′ defined below closes the diagram.

τ ′ = Weaken(n)(τm) = Merge(n1, n2)(τw)

It is immediate that τm ⊏··W τ ′ as merging preserves permissions. For τw ⊏·M τ ′, the
reasoning is exactly the same as for proving τ ′′ ⊏·M τ ′ in the previous case.

⊲ In all the other cases: the two transformations commute, as they occur on disjoint
binding paths.

6.7.2 Reorganizing the instance modulo relations

The results of the previous section show that any combination of ⊑, ⊑rmw or ⊏− with either
⊏− or ⊑rmw is locally confluent. This result generalizes to confluence.

6.7. Reorganizing the instance modulo relations 87

Lemma 6.7.9 If ⊏·· is not ⊑, the following diagram is verified

· ·

· ·

⊏·

⊏··

⊏·

⊏··
�

Proof: Let τ , τ1 and τ2 be such that τ ⊏· τ1 and τ ⊏·· τ2. In particular we have τ ⊏· |τ1
τ1,

where ⊏· |τ1
is defined by restricting ⊏· as we did for ⊑ in Definition 6.1.3. Since both

⊏· |τ1
and ⊏·· are noetherian, by Newman’s lemma it suffices to show that ⊏· |τ1

and ⊏·· are
locally confluent.

Consider three types τ ′, τ ′
1 and τ ′

2 such that τ ′ ⊏· |τ1
τ ′
1 and τ ′ ⊏·· τ ′

2. By Lemmas 6.7.2,
6.7.3, 6.7.4, 6.7.5, 6.7.6, 6.7.7 and 6.7.8, ⊏· and ⊏·· are locally confluent, i.e. there exists
τ ′′ such that τ ′

1 ⊏·· τ ′′ and τ ′
2 ⊏· τ ′′. By Property 6.1.2 applied to τ ′

1 ⊏·· τ ′′, τ ′′ is as
structure-defined as τ ′. Thus τ ′

2 ⊏· |τ1
τ ′′ also holds, which is the desired result.

As a direct consequence, alternating ⊑ and ⊐− steps inside ⊑⊏−⊐− does not augment its
expressivity. Instead, all ⊐− steps can be done in one step and be pushed at the end of the
derivation. Similar results hold by considering ⊏−⊐−, ⊑≈ and ≈ instead of ⊑⊏−⊐−.

Lemma 6.7.10 The following equalities between relations are verified:

(⊏−⊐−) = (⊏− ; ⊐−) (≈) = (⊑rmw ; ⊒rmw) (⊑⊏−⊐−) = (⊑ ; ⊐−) (⊑≈) = (⊑ ; ⊒rmw) �

Proof: In each case, one inclusion is by definition. The other inclusion is by induction on
the number of inversions of the form ⊐·· ; ⊏· , which rewrite to ⊏· ; ⊐·· by Lemma 6.7.9.

Importantly, ⊑≈ and ⊑⊏−⊐− are however not equal to (⊒rmw ; ⊑) and (⊐− ; ⊑): some of
the operations which would need to be done at the beginning of the derivation would be on
green or non-monomorphic nodes, i.e. not in ⊐− or ⊒rmw.

One important consequence of Lemma 6.7.10 is the fact that unification is not signif-
icantly more complex for ⊑≈ and ⊑⊏−⊐− than for ⊑. For example, the ⊑⊏−⊐−-solutions of a
unification problem P are all the instances by ⊐− of the ⊑-solutions of P . Thus, the un-
decidability of type inference in the system using ⊑⊏−⊐− as its instance relation is not due
to unification (but to the interaction between instance and generalization, as we will show
in §13.3).

As a last consequence, let us study the structure induced by ⊏− and ⊑rmw on types.

Property 6.7.11 Let τ be a type, and let ⊏ be either ⊏− or ⊑rmw. Let Sτ be the set of
types equal to τ for the equivalence relation induced by ⊏, i.e.

Sτ = {τ ′ | τ (⊏ ∪⊐)∗ τ ′}

Then (Sτ , ⊏) is a finite join semi-lattice. �

88 Properties of the instance relations

Proof: Sτ is finite, as {τ ′ | τ (⊏ ; ⊐)∗ τ ′} is equal to {τ ′ | τ (⊏ ∪⊐) τ ′} (by
Lemma 6.7.10), both ⊏ and ⊐ are noetherian, and there are finitely many types τ ′ such
that τ ⊏ τ ′ or τ ⊐ τ ′. The existence of a join is by Lemma 6.7.9.

This result implies in particular the existence of a normal form for ⊏− and ⊑rmw, which we
call maximally instantiated. We conjecture that the lattice above is also a meet semi-lattice.

7
Unification

Abstract

We study the unification problem for MLF types. We show that unifying two nodes
inside a type is more general than unifying two different types (§7.1). We isolate a very
general subset of unification problems on which unification is complete and principal
(§7.2). We present the unification algorithm (§7.3), and proves its correctness (§7.4).
We also show that the algorithm has linear complexity (§7.5). We introduce a slightly
more general form of unification problem, which we also solve (§7.6). Finally, we
discuss unification in variants of MLF (§7.7).

7.1 MLF unification problem

A first possibility for defining unification in MLF is to use the usual approach of unifying
two types.

Definition 7.1.1 (Type unification) A type τ ′ is a type unifier of the types τ1 and τ2 if
τ1 ⊑ τ ′ and τ2 ⊑ τ ′. �

However, we prefer to internalize unification, as we did for term-graphs (§3.2.3).

Definition 7.1.2 (Node unification) Given a type τ , a type τ ′ is a node unifier of a set
of nodes N of τ if τ ′ is an instance of τ in which all the nodes of N are merged. Moreover,
τ ′ is a principal unifier if any other unifier of N in τ is an instance of τ ′. �

Node unification is more general than type unification. In fact, the latter class of prob-
lems can be encoded into the former, as we prove below.

Lemma 7.1.3 A type τu is a unifier of two types τ1 and τ2 if and only if the type τ ′
u is a

unifier of the nodes 〈1〉 and 〈2〉 in the type τ of Figure 7.1.1. �

89

90 Unification

(τ) →

·

τ1

·

τ2

(τ ′
u) →

·

τu

Figure 7.1.1 – Encoding type unification into node unification.

Proof: Assume there exists a type τu such that τ1, τ2 ⊑ τu. Let I1 and I2 be two derivations
witnessing τ1 ⊑ τu and τ2 ⊑ τu respectively. Let I ′

1 (resp. I ′
2) be the derivations obtained

from I1 (resp. I2) by replacing all the nodes n by 〈1 · n〉 (resp. 〈2 · n〉). Then I ′
1 and I ′

2

can be applied to τ (in any order, as they operate on distinct parts of the type), and yield
a type τ ′. Then, by construction of I ′

1 and I ′
2, Merge(〈1〉, 〈2〉) can be applied to τ ′. Hence

τ ′
u exists.

For the converse direction, assume a unifier τ ′
u of the required form exists. Let I be

a canonical derivation witnessing this last result. By definition of bottom-up merging-
weakening, the last operation of I is Merge(〈1〉, 〈2〉). From there, it is easy to extract from
I two derivations I1 and I2 proving τ1 ⊑ τu and τ2 ⊑ τu.

Consequently, in the following, « unification » will always mean « node unification ».

7.2 Admissible problems

(τ) →

→

⊥ ⊥

→

⊥ ⊥

(τu) →

→

⊥ ⊥

→

⊥

(τ ′
u) →

→

⊥ ⊥

Figure 7.2.1 – A problem without a principal solution.

Node unification is in fact too liberal: some problems can have a non-principal set of
solutions, as we describe below.1 Consider the problem of unifying the nodes 〈11〉 and 〈21〉
in the type τ of Figure 7.2.1. A first unifier is τu: the two nodes have been raised once,
and then merged. However, the type τ ′

u obtained by merging the nodes 〈1〉 and 〈2〉—which

1This was not the case in the syntactic presentation of MLF, as unification under prefixes (Le Botlan
2004)—which is used for unifying syntactic types—is more expressive than type unification, but less than
node unification.

7.2. Admissible problems 91

indirectly merges 〈11〉 and 〈21〉—is another unifier. There does not exist a unifier more
general than those two ones, as there is an incompatible choice to be made between raising
the edges (and merging the leaves), which irreversibly instantiates the binding structure, or
merging the upper nodes, which irreversibly instantiates the upper nodes of the underlying
term-graph.

Fortunately, it is possible to characterize an important set of problems that admit prin-
cipal solutions; we call admissible those problems. They include in particular unification
under the root of the type, as used to encode unification of two different types.

Definition 7.2.1 (Admissible problems) Given a type τ and a set of nodes N of τ , we
say that (τ, N) is an admissible problem (or that N is admissible for τ) if the set of nodes

{n̂′ | ∃n ∈ N, ∃n′ ∈ τ, n̂′ +−−⊸ n ∗−−⊸ n′}

is totally ordered by the domination relation −−≫−⊸ induced by −−⊸. We call admissibility
ancestors this set. �

It is difficult to give an intuition of this definition without actually proving that it ensures
principality of unification problems. Very roughly, non principality cases always originate
from a merging/raising competition, as illustrated on the example of Figure 7.2.1. In
admissible problems, such potential conflicts always occur between nodes whose binders
are in domination relation. This ensures that the conflict can only be solved by raising, as
merging would create cycles in the structure.

◮ Example In Figure 7.2.1, the set N = {〈11〉, 〈21〉} is not admissible for τ or τ ′. Indeed,
the admissibility ancestors are 〈1〉 and 〈2〉, and they are not comparable for −−≫−⊸ in τ
or τ ′.

We characterize a few set of nodes that are guaranteed to be admissible. In particular,
they subsume the problems encoding unification under the root.

Property 7.2.2 Consider a type τ and a node m of τ :

1. Any subset of (m −−⊸) is admissible for τ .

2. Any subset of (m −̂−) is admissible for τ .

3. Any set {m′, m′′} where m′ +−−_ m and m′′ −−_ m is admissible for τ .2 �

Proof: We consider a set N of nodes, and prove that N is admissible for τ .

1. If N is a subset of (m −−⊸): it suffices to show that all the admissibility ancestors

dominate m for −−≫−⊸, as the dominators of a node are totally ordered by the domi-
nation relation. Let n′ be a node such that n̂′ +−−⊸ n ∗−−⊸ n′ with n ∈ N . We show
that n̂′ (which is an admissibility ancestor) dominates m.
By definition of n′ and n, there exists mixed paths of the form 〈ǫ〉 ∗−−⊸ m −−⊸ n ∗−−⊸
n′. By well-domination, this path contains n̂′ above n. If n̂′ is m, the result holds,
as domination is reflexive. Otherwise n̂′ +−−⊸ m −−⊸ n ∗−−⊸ n′. By Lemma 4.3.4,
m +−−_ n̂′ holds, which shows that n̂′ dominates m for −̂⊸, hence also for −−⊸.

2This last case corresponds to the unification under prefix used in the syntactic presentations of MLF.

92 Unification

2. If N is a subset of (m −̂−): we also show that all the admissibility ancestors dom-
inate m. The proof is the same as above, except that we have m −̂− n instead of
m −−⊸ n.

3. If N = {m′, m′′} with m′ +−−_ m and m′′ −−_ m: this time we show that all the ad-

missibility ancestors dominate m̂′. Let n′ be a node such that n̂′ +−−⊸ n ∗−−⊸ n′ with
n ∈ N . We proceed by case disjunction on n.

⊲ Case n = m′: by the reasoning used in subcase 2, n′ is either m̂′ or dominates it.
This is the desired result.

⊲ Case n = m′′: again by the reasoning of subcase 2, n̂′ is either
−_
m′′ (i.e. m) or

dominates it. Moreover, m dominates m̂′, as m̂′ ∗−−_ m. We conclude by transitivity
of domination.

Importantly, admissible problems are stable by instance.

Property 7.2.3 Consider an admissible unification problem (τ, N). For any type τ ′ such
that τ ⊑ τ ′, (τ ′, N) is admissible. �

Proof: Let A be the admissibility ancestors of τ , A′ those of τ ′. We need to prove that A′

is totally ordered by −−≫−⊸ in τ ′. It suffices to prove the result for one atomic instance
step. Thus we let o be such that τ ⊑1 τ ′ with τ ′ = o(τ), and proceed by case disjunction
on o.

⊲ Case o = Weaken(n): A and A′ are equal, and −−≫−⊸τ = −−≫−⊸τ ′ as τ ′, as τ̆ = τ̆ ′ and

τ̂ = τ̂ ′. The conclusion is by admissibility of (τ, N).

⊲ Case o = Graft(τ ′′, n): no node grafted between τ and τ ′ is an admissibility ancestor,
as their binding edges are strictly under n, hence strictly under N . Thus, since the
nodes of τ are unchanged in τ ′, A = A′. Also because the nodes of τ are unchanged,
the restriction of the domination relation to the nodes of A is equal to the one in τ .
Thus the conclusion is again by admissibility of (τ, N).

⊲ Case o = Merge(n1, n2): Let n′ be such that n̂′ ∈ A′, i.e. n̂′ +−−⊸ n ∗−−⊸ n′ with

n ∈ N . Let m be a node of τ such that m extends into n in τ ′ and m ∈ N . Let π be
such that n π−−⊸ n′, and let m′ be 〈m·π〉. By definition of merging and well-domination,
we have m̂′ +−−⊸ m ∗−−⊸ m′. This shows that m is in A.
Consider now two admissibility ancestors n1 and n2 in τ ′. By the reasoning above,
let m1 and m2 be two admissibility ancestors of A that extend into n1 and n2. By
admissibility of N in τ , m1 and m2 are ordered by −−≫−⊸τ . Lemma 4.4.8 shows that
they are still ordered by −−≫−⊸τ ′ , which is the desired result.

⊲ Case o = Raise(n′): notice that −−≫−⊸ is unchanged in τ ′ (1), as τ̆ = τ̆ ′. There are

two cases, depending on whether {n ∈ N | τ̂ (n′) +−−⊸ n ∗−−⊸ n′} is empty or not, i.e.

whether there are new admissibility ancestors or not.

◦ Case ∃n ∈ N, τ̂ (n′) +−−⊸ n ∗−−⊸ n′: then τ̂ ′(n′) is an admissibility ancestor in τ ′.

Since the only new binding edge in τ ′ is n′ −−_ τ̂ ′(n′), we have A′ ⊆ A ∪ {τ̂ ′(n′)}
(they may not be equal, as τ̂ (n′) may or may not be in A′). By (1), it suffices to
show that τ̂ ′(n′) is totally ordered with all the nodes of A. Let n′′ be one such node.
Notice that we have τ̂ (n′) ∈ A; thus by admissibility of (τ, N), we have either τ̂ (n′)
dominates n′′, or n′′ dominates τ̂ (n′) for −−≫−⊸ in τ .

7.3. Unification algorithm 93

◦ Case τ̂ (n′) −−≫−⊸ n′′: we have τ̂ ′(n′) −̂≫−⊸ τ̂ (n′) by well-domination, hence

τ̂ ′(n′) −−≫−⊸ τ̂ (n′). Thus τ̂ ′(n′) dominates n′′ by transitivity of domination.

◦ Case n′′ −−≫−⊸ τ̂ (n′): as above, τ̂ ′(n′) dominates τ̂ (n′). Hence both τ̂ ′(n′) and

n′′ dominate τ̂ (n′). Two dominators of a same node are ordered by domination,
hence the conclusion.

◦ Otherwise: we have A = A′. The conclusion is thus by (1) and admissibility of
(τ, N).

7.3 Unification algorithm

Input: A type τ and a set of nodes N .
Output: A type τu that unifies N , or Failure.

1. Let gu be the first-order principal unifier of the nodes N in the term-graph τ̆ .

Fail if gu does not exist, or if it is cyclic.

2. Let τu be Rebind(τ, gu). Fail if Rebind fails.

3. Return τu.

Figure 7.3.1 – UnifN algorithm.

We present our unification algorithm UnifN in Figure 7.3.1. The algorithm takes a type
τ as input and outputs a type τu that unifies N , or fails. The algorithm is in two steps:

1. The first step unifies the nodes of N in τ̆ using first-order unification; the result of
this phase will be the skeleton of the unifier.

2. The second phase uses an auxiliary algorithm Rebind (detailed below) to build the
binding tree of the unifier.

Convention In order to ease readability, we use the following convention in the remainder
of this chapter: the nodes of a type τ into which we unify some nodes are named using the
metavariable “m”, while those of an unifier are named using “n”. There is a single exception:
for a node m of τ , we write 〈〈m〉〉 the corresponding node of τu (i.e. the unique node of τu

whose paths extend the paths of m).

Given a type τ and a term-graph g instance of τ̆ , the algorithm Rebind (presented in
Figure 7.3.2) returns an instance τ ′ of τ whose skeleton is g, or fails. We say that a node n

of τ is partially grafted if there exists a bottom node m of τ such that 〈〈m〉〉 +−−⊸ n in g. We
write LCAT (n1, ..., nk) for the least common ancestor of the nodes n1, ..., nk in a tree T .
The two phases of Rebind are detailed below.

1. Building the binding tree.

94 Unification

Input: A type τ and a term-graph g instance of τ̆
Output: A type τ ′ such that τ̆ ′ = g

Let τ̂ ′ and ⋄
τ ′ be ∅.

1. Building the binding tree

Visit the nodes of dom(g) \ {〈ǫ〉} in a top-down order for −−⊸g.
On each node n, do:

a) Let Mn be {m ∈ τ | m ⊆ n}.

b) Let ⋄n be max{
⋄
τ(Mn)} for

⋄
<.

c) Let nB be LCAτ̂ ′ (Bn
1 ∪Bn

2), where

Bn
1 = τ̂(Mn)

Bn
2 =

{
(−−⊸g n) if n is partially grafted
∅ otherwise

d) Let ⋄
τ ′ become ⋄

τ ′ + n 7→ ⋄n and τ̂ ′ become τ̂ ′ + n −−_ nB.

2. Correction of the instance steps

Let τ↑ be the graph verifying τ̆↑ = τ̆ , ⋄
τ↑ =

⋄
τ and

m −−_ m′ ∈τ↑ ⇐⇒ ∧

{
〈〈m〉〉 −−_ 〈〈m′〉〉 ∈ τ̂ ′

m +−−_ m′ ∈τ

Fail if either one the following condition holds:

a) there exists a non-green bottom node m of τ such that g(m) 6= ⊥

b) there exists m red in τ such that τ̂(m) is different from τ̂ ′(m)

c) there exists m red in τ↑ such that ⋄
τ↑(m) is different from ⋄

τ ′(m)

d) there exists m1 and m2 distinct in τ and merged in g such that one
of them is red in τ↑ and τ̂↑(m1) = τ̂↑(m2).

3. Return τ ′ , (g, (τ̂ ′,
⋄
τ ′)).

Figure 7.3.2 – Rebind algorithm.

7.3. Unification algorithm 95

The first phase of Rebind finds the binding tree of τ ′. To do this, the nodes of τ merged
together must be raised until they are all bound to the same node, and some of them
must be weakened. Phase 1 of Rebind computes the result of those operations. More
precisely, given a node n of τ ′, we call Mn the nodes of τ that are merged into n in g.
Step 1c computes the lowest common binder to the nodes of Mn.3 In parallel, a new
flag ⋄n is computed for n, by choosing the most restrictive flag among those of the
nodes of Mn (step 1b).

Importantly (as it is one of the keys to obtaining a good complexity for the algorithm),
the computation of τ̂ ′ reuses the results found for the nodes that have already been
considered when computing the binders of the nodes underneath.

2. Correction of the instance steps.

The second phase verifies that the instance operations that must be performed to
transform the binding tree of τ into the one of τ ′ are allowed: steps 2a, 2b, 2c and 2d
check that the permissions are correct for grafting, raising, weakening and merging
respectively. The checks for the last two operations are done on a pre-type4 τ↑ that
superimposes the binding edges (but not the binding flags) of τ ′ over the structure of
τ . The most involved checks are for merging, as we must make sure not to perform
checks for pairs of nodes that are indirectly merged.

In the following we often reason about the graph built by Rebind, whether phase 2 fails
or succeeds. Thus we write rebind(τ, g) the graph obtained by calling Rebind on τ and g
without performing phase 2 at all. Hence, rebind (in lowercase) always succeeds.

7.3.1 Two intermediate graphs

Consider a type τ ′ returned by calling Rebind(τ, g). We are ultimately going to prove that
τ ⊑ τ ′ holds. We introduce two intermediate graphs τg and τr that correspond to the steps
of an ordered derivation of τ ⊑ τ ′.

• The graph τg is τ in which all the graftings have been performed, i.e. exactly τ [τ ′/⊥].

• The graph τr is τg in which all the raisings performed when transforming τ into τ ′

have been performed, i.e. τ̆r = τ̆g,
⋄
τr =

⋄
τg, and τ̂r is defined by:

m −−_ m′ ∈ τr ⇐⇒ ∧

{
〈〈m〉〉 −−_ 〈〈m′〉〉 ∈ τ ′

m +−−_ m′ ∈ τg

Unif and Rebind cannot build τg and τr, because their size can be exponential in the size
of τ , which would make the complexity for Unif also at least exponential. However, those
graphs are very useful from a reasoning standpoint.

Notice that τ↑ and τr are (intendedly) very similar: the only difference is that τr is
defined on the structure of τg, which is bigger than the one of τ . However, the difference
between τr and τ↑ is unimportant permissions-wise, as proven by Lemma 7.4.10.

3We defer the discussion on Bn
2 to the example of §7.3.1.

4In fact, τ↑ is a well-dominated type, as shown by Property 7.4.6. However, this is unimportant here.

96 Unification

→

τ

→

⊥

→

→

→

⊥

→

⊥

→

τ↑

→

⊥

→

→

→

⊥

→

⊥

→

τu

→

→

→

⊥

→

τg

→

→

→

⊥ ⊥

→

⊥ ⊥

→

→

→

⊥

→

→

⊥ ⊥

→

τr

→

→

→

⊥ ⊥

→

⊥ ⊥

→

→

→

⊥

→

→

⊥ ⊥

Figure 7.3.3 – Example of unification

◮ Example Consider Figure 7.3.3. Our goal is to unify the nodes 〈1〉 and 〈2〉 in the type τ .
The result of calling Unif on this problem is the type τu of the same figure; we have also
drawn τg, τr and τ↑. Let us examine some actions of Rebind on our example:

Step 1 Assume that we want to bind n = 〈11〉. By construction, Mn contains all the
nodes of τ merged into n, hence 〈11〉, 〈21〉 and 〈22〉. Since all three nodes have
flexible binders, ⋄n = (>). Simultaneously, again by construction, Bn

1 contains the
binders in τ of all the nodes in Mn, i.e. 〈1〉 and 〈2〉. Since n is not partially grafted,
we have Bn

2 = ∅. Thus LCAτ̂ ′(Bn
1 ∪Bn

2) is LCAτ̂ ′({〈ǫ〉, 〈2〉)}. Thus nB = 〈1〉.

As a more involved example, suppose now that we want to bind n = 〈111〉. This
time we have Mn = {〈211〉, 〈221〉}, hence Bn

1 = {〈2〉}. Thus, if nB was computed by
taking only into account Bn

1 , we would have τ̂u(n) = 〈2〉. This is however incorrect,
as we need to take into account the binders of the nodes grafted under 〈11〉. Consider
indeed τg. There are two new nodes which are merged with n in τu, namely 〈111〉
and 〈112〉. Since they are bound on 〈11〉, itself bound on the root, the only possible
binder for n is 〈ǫ〉.

Thus the set Bn
2 is used to simulate these missing binding edges, i.e. those of the

nodes grafted between τ and τg. Here we have Bn
2 = {11} (as n is partially grafted).

7.4. Correctness of the algorithm 97

More generally, Bn
2 is such that n′ ∈ Bn

2 iff there exists m in τg but not τ such that
m −−_ m′ ∈ τg and 〈〈m′〉〉 = n′.

In our example, Bn
1 ∪Bn

2 = {〈2〉, 〈11〉}. Since Rebind has bound 〈11〉 to 〈ǫ〉 in τu, we
have LCAτ̂ ′(Bn

1 ∪Bn
2) = 〈ǫ〉, which is the correct result.

Notice that the computation of ⋄n does not take into account Bn
2 . Indeed, all the

nodes in this set are flexibly bound in τg.

Step 2a There are two bottom nodes grafted between τ and τg, 〈11〉 and 〈221〉. Since both
of them are green in τ , the check succeeds.

Step 2b The nodes m of τ such that τ̂u(m) is not τ̂(m) are 〈21〉, 〈22〉, 〈211〉 and 〈221〉.
All of them have either green permission (〈221〉), orange (〈211〉), or inert (〈21〉 and
〈22〉) in τ . Thus the check succeeds.

Notice that we do not make permissions checks for the nodes under 〈11〉, although
they are indeed raised between τg and τr. Indeed, as they are grafted between τ
and τg, we are assured that they have green or monomorphic permissions.

Step 2c The nodes of τ weakened are 〈2〉 and 〈221〉. They are respectively inert and
flexible in τ↑ or τg, hence the check succeeds. Again, we do not check for the nodes
only in τg and τr (but not in τ↑), as they all have green or monomorphic permissions.

Step 2d The following nodes verify all the conditions of the checks done in this step, except
“being red”:

• 〈1〉 and 〈2〉

• 〈11〉, 〈21〉 and 〈22〉

• 〈211〉 and 〈221〉

Since none of those nodes is red, the checks succeed.

Importantly, we do not check for a merging for 〈2111〉: while it is red and merged
with other nodes in τu (for example 〈1111〉), the mergings are all indirect.

7.4 Correctness of the algorithm

This section shows that the algorithms Unif and Rebind are correct. In all the section we
implicitly quantify over a type τ , a set of nodes N and a first-order unifier g of N in τ̆ . We
define the graph τu as rebind(τ, g); the graphs τg and τr are defined as in §7.3.1. We do not
assume that (τ, N) is admissible or that g is the principal first-order unifier of N in τ̆ . For
the completeness and principality result, we write τU the principal unifier of N in τ̆ , and
τU the graph rebind(τ, gU).

The next subsections are structured as follows:

⊲ §7.4.1 discusses some properties of the graphs returned by Unif.

⊲ §7.4.2 shows that Unif is sound.

⊲ §7.4.3 introduces a criterion more general than admissibility, that ensures that Unif is
complete and principal.

98 Unification

⊲ §7.4.4 shows that Unif is complete, i.e. that it does not fail when an unifier exists.

⊲ §7.4.5 shows that Unif is principal, i.e. that the type it returns is more general than the
other unifiers.

(In fact, we always start by showing that the results hold for Rebind.)

As a high-level result, the theorem below summarizes the results we will show for Unif.

Theorem 7.4.1 (Correctness of Unif) Let τ be a type, N a set of nodes of τ .

⊲ If the computation of UnifN (τ) does not fail, then τ ⊑ UnifN (τ) (soundness).

⊲ If N is admissible for τ and there exists an unifier τv of N in τ , then the computation
of UnifN (τ) does not fail (completeness), and UnifN (τ) ⊑ τv (principality). �

7.4.1 Properties of the unifier

In this subsection we never consider the permission checks of phase 2 of Rebind, and only
reason on τu = rebind(τ, g).

The use of a least common ancestor algorithm in Rebind implies that a binding edge of
τu is in the transitive closure of the binding edges of τ .

Lemma 7.4.2 Let n −−_ n′ ∈ τu, and let m be a node of τg merged in n in τu. Then there

exists a unique node m′ merged in n′ in τu such that m +−−_ m′ ∈ τg. �

Proof: The proof for the existence is by induction on the order chosen to bind the nodes
of τu (step 1 of Rebind). Let m′′ be τ̂g(m). If m is in τ , we have m′′ ∈ Bn

1 . Otherwise,
m is bound to its structural ancestor and m′′ ∈ Bn

2 . Thus m′′ ∈ Bn
1 ∪ Bn

2 . By definition
of Rebind, we have n′ = LCAτ̂u(Bn

1 ∪ Bn
2). By definition of a least common ancestor, we

have 〈〈m′′〉〉 ∗−−_ n′ ∈ τu. By induction hypothesis applied to each of the nodes in this path
(which have all been bound before n), we obtain the existence of a node m′ merged in n′

such that m′′ ∗−−_ m′ ∈ τg. Thus m −−_ m′′ ∗−−_ m′ ∈ τg, and m′ is the desired node.

For the unicity: if two such nodes existed, as they are merged with n′ in τu and are
structurally one above the other in τ (as they are on the binding path from n to the root),
τ̆u would be cyclic: this is a contradiction.

As a first important consequence, this means that the binding trees of τr, τ↑ and τu are
correct, which implies that those graphs are pre-types.5

Lemma 7.4.3 The graphs τr, τ↑ and τu are pre-types. �

Proof: For τu :

⊲ τ̆u is a well-formed term-dag by soundness of first-order unification. Moreover, it is
acyclic by the check done in step 1 of Unif.

5We will show later that they are also types. It is also immediate that τg is a type, as it is obtained by
grafting some nodes in τ .

7.4. Correctness of the algorithm 99

⊲
⋄
τu is correct, as each node but the root receives a flag.

⊲ τ̂u binds each node but the root to another node. As a consequence of Lemma 7.4.2,
each node n of τu is bound to a node strictly above n in τ̆u. This ensures that τ̂u is a
tree. Thus τ̂u is correct.

For τr and τ↑:

⊲ The correctness of τ̆r, τ̆↑,
⋄
τr and

⋄
τ↑ is by correctness of τ̆g, τ̆ ,

⋄
τg and

⋄
τ respectively.

⊲ For the correctness of the binding edges, we only consider τ̂r as the reasoning is exactly
the same for τ̂↑.
Consider a node m of τr that is not the root. Given the definition of τ̂r, it is immediate
that m has at least one binding edge, and that all the potential binders are strictly
above m. Thus it suffices to prove the unicity of the binder to show that τ̂r is a tree.
Let m′ and m′′ be two nodes such that m −−_ m′ ∈ τr and m −−_ m′′ ∈ τr. By
definition, we have 〈〈m〉〉 −−_ 〈〈m′〉〉 ∈ τu and 〈〈m〉〉 −−_ 〈〈m′′〉〉 ∈ τu. By Lemma 7.4.2,
m +−−_ m′ ∈ τg and m +−−_ m′′ ∈ τg. Since τg is a well-formed type, τ̂g is a tree, and τ̆g

is acyclic. This implies that m′ = m′′, which is the desired result.

The next result essentially expresses that Rebind chooses the lowest possible binder for
a node.

Lemma 7.4.4 Let n be a node of τu. Let n′ be a node of τu such that for every node m
of τg merged into n there exists a node m′ of τg merged into n′ verifying m +−−_ m′ ∈ τg.

Then, n +−−_ n′ ∈ τu. �

Proof: We write m ∈ τ ⊆ n as a shorthand for m ∈ τ ∧m ⊆ n. Given two nodes n and n′

of τu, let Pn(n′) be the property ∀m ∈ τg ⊆ n, ∃m′ ∈ τg ⊆ n′, m +−−_ m′ ∈ τg (which is
the premise of the result). We first prove three intermediary results:

(1) The set Pn of nodes n′ verifying Pn(n′) is totally ordered by −−⊸τu :

Given m ∈ τg ⊆ n, −−⊸τg is a total order on the set Pn,m of nodes m′ such that

m +−−_ m′ ∈ τg. Hence so is −−⊸τu (up to coercion from nodes of τ into nodes of τu),
as (−−⊸τg) ⊆ (−−⊸τu). The set Pn is exactly

⋂

m⊆n

{〈〈m′〉〉 | m′ ∈ Pn,m}

hence the result.

(2) The smallest node of Pn for −−⊸τu is nB :
By induction on the building of τ̂u. If all the m ∈ τg ⊆ n are bound on the same node
in τg, nB is this node and the result holds. Otherwise, the conclusion is by applying
the induction hypothesis to the binders τ̂g(m) for m ∈ τg ⊆ n, and by the definition
of a LCA (more precisely the “least” part).

(3) ∀n′ ∈ Pn, n′ = nB ∨ n′ ∈MnB :

Consider n′ in Pn that is not nB , and a node mB ∈ τg ⊆ nB . It suffices to prove that
there exists m′ ∈ τg ⊆ n′ such that mB

+−−_ m′ ∈ τg.
Let π be such that nB

π−−⊸ n ∈ τu. By construction of τg, the node m equal to
〈mB · π〉 is in τg, and is merged with n in τu. By Lemma 7.4.2, there exists m′

B

merged with nB such that m +−−_ m′
B (4). Moreover m′

B must be mB: otherwise,
since mB and m′

B are both merged with nB , τ̆u would be cyclic. Since n′ ∈ Pn, there

100 Unification

exists m′ ∈ τg ⊆ n′ such that m +−−_ m′ ∈ τg (5). By (4), (5) and unicity of binding
paths, we have either mB

+−−_ m′ or m′ ∗−−_ mB . By (1) and (2), n′ is higher than
nB for −−⊸τu . This implies that mB

+−−_ m′, which is the desired result.

We return to the main property. We prove that for any node n of τu, for any n′ such that
Pn(n′) holds, n +−−_ n′ ∈ τu. The proof is by induction on +−−⊸τu .

⊲ If n is the root: we have M{ǫ} = ∅. Hence the quantification is over an empty set and
the result holds.

⊲ Otherwise: let n be a node, and n′ a node verifying Pn. If n′ is nB , we have n −−_ n′ ∈
τu by definition of τu, and the result holds. Otherwise, by (3), n′ ∈ MnB . The node
n′ is strictly above n, (as it is nB or above nB by (1) and (2)). Hence, by induction
hypothesis, nB

+−−_ n′ ∈ τu. We conclude by the fact that n −−_ nB ∈ τu.

This result can be used to show that τu is a type, which in turn implies that τ↑ and τr

are types.

Property 7.4.5 The graph τu returned by Unif is a type. �

Proof: Lemma 7.4.3 shows that τu is a pre-type. For well-domination, let n be a node
of τu, Pu a mixed path from {ǫ} to n in τu. We need to prove that τ̂u(n) is in Pu.

We first rewrite Pu into a path Pr by restricting the domains of the nodes in Pu so
that it becomes a valid path in τr. (There isn’t unicity of such a rewriting, but this is
unimportant.) Then we rewrite Pr into a mixed path Pg of τg by transforming all edges
τ̂r(m) −̂− m of τr into τ̂r(m) −̂− · · · −̂− τ̂g(m) −̂− m (Lemma 7.4.2).

Let m1 be the node of Pg that extends into n in Pu. Let m3 be the node of τg subset of
τ̂u(m1) such that m1

+−−_ m3 (by Lemma 7.4.2). By iterating the well-domination property
in τg, m3 is in Pg . To prove our result, it suffices to show that 〈〈m3〉〉 is in Pu. We proceed
by case disjunction on the edge after m3 in Pg .

⊲ Case m3 −−⊸ ∈ Pg: this edge is also in Pr and Pu. Hence 〈〈m3〉〉 = n is indeed in Pu.

⊲ Case m3 −̂− ∈ Pg : Let m2 be the first (1) node such that 〈〈m2〉〉 appears in Pu and

m3
+−̂− m2 is in Pg; in particular, m2 is above m1 (2). It suffices to prove that

〈〈m3〉〉 −̂− 〈〈m2〉〉 is in fact in Pu.
Consider a node m′

2 of τg merged with m2 in τu. By (2) and given the structure of
τg, there exists m′

1 merged with m1 such that m′
2

∗−−⊸ m′
1 ∈ τg (m′

1 is not necessarily
unique, but this is unimportant here). Since 〈〈m1〉〉 −−_ 〈〈m3〉〉 ∈ τu and m1 is merged
with m′

1 in τu, by Lemma 7.4.2 there exists a unique node m′
3 such that m′

3 and m3

are merged in τu, and m′
1

+−−_ m′
3. Any structure path to m′

1 containing m′
2 must go

through m′
3 by well-domination of m′

1, and m′
3 cannot be under m′

2 in τg as it is above
in τu; thus m′

3
+−−⊸ m′

2 holds. By Lemma 4.3.4 applied to m′
1

+−−_ m′
3

+−−⊸ m′
2

∗−−⊸ m′
1,

we have m′
2

+−−_ m′
3 ∈ τg. This result holds for any node m′

2 merged with m2; hence by
Lemma 7.4.4, we have 〈〈m2〉〉

+−−_ 〈〈m3〉〉 ∈ τu. By (1), it is in fact m2 −−_ m3 ∈ τu, and
m3 is indeed in Pu (since −̂− m2 is in Pu).

Property 7.4.6 The graphs τ↑ and τr are types. �

7.4. Correctness of the algorithm 101

Proof: Lemma 7.4.3 shows that both graphs are pre-types. For well-domination of τr, let
m be a node of τr, P be a mixed path of τr from the root to m. We must prove that τ̂r(m)
is in P .

P is also a mixed path of τu, from the root to 〈〈m〉〉. By well-domination of τu, the binder
of m in τu is in P . Let m′ be the node of P which extends into τ̂u(〈〈m〉〉). Let P ′ be the
subset of P between m′ and m. By definition of τ̂r, we have m′ +−−⊸ m ∈ τr. Thus, since
〈〈m〉〉 −−_ 〈〈m′〉〉 ∈ τu and by definition of τ̂r, m′ is the binder of m in τr. Since it is in P ,
we have the desired result.

For well-domination of τ↑, a mixed path in τ↑ is also a mixed path in τr. Thus the result
is by well-domination of τr.

7.4.2 Soundness of Unif

In this section, we study the soundness of Rebind and Unif. Hence, we assume that the
computation of τu = Rebind(τ, g) succeeds.

In order to prove that Rebind and Unif are sound, we use a few intermediary results
showing that the permission checks performed by Rebind are correct.

Lemma 7.4.7 The instance relation τ ⊑G τg holds. �

Proof: All the grafting are authorized by step 2a of Rebind. The result holds by repeated
applications of Graft.

Lemma 7.4.8 The types τ and τg have the same set of red nodes. �

Proof: By Lemma 7.4.7, the red nodes of τ are still in τg (instance preserves red nodes).
By Lemma 5.4.1, grafting does not create red nodes in the existing structure. Finally, the
nodes grafted in τg are not red, as they are all flexibly bound.

Lemma 7.4.9 The relations τg ⊑R τr and τ ⊑R τ↑ hold. �

Proof: ⊲ τ ⊑R τ↑: we have τ ⊑R♮ τ↑ by Lemma 7.4.2 and the checks performed by
step 2b of Rebind. We conclude by Lemma 6.3.4.

⊲ τg ⊑
R τr: as in the previous case, we show that τg ⊑

R♮ τr holds. The fact that

τ̂r ⊆ (τ̂g)
+ is again by Lemma 7.4.2. The nodes of τr present in τ are checked for

permissions in τ instead of τg; Lemma 7.4.8 shows that this is unimportant. The nodes
present only in τg cannot be red, again by the same result.

Lemma 7.4.10 The types τ , τg, τ↑ and τr have the same set of red nodes. �

102 Unification

Proof: Lemma 5.4.1 shows that raising preserves red nodes, and does not introduce new
red nodes. The conclusion is thus immediate by Lemma 7.4.9 and Lemma 7.4.8.

This result shows in particular that it is sound to perform permissions checks on τ and τ↑
instead of τg and τr respectively. Taking things one step further, we could in fact perform
all the permissions checks of Rebind in τ only, and there is in fact no need to compute
the permissions of the nodes in τ↑. Indeed, τ↑ is only really useful in step 2d, to decide
whether τ̂↑(m1) = τ̂↑(m2). We have chosen the current presentation only to make simpler
the explanations of the permissions checks.

Lemma 7.4.11 The instance relation τr ⊑MW τu holds. �

Proof: Let us show that τr ⊑
MW♮ τu holds; the conclusion is then by Lemma 6.3.8.

⊲ Properties 1, 2, 3 and 5 of the definition of ⊑MW♮ (Definition 6.3.5) are immediate given
the definition of Rebind.

⊲ Step 2c of Rebind checks the nodes present in τ for property 6; while the checks are
done in τ↑ instead of τr, this is unimportant by Lemma 7.4.10. The nodes not present
in τ cannot be red by the same lemma.

⊲ For property 4, we consider two distinct nodes m1 and m2 of τr merged in τu, and
bound to the same node in τr. We must show that none of them is red in τr.

◦ Case m1 and m2 are in τ : Step 2d checks that m1 and m2 are not red in τ , hence
not in τr either by Lemma 7.4.10. This is the desired result.

◦ Case neither m1 nor m2 is in τ : m1 and m2 cannot be red in τr by Lemma 7.4.10.

◦ Case m1 is in τ , m2 is not in τ : m2 is not red in τr by Lemma 7.4.10. Hence we
must prove that m1 is not red in τr.
By hypothesis, in τr, m1 and m2 are bound on the same node m. Since m2 is not in
τ but m1 is, there exists a bottom node m′

2 of τ such that m +−−⊸ m′
2

∗−−⊸ m2 ∈ τr.
Since m2 is bound on m in τ , necessarily m′

2
+−−_ m holds in τ . Since m′

2 is grafted,
it is green in τ ; hence so is m, as green nodes are upwards-closed. Since grafting and
raising increases permissions, m is green or inert in τr. Thus m1, which is directly
bound on m, is not red in τr.

As an immediate corollary of all the results above, both Rebind and Unif are sound, even
on non-admissible problems.

Theorem 7.4.12 If Rebind(τ, g) returns τ ′, the instance relation τ ⊑ τ ′ holds. �

Theorem 7.4.13 (Soundness of unification) If Unif(τ, N) returns τU , the instance re-
lation τ ⊑ τU holds. �

7.4.3 Relating admissibility and the binding trees of unifiers

The fact that some unification problems have non principal sets of solutions is a consequence
of the fact that graphic types can be instantiated along two largely orthogonal axis:

7.4. Correctness of the algorithm 103

• instances of the skeleton;

• instances of the binding tree.

In particular, on non-admissible problems, it is possible to have two unifiers τu and τ ′
u such

that the graph of τ ′
u is an instance of the graph of τu, but without the same property for

their binding trees—in particular we can have τ̂u 6⊆ τ̂u
′. This is of course problematic for

principality.

◮ Example In Figure 7.2.1, we have τ̆u ⊑G τ̆u
′ but 〈11〉 is bound strictly higher in τu

compared to τ ′
u. Thus τ̂u

′ is not an instance of τ̂u.

Given a unifier τv, the following definition characterizes the unifiers τu returned by rebind

whose binding trees are more general than the one of τv. Interestingly, we simply verify
that the binding edges of τv are included in the transitive closure of the ones of τu. There
is no need to check for binding flags, as those are essentially determined by the skeletons of
the unifiers.

Definition 7.4.14 (Order on unifiers) Let τu be rebind(τ, g) and be τv be a unifier of
(τ, N), such that g ⊑G τ̆v. We write τu ≺U τv the property

∀n ∈ g, n +−−_ τ̂v(n) ∈ τu �

As we will prove in the next sections, if τu ≺U τv holds, then so does τu ⊑ τv. Thus Unif

is complete and principal when UnifN (τ) is more general for ≺U than all the other unifiers.
As we show in the lemma below, this is always the case when the unification problem is
admissible.

Lemma 7.4.15 Suppose that (τ, N) is admissible, and let τv be one unifier of (τ, N). Then
τU ≺U τv. �

(Notice that gU exists and is more general than τ̆v, by completeness and principality of
first-order unification. This ensures that τU exists.)

Proof: Let τ ⊑G τ ′
g ⊑

R τ ′
r ⊑

MW τv be a canonical derivation of τ ⊑ τv. Let τG and τR be
the two graphs τg and τr for τU . Let (1) be the fact that τ̆U ⊑G τ̆v. Let n be a node of
τU . We must prove that n +−−_ τ̂v(n) ∈ τU .

We suppose that we are not in the degenerate case where |N | ≤ 1. Indeed, in this case we
have rebind(τ, gU) = τ as gU = τ̆ , and the result is an immediate consequence of τ ⊑ τv.
By a slight abuse of notation, we call 〈N〉 the node of τU which is the result of merging all
the nodes in N .

⊲ Case n is not under 〈N〉 in τU : In this case, n is also a node of τ , as first-order unifi-
cation does not merge nodes outside of the subgraphs under the nodes of N . Moreover,
n is not partially grafted either, for the same reason. Hence Rebind binds n to its binder
in τ , i.e. τ̂U (n) = τ̂ (n). The conclusion is again by τ ⊑ τv.

⊲ Case n is under 〈N〉 in τU : Let m1, . . . mk be the nodes of τG that are merged together

in n in τU . Notice that by (1) they are also nodes of τ ′
g, and are merged together in

τv. Moreover, by definition of first-order unification, there exists π and m′
1, . . . m′

k such
that m′

i ∈ N and mi = 〈m′
i · π〉 for 1 ≤ i ≤ k (2); this last relation is valid in τG—thus

also in τR which has the same skeleton—but also in τ ′
r by (1).

Let us first prove that the nodes τ̂r
′(mi) are merged together in τU (3).

104 Unification

◦ Case n is bound under 〈N〉 in τv (4): By (2), there exists mixed paths 〈ǫ〉 ∗−−⊸

m′
i

π−−⊸ mi in τ ′
r. By well-domination, this path contains τ̂r

′(mi). By (4), τ̂r
′(mi) is

below m′
i in this path. Thus there exists a prefix π′

i of π such that τ̂r
′(mi) = 〈m′

i ·π
′
i〉.

Since the m′
i are merged together in τv, the nodes τ̂r

′(mi) are merged together in τv.
Thus all the π′

i are the same, as otherwise τv would be cyclic. Hence the τ̂r
′(mi) are

of the form 〈m′
i ·π

′〉 for a certain π′. This suffices to prove (3), as the m′
i are merged

together in τU .

◦ Case n is bound strictly above N in τv (5): by (2), the nodes τ̂r
′(mi) are admissi-

bility ancestors for N in τ ′
r (6), as τ̂r

′(mi)
+−−⊸ m′

i
∗−−⊸ mi and m′

i ∈ N . Next, by
Property 7.2.3, N is admissible for τ ′

r. Hence, by (6), the nodes τ̂r
′(mi) are totally

ordered by −−⊸τ ′
r
. Since all those nodes are merged together in τv, they are all equal

to a certain node m in τ ′
r (as otherwise τv would be cyclic). (5) ensures that m is

also a node of τ , hence of τU . This proves (3).

Let us now conclude by proving that n +−−_ τ̂v(n) in τU . By definition of τ ′
r, we have

mi
+−−_ τ̂r

′(mi) ∈ τ ′
g. Since mi is in τG and both τ ⊑G τG and τ ⊑G τg are from a

canonical derivation, we obtain mi
+−−_ τ̂r

′(mi) ∈ τG. The conclusion is by applying
Lemma 7.4.4 to this fact and to (3).

Again, this result does not hold for some non-admissible problems, as evidenced by Fig-
ure 7.2.1.

In Part II of this document, we will generalize graphic types to graphic constraints, and
will use a slightly different definition of admissibility. Since we prove the completeness and
principality of Unif and Rebind w.r.t. ≺U, we will only need to reprove the result above with
the new definition of admissibility.

7.4.4 Completeness of Unif

We start by stating a completeness result for Rebind. As explained in the previous section,
we must assume the existence of an unifier with a binding tree sufficiently instantiated.
Otherwise, some permission checks performed by Rebind might fail.

Theorem 7.4.16 Suppose that there exists an unifier τv of (τ, N) verifying τu ≺U τv. Then
the computation of Rebind(τ, g) does not fail.6 �

Proof: Let τ ⊑G τ ′
g ⊑

R τ ′
r ⊑

MW τv be an ordered derivation of τ ⊑ τv. By Lemma 6.3.4
and 6.3.8, let (1) be τ ′

g ⊑
R♮ τ ′

r, and (2) be τ ′
r ⊑

MW♮ τv. Let (3) be the hypothesis τu ≺U τv.
Finally, let (4) be the fact that τ̆u ⊑G τ̆v (which is a precondition of (3)).

We show that none of the checks in step 2 of Rebind fails.

⊲ Step 2a: if a node is grafted in τ̆u, it is also grafted in τ̆v by (3). Those grafting require
the nodes to be green in τ . Hence this step does not fail.

For the three remaining checks, we use the following fact: by (1) or (2), any node raised,
merged or weakened in the derivation τ ⊑ τv is not red in τ ′

g or τ ′
r. Since red nodes are

preserved by instance, those nodes are not red in τ either (5).

⊲ Step 2b: by (3), any node raised in τu must also be raised in τv, and cannot be red by
(5). Thus this step does not fail.

6We recall that τu is defined as rebind(τ, g).

7.4. Correctness of the algorithm 105

⊲ Step 2c: by (4), two nodes merged in τu are also merged in τv; hence any node with a
rigid binding in τu must also have a rigid binding in τv. Hence all the nodes weakened
in τu must also be weakened in τv, and cannot be red in τ by (5). Thus they are not in
τ↑ by Lemma 7.4.10, and this step does not fail.

⊲ Step 2d: for merging, let m1 and m2 be two nodes distinct in τ↑, merged in τu, and
bound to the same node m in τ↑. We must show that those two nodes are not red in τ↑.
By (3), mi

+−−_ τ̂r
′(mi) ∈ τ↑ holds for 1 ≤ i ≤ 2, hence mi −−_ m ∗−−_ τ̂r

′(mi) ∈ τ↑.
This implies that τ̂r

′(m1) = τ̂r
′(m2). Thus, m1 and m2 are bound at the same node in

τ ′
r and merged in τv by (4). By (2) and (5), they are not red in τv, hence not red in τ↑

by Lemma 7.4.10. This is the desired result.

The completeness of Unif is an immediate consequence of the result above. We give the
most general property below, and a simplified result involving admissibility afterwards.

Theorem 7.4.17 (Completeness of unification) Suppose that τv is an unifier of (τ, N)
such that τU ≺U τv. Then the computation of UnifN (τ) does not fail. �

(Notice that gU exists by completeness of first-order unification, as τ̆v is a suitable unifier.
Hence τU exists.)

Proof: We show that the steps of Unif do not fail.

⊲ Step 1: since gU exists, the unification of N in τ̆ (which builds gU), does not fail. The
cyclicity check does not fail, as cyclicity is preserved by instance and τ̆v is not cyclic.

⊲ Step 2: this step does not fail by Theorem 7.4.16 and the hypothesis τU ≺U τv.

As an immediate consequence of this result and of Lemma 7.4.15:

Corollary 7.4.18 Suppose that N is admissible for τ and that there exists a unifier τv of
(τ, N). Then the computation of UnifN (τ) does not fail. �

7.4.5 Principality of Unif

Before proving the principality of Rebind and Unif, we show that Rebind and Unif are stable
by the instantiation of their main argument, provided that this argument remains more
general than the unifier.

Lemma 7.4.19 Suppose that τu = Rebind(τ, g) exists. Then for any τ ′ such that τ ⊑ τ ′ ⊑
τu, we have Rebind(τ ′, g) = τu. �

Proof: Let us first show that rebind(τ ′, g) = τu. We must prove that nB and ⋄n are
computed identically in τ and τ ′ for all the nodes of g. It suffices to show this result for
one atomic step of a canonical instance derivation of τ ⊑ τ ′, as the result then follows by
induction. We thus proceed by case disjunction on such an instance step τ ⊑1 τ ′.

⊲ Case τ ′ = Graft(τ ′′, m): by hypothesis, τ ′′ is a constructor type. In step 1a of Rebind,
the set Mn might increase for the nodes n such that 〈〈m〉〉 −−⊸ n ∈ τu. The computation
of ⋄n does not change, as the new nodes in Mn are flexibly bound. The computation of
nB does not change either, as the new binders in Bn

1 were previously in Bn
2 .

106 Unification

⊲ Case τ ′ = Merge(m1, m2): the computations of ⋄n and nB does not change, as they
involve sets that are unchanged by the merging.

⊲ Case τ ′ = Weaken(m): the computation of the new binders is unchanged, as τ̂ = τ̂ ′.
The computation of ⋄n is unchanged for all the nodes but 〈〈m〉〉. For 〈〈m〉〉, necessarily at
least one of the nodes in M〈〈m〉〉 was already rigid (otherwise m would not be weakened
in τu), and the computation of ⋄〈〈m〉〉 is also unchanged.

⊲ Case τ ′ = Raise(m): the computation of the binding flags is unchanged, as
⋄
τ =

⋄
τ ′. The

computation of nB is unchanged for all the nodes but 〈〈m〉〉. For 〈〈m〉〉, 〈〈m〉〉B is also
unchanged, by definition of a least common ancestor (as LCA(n1, n2) = LCA(n̂1, n2) if
n1 −−_ LCA(n1, n2)).

It remains to prove that the computation of Rebind(τ ′, g) does not fail. Notice that τu is
an unifier of (τ ′, N), since τ ′ ⊑ τu. The conclusion is then by Theorem 7.4.16 and the fact
that ≺U is reflexive.

Lemma 7.4.20 Suppose that τU = UnifN (τ) exists. Let τ ′ be such that τ ⊑ τ ′ ⊑ τU . Then
UnifN (τ ′) = τU . �

Proof: Let g and g′ be the first-order unifiers of N in τ and τ ′ respectively. Since τ ⊑
τ ′ ⊑ τU , we have τ̆ ⊑G τ̆ ′ ⊑G τ̆U by Property 5.3.10. By principality of first-order
unification, we have g = g′. By definition of Unif we have UnifN(τ) = Rebind(τ, g) and
UnifN (τ ′) = Rebind(τ ′, g′). The conclusion is by Lemma 7.4.19.

Principality requires the same kind of hypothesis as completeness, i.e. the existence of
an unifier τv, and the fact that τu ≺U τv. Indeed, otherwise the binding tree of τv could be
less instantiated than the one of τu.

Theorem 7.4.21 Suppose τv is an unifier of (τ, N) verifying τu ≺U τv. Then τu ⊑ τv

holds. �

Proof: Let (1) be the hypothesis τu ≺U τv, which implies in particular τ̆u ⊑G τ̆v (2). We
have the existence of Rebind(τ, g) by Theorem 7.4.16. We consider a canonical derivation
of τ ⊑ τu (Theorem 7.4.12); the result is by induction on this derivation. If τ = τu, the
result is immediate. Otherwise, let τ ′ be such that τ ⊑1 τ ′ ⊑ τu. We first prove by case
disjunction on τ ⊑1 τ ′ that τ ′ ⊑ τv holds.

⊲ Case τ ′ = Graft(τ ′′, m)(τ): if τ ′′ is reduced to ⊥, then τ ′ ⊑ τv holds as τ = τ ′.
Otherwise, by (2), τv(m) = τu(m). We conclude by Lemma 6.6.1.

⊲ Case τ ′ = Raise(m)(τ): by (1), m is also raised in τv, and τ̂v(m) 6= τ̂ (m). We conclude
by Lemma 6.6.2.

⊲ Case τ ′ = Merge(m1, m2)(τ): by (2), m1 and m2 are merged in τv. We conclude by
Lemma 6.6.3.

⊲ Case τ ′ = Weaken(m)(τ): by construction of Rebind, there exists m′ rigidly bound in τ

such that m and m′ are merged in τu. Since we are considering a canonical derivation
of τ ⊑ τu, the subgraphs under m and m′ are equal, as they are both equal to the
subgraph under 〈〈m〉〉 in τu. We conclude by Lemma 6.6.4.

7.4. Correctness of the algorithm 107

Thus we have proven that τv is an unifier of (τ ′, N). Next, by Lemma 7.4.19, we have
Rebind(τ ′, g) = τu. Thus, we can apply the induction hypothesis to τ ′, which proves the
result.

As an immediate consequence (since step 3 of Unif returns the type returned by Rebind):

Theorem 7.4.22 (Principality of unification) If τv is an unifier of (τ, N) verifying
τU ≺U τv, then τU ⊑ τv holds. �

As a corollary of this last result and of Lemma 7.4.15:

Corollary 7.4.23 Suppose that N is admissible for τ and that there exists an unifier τv of
(τ, N). Then UnifN (τ) ⊑ τv holds. �

Notice that in both Theorem 7.4.22 and Corollary 7.4.23, the existence of UnifN (τ) is in
fact implied by the corresponding completeness results.

7.4.6 Unification modulo similarity

The following two lemmas justify the fact that we do not need to study principality of
unification up to similarity. Indeed, Unif is a morphism for ⊑rmw and ≈. Unlike in the
previous sections, we do not give the more general results based on ≺U, as they are not
significantly more interesting than the ones below.

Lemma 7.4.24 Let τ1 and τ2 be two types, and N a set of nodes admissible for τ1. Assume
UnifN (τ1) exists and τ1 ⊑rmw τ2. Then UnifN (τ2) exists and UnifN (τ1) ⊑rmw UnifN (τ2). �

(We recall that admissible problems are stable by instance (Property 7.2.3).)

Proof: By Theorem 7.4.13, τ1 ⊑ Unif(τ1). By Lemma 6.7.9, ⊑ and ⊑rmw are confluent.
Hence, there exists τu1

such that Unif (τ1) ⊑
rmw τu1

(1) and τ2 ⊑ τu1
. By Corollary 7.4.18,

Unif(τ2) exists (since τ2 ⊑ τu1
and τu1

is a unifier of N). By Corollary 7.4.23, Unif (τ2) ⊑
τu1

(2). Now, Unif (τ2) is a unifier of τ1. By Corollary 7.4.23 again, Unif (τ1) ⊑ Unif (τ2)
(3). By (1), (2) and (3) and Lemma 5.3.13, UnifN (τ1) ≈ UnifN(τ2) ≈ τu1

(4). By (3)
again and (4), Unifn(τ1) (⊑ ∩≈) UnifN(τ2), hence UnifN (τ1) ⊑

rmw UnifN (τ2).

Lemma 7.4.25 Let τ1 and τ2 be two types, and N a set of nodes admissible for both types.
Assume UnifN (τ1) exists and τ1 ≈ τ2. Then UnifN (τ2) exists and UnifN (τ1) ≈ UnifN (τ2).�

Proof: By Lemma 6.7.10, let τ3 be such that τ1 ⊑
rmw τ3 and τ2 ⊑

rmw τ3. By
Lemma 7.4.24, UnifN (τ3) exists and UnifN (τ1) ⊑

rmw UnifN(τ3). UnifN(τ3) is an uni-
fier of N in τ2; thus by Corollary 7.4.18, UnifN (τ2) exists. By Lemma 7.4.24 again, we
obtain UnifN(τ2) ⊑

rmw UnifN(τ3). As a consequence, Unif (τ1) ⊑
rmw ; ⊒rmw Unif (τ2)

holds, which is the desired result.

Interestingly, these two proofs only use unification-related results, the confluence of ⊑
and ⊑rmw, the decomposition of ≈ into ⊑rmw ; ⊒rmw and the fact that the kernel of ⊑≈ is
≈. Since similar results hold for the abstraction relation, the result above also holds for ⊏−⊐−
instead of ≈.

108 Unification

Lemma 7.4.26 Let τ1 and τ2 be two types, and N a set of nodes admissible for both types.
Assume UnifN (τ1) exists and τ1 ⊏−⊐− τ2. Then UnifN (τ2) exists and UnifN (τ1) ⊏−⊐− UnifN (τ2).�

7.5 Complexity

For the sake of the complexity analysis, we assume that each of the following elementary
operations takes constant time:

• finding the binder of a node;

• going from m ∈ τ to the corresponding node 〈〈m〉〉 ∈ τu;

• finding the list of nodes of τ that are merged into a node of τu, i.e. mapping n to Mn.

This can easily be achieved by using constant-time access structures for storing graphs
and by keeping track of merges during unification. For the computation of least common
ancestors, we use a dynamic algorithm that computes LCA queries in worst-case constant
time, and in which adding new leaves takes constant-time (Cole and Hariharan 2005).

Theorem 7.5.1 Rebind is linear in the size of its arguments. �

Proof: Consider the computation of Rebind(τ, g). We first annotate the nodes of τ by
their permissions, by walking τ̂ first from the root (for G, O and R permissions), and
again bottom-up (for M and I permissions). This takes a linear time. We also mark
partially grafted nodes by walking down along g starting from the root. The first time an
instantiated bottom node is found, we mark all the nodes under it. When a marked node
is found a second time, we stop the visit. The whole operation has a cost linear in the size
of g.

1. A topological sort can be used to find a top-down ordering; this takes a linear time in
the size of g.

a) Constant time, by hypothesis.

b) Linear in the size of Mn.

c) Bn
1 is smaller than Mn, and be computed linearly in its size.

We let b2(n) be the size of Bn
2 . Bn

2 can be computed in a time proportional to
b2(n). (This is an amortized bound; the computation can be done when marking
partially grafted nodes).

Each call of LCA on a pair of nodes takes a constant-time (Cole and Hariharan
2005). Hence the whole computation of LCAτ̂ ′(Bn

1 ∪ Bn
2) takes a time linear in

the size of Bn
1 ∪ Bn

2 , i.e. linear in |Mn|+ b2(n). Updating the structure used by
LCA takes constant-time (Cole and Hariharan 2005) per node of τ ′.

d) In constant time.

Thus each step takes a time linear in |Mn| + b2(n). The Mn are a partition of the
nodes of τ , and the sum of b2(n) on all nodes is less than the number of edges of g.
Hence the whole cost is linear in |τ |+ |g|.

2. Building τ̂↑ can be done by an infix walk of τ̂ , and takes a time linear in the time of τ .
The permission of the nodes of τ↑ can be computed in linear time in its size.

7.6. Generalized unification problems 109

a) This step can be done by a linear pass on the number of grafted bottom nodes,
which can be marked during unification. Each check takes constant time, hence
the cost is at most linear in the size of τ .

b) Each check takes a time at most linear in the size in Mn. Since the Mn partition
the nodes of τ , the total cost is linear in the size of τ .

c) As the previous step.

d) We start by partitioning the nodes of τ merged together in g according to their
binder in τ↑. This can be done in linear time by attaching to a node m of τ↑ the
list of the nodes bound to m. Then, for each list containing more than one node,
we check that no node of the list is red. Since the lists partition the nodes of τ ,
this step is linear in the size of τ .

Theorem 7.5.2 Unif is linear in the size of its argument. �

Proof: Consider the computation of UnifN(τ). For step 1, first-order unification and occur-
check are linear in the size of τ̆ (Paterson and Wegman 1978). Moreover, the resulting
term-graph gu is at most linear in the size of τ (1). For step 2, by Theorem 7.5.1 and
(1), the computation of Rebind(τ, gu) is also linear in the size of τ . Hence Unif has linear
complexity.

This linear-time bound relies on a linear-time unification algorithm for term-graphs. We
can also use a union-find based first-order unification algorithm (Huet 1976) instead, in
which case we obtain a nα(n) complexity.

While the complexity bound of the algorithm used in the original syntactic presentation
of MLF is not known, it performs many duplications and α-conversions. We believe it would
not have scaled to larger inference problems, e.g. automatically generated code.

7.6 Generalized unification problems

The definition of unification problems may be generalized to express simultaneous unifica-
tion problems on the same type.

Definition 7.6.1 A generalized unification problem (τ,∼) is a pair of a type τ and an
equivalence relation ∼ on dom(τ). A solution of (τ,∼) is an instance τu of τ such that
(∼) ⊆ (τ̃u). �

The equivalence relation ∼ of a generalized unification problem (τ,∼) may be represented
on τ by unification edges between the nodes to unify. In practice, we only draw a
subrelation of ∼ whose transitive closure is ∼.

7.6.1 Generalized admissibility

It is of course possible to generalize admissibility in the obvious way, by requiring all equiv-
alence classes of τ to be admissible problems. However, this definition is too weak, as
illustrated by Figure 7.6.1: although it is clear that τ and τ ′ have the same solutions, τ

110 Unification

τ →

→

⊥

→

⊥

τ ′ →

→

⊥

→

⊥

Figure 7.6.1 – Generalized unification problems and admissibility

would be admissible according to this criterion, while τ ′ would not. Thus, we use a slightly
more powerful definition.

Definition 7.6.2 (Generalized admissibility) A generalized unification problem (τ/∼)
is said to be admissible if there exists a set S of sets of nodes of τ such that each set N of
S is an admissible problem for τ , and ∼ and S have the same first-order solutions on τ̆ . (A
first-order solution of S on τ̆ is an instance g of τ̆ such that, for any N of S, all nodes of N
are merged in g.) �

With this criterion, the generalized unification problems on both types τ and τ ′ of Fig-
ure 7.6.1 are admissible, by taking S = {{〈1〉, 〈2〉}} in both cases: the edge 〈11〉 〈22〉
of τ ′ is redundant. More generally, congruence preserves generalized admissibility, a very
desirable result.

7.6.2 Generalized unification algorithm

The Unif algorithm can be generalized in a straightforward manner to generalized unification
problems, thanks to the clean separation between the computations of τ̆u and τ̂u: in the
first phase of UnifN , it suffices to find the principal first-order unifier according to ∼ instead
of N . This strategy is more efficient than unifying the equivalence classes of ∼ one after the
other using UnifN , which would require calling Rebind up to k times, where k is the number
of equivalence classes in ∼.

Lemma 7.6.3 The generalized unification algorithm is sound, complete, and principal on
generalized admissible problems. �

Proof: Let τ be a type, ∼ a generalized admissibility problem for τ . By definition of
generalized admissibility, let S be a set of sets of nodes of τ with the same first-order
solutions as ∼. The result is immediate by induction on the number k of sets in S, using
the stability of admissibility by instance (Property 7.2.3), and Theorems 7.4.13, 7.4.17
and 7.4.22.

7.7. Unification in restrictions of MLF 111

7.7 Unification in restrictions of MLF

In the terminology of Le Botlan and Rémy (2007), the system presented in this document
is Full MLF, the most expressive of the MLF variants (see also Appendix A). A natural
restriction of Full MLF exists, the system Shallow MLF. As mentioned when defining shallow
F types in §3.4.3, Shallow MLF is obtained by restricting types: under a rigid edge, only
variables can be flexibly bound. While less expressive than Full MLF, it can be shown that
Shallow MLF is as expressive as System F. In Shallow MLF, the type instance relation is the
restriction of ⊑ to the types allowed in Shallow MLF. Since the restriction on allowed types is
preserved by unification, Unif can be used unchanged to perform unification in Shallow MLF.

Alternatively, an even more drastic restriction is ML itself, in which all the nodes are
flexibly bound to the root. However, in this completely degenerate case, most of the steps
of Rebind can be removed: the computation of the new binding flag and the permissions
checks are not needed, since all nodes are flexibly bound. Moreover the computation of the
new binders can also be simplified, as Rebind will always bind all the nodes to the root.
Thus, only first-order unification remains.

8

Relating the syntactic and graphic

presentations of MLF types

Abstract

We compare the syntactic and graphic presentations of the MLF instance relation,
and explain the choices we made in the design of this relation (§8.1). We also show
that the graphic ⊑ and ⊏− relations are more expressive than their original syntactic
counterpart (§8.1.3). We present two algorithms that translate to and from syntactic
types (§8.2), both with linear time complexity. Finally, we introduce a simple syntactic
sugar that can be used to display types in a much more readable way (§8.3).

8.1 An informal comparison of the syntactic and graphic instance relations

The rules of the original syntactic presentation of MLF are recalled in Appendix B. Prior
knowledge of this presentation is helpful to understand this section, but not strictly neces-
sary.

8.1.1 Syntactic and graphic instance

The instance relation⊑ on graphic types is noticeably simpler than its syntactic counterpart:

- A first difference is that it does not need not be defined under prefix; instead, it uses
permission to operate deeply inside types. As a consequence, context rules such as
I-Context-R or I-Context-L are superfluous.

113

114 Relating the syntactic and graphic presentations of MLF types

- A second (seemingly inconsequential) difference stems from the way instance is de-
fined. In the syntactic presentation, instance is defined as a super-relation of abstrac-
tion (through I-Abstract), itself a super-relation of equivalence (through A-Equiv).
Conversely, on graphic types, abstraction is defined as a restriction of instance. While
the two approaches are formally equivalent, we believe that ours is more lightweight.
In particular, we avoid some redundancies, such as the duplication between I-Hyp

and A-Hyp, or Eq-Context-R, A-Context-R and I-Context-R. Moreover, when
proving a property on ⊑, we can focus on this relation, and need not prove this prop-
erty for ⊏− or ≡.

Of course, there are also links between the two presentations. In particular, the graphic
atomic instance operations can be put in correspondence with some of the rules of the
syntactic presentation:

• grafting corresponds to the rule I-Bot;

• weakening corresponds to the rule I-Rigid;

• raising corresponds to the derived rules I-Up and A-Up;

However, merging has no direct equivalent in the syntactic presentation, and can only
be obtained by a combination of several rules: in order to prove

∀ (α > σ) ∀ (β > σ) α→ β ⊑ ∀ (α > σ) α→ α

one needs to syntactically instantiate the first type into

∀ (α > σ) ∀ (β > α) α→ β

using I-Hyp and context rules. This type is in turn equivalent to

∀ (α > σ) α→ α

This syntactic derivation requires to abstract the second occurrence of σ behind the name
α, and to replace β by α everywhere using the equivalence relation. Comparatively, the
graphic proof is more direct and simpler.

8.1.2 Syntactic equivalence and graphic similarity

Things are not so clear when comparing the syntactic equivalence relation≡ and the graphic
similarity relation ≈. A careful study of both relations show that they capture the same
transformations, but only up to the differences in the representations:

• The equivalences syntactically captured by the rules Eq-Comm, Eq-Free and Eq-

Var are directly captured by the graphic representation (and have hence no equivalent
on graphic types):

– binders are not ordered in graphic types; hence there is no need for a rule to
commute them;

– unused quantification cannot be expressed;

8.1. An informal comparison of the syntactic and graphic instance relations 115

– quantifications of the form ∀ (α⋄σ) α, which can be simplified into σ by Eq-Var,
are directly represented by σ in graphic types.

In this respect, ≈ is much simpler than ≡.

• Conversely, graphic types bind all nodes, while syntactic types allow monotypes.
Thus the rule Eq-Mono must be “inlined” on graphic types, and we must allow
raising, merging, weakening and the three symmetric operations on monomorphic
nodes. While this complicates the definition of ≈ (compared to a system in which
monomorphic nodes would be unbound), this actually simplifies the metatheoretical
study. Indeed, ⊑r, ⊑m, ⊑w and their symmetric relations are actually restrictions of
the corresponding relations in ⊑⊏−⊐−, and much of the work involved in studying those
relations is already needed elsewhere.

Moreover, we do not need to introduce special relations to remove binding edges,
or merge unbound nodes. In previous presentations of graphic types (Rémy and
Yakobowski 2007) we used not to bind monomorphic nodes. Therefore ⊑rmw was
in fact equal to ⊑m, which captured the merging of unbound graphs. Perhaps sur-
prisingly, proofs involving ⊑m were very tedious. A good example is the proof of
confluence of ⊑M and ⊑m (Lemma 6.7.2): without binding edges to “follow”, it it very
hard to tell whether τ ′ = Merge(n1, n2)(τ) holds, or merely τ ′ = τ [n1 = n2].

The other, perhaps more important difference, is that the graphic instance relation only
allows oriented similarity ⊑rmw, while the syntactic instance allows the whole equivalence
relation ≡. This is a key design choice:

• it allows using first-order unification with dags, hence efficient algorithms;

• it drastically simplifies reasonings on instance, as ⊒rmw does not “pollute” all the
proofs.

However, we still want to prove that similarity does not change the meaning of types.
Thus, in a second step, we show that our important results (essentially principality of
unification and principality of type inference) “commute” with similarity. Importantly, those
commutations are only needed for a few key theorems, instead of for all the proofs involving
⊑, ⊏− or ⊑rmw (which is essentially the case of all proofs).

8.1.3 Comparison with the original syntactic relations

Disregarding the fact that (graphic) ⊑ and ⊏− do not allow ⊒rmw, those two relations
are larger than their syntactic counterparts in the original syntactic presentation of MLF

(Le Botlan and Rémy 2003). We have highlighted examples of the differences in Figure 8.1.1;
all the transformations of this figure hold in graphic MLF, but not in this original syntactic
presentation. A cursory glance could give the impression that only ⊏− has been enriched;
this is of course misleading, as (⊏−) ⊂ (⊑).

The first two transformations τ1 ⊏− τ ′
1 and τ2 ⊏− τ ′

2 involve the meaning of rigid edges,
more precisely the idea that a single rigid edge is sufficient to freeze instantiation. In the
original presentation of MLF, abstraction was only possible in completely rigid contexts, of
the form O+, and those two transformations were not in ⊏−. (The types τ1 and τ ′

1 were in
instance relation; however the transformation was thus irreversible.)

116 Relating the syntactic and graphic presentations of MLF types

→

τ1

⊥ →

τ

⊏− →

τ ′
1

⊥ →

τ

→

τ2

⊥ →

→

τ

⊏− →

τ ′
2

⊥ →

→

τ

→

τ3

→

τ

⊏− →

τ ′
3

→

τ

→

τ4

→

→

τ

⊏− →

τ ′
4

→

→

τ

Figure 8.1.1 – Graphic relations not verified in the original syntactic presentation

This extension was first suggested by François Pottier, on the original syntactic presen-
tation. However, naively changing ⊏− would have broken type soundness by an intricate
interaction with context rules. Abstraction was extended simultaneously in this work, and
in a second syntactic presentation by Le Botlan and Rémy (2007). However, in the latter,
the introduction of a new relation, called protected abstraction, was necessary. Since graphic
types do not use context rules, we only had to change permissions to extend ⊏−.

The transformations τ3 ⊏− τ ′
3 and τ4 ⊏− τ ′

4 involve inert nodes. Again, only τ3 ⊑ τ ′
3 was

available in the original MLF, and τ4 and τ ′
4 were not in instance relation at all. Originally,

we had not introduced inert nodes on graphic types (Rémy and Yakobowski 2007). However,
this broke a subtle invariant in the proof of completeness of the unification algorithm. In
retrospect, although we first introduced inert nodes for technical reasons, their explanation
in System F is very simple, and easily carries over to MLF—thus the semantic justification
we gave in this document.

8.2 Translating graphic types to and from syntactic types

8.2.1 From graphic to syntactic types

Graphic types can be translated into syntactic types. In order to translate a node n, we first
introduce syntactic quantifications for all the nodes bound on n, by recursively translating
those nodes. Then we simply read the equation of n in the structure of the graph. The
corresponding algorithm is shown in Figure 8.2.1, the translation of a graphic type τ being
Sτ (〈ǫ〉). The algorithm associates to a node n of τ a variable αn.

8.2. Translating graphic types to and from syntactic types 117

Sτ (n) = ∀ (αn1

⋄
τ(n1) Sτ (n1)) ... ∀ (αni

⋄
τ(ni) Sτ (ni)) τ(n)(α〈n·1〉, ..., α〈n·arity(τ(n))〉)

where n1, ... ni is one ordering of (−−_ n) for +−−⊸, lowest nodes first

Figure 8.2.1 – Translation from graphic to syntactic types

Lemma 8.2.1 Given a graphic type τ , Sτ ({ǫ}) is a well-scoped syntactic type. �

Proof: The proof is a consequence of well-domination. Suppose that the translation uses
αn. Then we are translating nk, with n = 〈nk · i〉 for some i. We need to prove that
αn is in scope when nk is translated. To translate nk, we have followed a mixed path
{ǫ} = n1 −̂− ... −̂− nk. Hence the path n1 −̂− ... −̂− nk −−⊸ n is correct. By
well-domination, n̂ is in {n1, ..., nk}; Let us suppose it is nl for a certain l.

⊲ If l is not k: n is lower in the type than nl+1. Hence αn has been introduced earlier,
when the nodes bound on nl have been bound.

⊲ If l is k: αn is introduced just before the structure of nk is translated.

The algorithm is not deterministic, as −−⊸ is only a partial order. However this non-
determinism is unimportant, as the differences are captured by the equivalence relation on
syntactic types.

Lemma 8.2.2 Given a type τ , if σ1 and σ2 are two translations of τ for different orderings
w.r.t. −−⊸, then σ1 and σ2 are equal up to some permutation of binders (hence syntactically
equivalent for ≡). �

Proof: Let n1, ..., ni and n′
1, ..., n

′
i be two ordering of (−−_ n) for a certain node n. We can

transform one ordering into the other using only transpositions of two elements. Moreover
there exists strategies that use only valid orderings. Each transposition is captured by one
application of the rule Eq-Comm of syntactic MLF.

Lemma 8.2.3 Sτ ({ǫ}) can be computed in linear time in the size of τ . �

Proof: Each structure and binding edge is visited once; thus it suffices to compute a
possible ordering for −−⊸ in linear time. This can be done by a depth-first traversal of τ
(for −−⊸). Each time all the successors of a node n have been visited, we add n at the
end of a list attached to n̂. Then the nodes bound on n must be translated in the order
indicated by the list attached to n. Depth-first searches can be done in linear time in the
size of the graph, hence the conclusion.

118 Relating the syntactic and graphic presentations of MLF types

8.2.2 From syntactic to graphic types

Since graphic types bind all the nodes of a graph, we limit ourselves to restricted syntactic
types, generated by the grammar

tr ::= α | C(α, ..., α)
σr ::= tr | ⊥ | ∀ (α ⋄ σr) σr

That is, we disallow monotypes of the form C(C(...), ...). Given a syntactic type, it is
always possible to transform it into an equivalent one (for ≡) that follows this restriction
by introducing new bounds for the monomorphic subtypes. The corresponding function B

is presented in Figure 8.2.2.

B(α) = α
B(C(τ1, . . . τn)) = ∀ (α1 > B(τ1)) . . .∀ (αn > B(τn)) C(α1, . . . , αn)

where α1, . . . αn are distinct from ftv(C(τ1, . . . τn))
B(⊥) = ⊥

B(∀ (α ⋄ σ) σ′) = ∀ (α ⋄ B(σ)) B(σ′)

Figure 8.2.2 – Binding monomorphic subtypes

The following result, whose proof is immediate, ensures that this function is correct.

Lemma 8.2.4 Given a syntactic MLF type σ, the type B(σ) is a restricted type. Moreover,
it is syntactically equivalent to σ (i.e. σ ≡ B(σ)) and can be computed in linear time in the
size of σ. �

The translation of a syntactic type into a graphic one needs to take into account free
variables. We introduce the notion of partial graph in order to model the objects returned
by this algorithm when it is called on non-closed syntactic types.

Definition 8.2.5 (Partial type) A graph τ is a partial type if there exists a set V of
bottom-labelled nodes of τ that are not bound in τ , and if τ is such that the graph obtained
by binding the nodes of V to the root of τ is a well-formed graphic type. �

The algorithm translating a restricted type σ into a graphic type Gρ(σ) is given in
Figure 8.2.3. It takes as input an environment ρ mapping any free variable of σ to a
bottom-labelled node; the translation of a closed type σ is simply Gǫ(σ), where ǫ is the empty
environment. The algorithm is defined inductively, and returns a partial type represented
by a standard graph (§3.2.1.2). New nodes are taken all distinct from one another in a global
pool of nodes (which is left implicit), using the notation “V(C)” to mean the allocation of a
fresh node labelled by C. Given a standard graph τ , we write r(τ) for its root node. We use
+ to aggregate elements (nodes, structure edges or binding edges) composing a standard
graph.

Translating the type ⊥ results in a type reduced to a single node labelled by ⊥. In the
case of a variable α, we simply return the node corresponding to α in the environment. For
the application of a constructor C, we create a new node labelled by C whose children are
the nodes corresponding to the variables that are the arguments of C. The most involved

8.2. Translating graphic types to and from syntactic types 119

Gρ(⊥) = V(⊥)
Gρ(α) = ρ(α)

Gρ(C(αi∈I
i)) = let n = V(C) in n +

(
ρ(αi) + n i−−⊸ ρ(αi)

)i∈I

Gρ(∀ (α ⋄ σ) σ′) = let τ = Gρ(σ) and nα = V(⊥) in
let τ ′ = Gρ, α 7→nα(σ′) in
if r(τ ′) = nα then τ else
if nα /∈ dom(τ ′) then τ ′ else
τ ′[τ/nα] + r(τ) ⋄−−_ r(τ ′)

Figure 8.2.3 – Translation from syntactic types to types

case is ∀ (α ⋄ σ) σ′. We start by translating the bound σ into τ . Then we translate σ′ into
a type τ ′, in an environment mapping α to a fresh variable node nα. Then we graft τ at
nα in τ ′ and bind the root of τ (or equivalently nα) to the root of τ ′, with the appropriate
flag. There are however two special cases:

• When σ′ is equivalent to α, which implies that τ ′ is nα (hence also r(τ ′) = nα), we
simply return the translation of σ. This is the equivalent of the syntactic rule Eq-Var,
which states that ∀ (α > τ) α ≡ τ .

• In some cases, the bound σ of α might not be useful. This happens if α /∈ ftv(σ′),
but also more generally if α does not appear free in nf(σ′), where nf is the syntactic
normal form of a type. We detect this case by checking whether nα is in τ ′. If it is
not, we can directly return τ ′, without grafting τ or adding the binding edge.

This algorithm returns a correct type:

Lemma 8.2.6 Given a closed syntactic restricted type σ, Gǫ(σ) returns a graphic type. �

This result is an immediate consequence of the more general one below.

Lemma 8.2.7 Given a syntactic restricted type σ and an environment ρ mapping at least
ftv(σ) to bottom-labelled nodes, Gρ(σ) returns a partial type in which only the nodes of
codom(ρ) are unbound. �

Proof: We slightly strengthen our result, and also prove that the nodes in the graph
returned by Gρ(σ) are fresh, except for those in dom(ρ). The proof is by induction on
the shape of σ. The first three cases are immediate, and it remains to consider the case
∀ (α ⋄ σ) σ′.

⊲ Case Gρ(∀ (α ⋄ σ) σ′) = τ : this case is immediate by induction hypothesis.

⊲ Case Gρ(∀ (α ⋄ σ) σ′) = τ ′: by induction hypothesis, τ ′ is a partial graph in which only

the nodes of codom(ρ) and nα are not bound. However, nα is not in τ ′ by hypothesis.
Thus only the nodes of codom(ρ) are unbound, which is the desired result.

⊲ Case Gρ(∀ (α ⋄ σ) σ′) = τ ′[τ/nα] + r(τ) ⋄−−_ r(τ ′): by induction hypothesis, τ = Gρ(σ)

and τ ′ = Gρ, α7→nα (σ′) are partial types, with no common nodes between them except

120 Relating the syntactic and graphic presentations of MLF types

for those in the codomain of ρ and nα (1). Moreover, nα does not appear in τ and the
nodes of codom(ρ) ∪ {nα} are not bound in τ and τ ′.
Let τ ′′ be τ ′[τ/nα] + r(τ) ⋄−−_ r(τ ′). τ ′′ is a correct pre-type, up to the unbound nodes:

the only non-immediate property is the acyclicity of τ̆ ′′ and τ̂ ′′, which is ensured by
(1) (as only leaves are shared between τ and τ ′). It remains to prove that τ ′′ is well-
dominated. For the nodes unbound in τ ′′, the result is immediate (as they would be
well-dominated once they are bound to the root). Thus, consider a bound node n of τ ′′.

◦ Case n ∈ τ ′: all the mixed paths to n in τ ′′ are mixed paths in τ ′ by (1). Hence
the result is by well-domination of τ ′.

◦ Case n = nα: the binder of n is the root. Thus well-domination is immediate.

◦ Case n ∈ τ : all the mixed paths to n contain nα, by (1). Hence, all those mixed
paths end by mixed paths of τ , and the result is by well-domination of τ .

Moreover, the translation can be performed in linear time.

Lemma 8.2.8 Given a syntactic type σ, the computation of G(σ) can be done in linear
time in the size of σ. �

Proof: The proof is by induction on σ. All cases are structurally recursive on σ, except
the check nα /∈ dom(τ ′). The easiest solution is not to perform this check at all during
the translation. Instead, we add a cleaning operation at the end of the algorithm, which
removes all parts of the type not reachable from the root by +−−⊸; the nodes that would
have been eliminated by the check are those only accessible through +−̂−.

8.3 A simple syntactic sugar to display types

MLF types are often cumbersome to read (and even more to write). Unfortunately, even
simple functions might have complex principal MLF types. For example, the principal type
of λ(x) λ(y) λ(z) z in MLF is

∀ (α) ∀ (α′ > ∀ (β) ∀ (β′ > ∀ (γ) γ → γ) β → β′) α→ α′

compared to the one in ML

∀α. ∀β. ∀γ. α→ β → γ

The MLF type is much more complex, as it uses additional type variables (α′ and β′) for
the bounded quantification. Furthermore, the structure of the type is not readily apparent:
α and α′ are quantified next to the other, even though one is used on the left of the arrow,
and the other on the right.

Graphic types offer a partial remedy to this problem. In particular, the graphic repre-
sentation of both types (given in Figure 8.3.1) makes apparent that they have exactly the
same skeleton.1 It is also easy to see that the ML type is an instance of the MLF one.

1We have intendedly not bound the monomorphic nodes in the ML type, in order to make the comparison
fairer. Indeed, monomorphic nodes need not be presented to the programmer.

8.3. A simple syntactic sugar to display types 121

→

⊥ →

⊥ →

⊥

→

⊥ →

⊥ →

⊥

Figure 8.3.1 – MLF and ML type for λ(x) λ(y) λ(z) z

Nevertheless, graphic types may look as plainly unfamiliar to the ML programmer as
MLF syntactic types do. Thus we propose to display MLF types as syntactic types, using
a simple syntactic sugar that removes in practice a lot (if not all) of the occurrences of
bounded quantification.

8.3.1 Inlining bounds

The general idea is the following: when translating a graphic type into a syntactic type,
we inline the bounds which can be rebuilt unambiguously when the inverse translation is
performed. Indeed, we want our syntactic sugar to be bijective.

This restriction means in particular that we never inline the bound of a variable which
is used twice.2 Moreover, we must be able to reconstruct the binder and the binding flag of
the bound. For the binder, we require from the node we translate to be bound exactly to
its structural ancestor; otherwise, we do not inline it. For the binding flag, we use the vari-
ance of the constructor of this ancestor: we inline flexible edges on arguments in covariant
positions, and rigid edges on arguments in other positions (nonvariant or contravariant).

◮ Example Consider the first graphic type of Figure 8.3.1, whose corresponding syntactic
type was given at the beginning of the previous section. The bounds of the nodes 〈2〉 and
〈22〉 can be unambiguously inlined, as they verify the conditions above. Indeed:

• each node is “used” only once, i.e. there is a unique structure path from its bound to
the node itself;

• the two nodes are bound to {ǫ} and 〈2〉 respectively, which are their structural ances-
tors;

• they are flexibly bound, and the arrow constructor is covariant on its second argument.

As a result, we obtain the syntactic type

∀ (α) α→ ∀ (β) β → ∀ (γ) γ → γ

2As the examples below will show, this is weaker than saying that we do not inline shared nodes.

122 Relating the syntactic and graphic presentations of MLF types

Of course, this type is still not as simple as the ML type. This is not entirely surprising:
as MLF types generalize System F types, it is unlikely we would be able to remove inner
quantification altogether. However, we believe that programmers willing to require second-
order polymorphism will not be put off by System F types.

→

τ1

→

τ τ

→

τ2

→

τ τ

⊥

→

τ3

⊥ →

⊥ →

τ τ

→

τ4

→

τ τ

→

τ τ

Figure 8.3.2 – Inlining bounds

◮ Another example Consider the types of Figure 8.3.2. In all four cases, the subtrees
representing the type τ → τ can be inlined. However, this is not always the case for the
other quantifications, and we have highlighted the edges that can be inlined. We detail each
type below.

• in τ1, the node 〈1〉 is used twice, as 〈1〉 = 〈2〉. Hence we cannot inline its bound. Thus
τ1 is written as

∀ (α > τ → τ) α→ α

• In τ2, 〈1〉 is used only once and is bound to its ancestor, but the variance does not
match. Indeed, 〈1〉 is flexibly bound, but it is the first argument of an arrow, which
is contravariant in its first argument. Thus τ2 is written

∀ (α > τ → τ) α→ ⊥

• In τ3, while 〈22〉 is used only once and flexibly bound, it is bound to 〈ǫ〉 and not to
its structural ancestor 〈2〉. Hence we do not inline its bound. However we can inline
the bound of 〈2〉. This results in

∀ (α) ∀ (β > τ → τ) α→ (∀ (γ) γ → β)

Interestingly, a syntactic sugar similar to ours has been proposed by Leijen and Löh
(2005, §2.6). However, theirs did not take the binder of the node to inline into account,
and was thus not bijective. Indeed, it would have inlined β into the type above,
resulting in the same translation as the type τ ′

3 derived from τ3 by binding 〈22〉 to
〈2〉 instead of 〈ǫ〉. (We also suggest to use the variance of all type constructors, while
they restrain themselves to the arrow constructor but this is more anecdotical.)

8.3. A simple syntactic sugar to display types 123

• Finally, in τ4, all the bounds can be inlined, and we simply write this type as

(τ → τ)→ (τ → τ)

8.3.1.1 In practice

The restrictions above can seem quite drastic, and one could think we rarely inline bounds.
This is however not the case. In fact, in practice, we have found that most terms have a
principal type which is in System F after inlining. In general, only partial application of two
polymorphic terms—which are infrequent, especially at toplevel—have types that cannot
be simplified.3 For example, consider the term λ(x) (λ(y : σid) y). Its principal type is

∀ (α) ∀ (α′ > ∀ (β = σid) ∀ (γ > σid) β → γ) α→ α′

After inlining, we obtain the much more readable type

∀ (α) α→ σid → σid

More generally, in MLF, an annotated λ-abstraction of the form λ(x : τ) a receives a
principal type of the form

∀ (α = τ) ∀ (β > τ ′) α→ β

with α /∈ ftv(τ ′). This means that we can always inline such a type into τ → τ ′.

Moreover, since our convention respects the variance of constructors, it is always clear
when a type variable can be instantiated by ⊑ in an inlined type. This is quite useful, as
the simplest instances of the type can be predicted without knowing the full definition of
the MLF instance relation. Indeed, disregarding non-arrow constructors for simplicity, the
following simple rule holds:

a variable can be instantiated if the subtype at which it is introduced is reached by
descending only on the right of arrows, and following only flexible quantification.

◮ Example Consider again the type ∀ (α) α → σid → σid discussed above. If we expand
the definition of σid, we obtain

∀ (α) α→ (∀ (β) β → β)→ (∀ (γ) γ → γ))

In this type, β cannot be instantiated (since it appears at the left of an arrow), but both α
and γ can.

8.3.2 Algorithm

Interestingly, graphic types are more suited to formally describe the algorithm for inlining
bounds: on syntactic types, the order between quantifier—e.g. ∀ (α ⋄1 σ1) ∀ (β ⋄2 σ2) σ
versus ∀ (β ⋄2 σ2) ∀ (α ⋄1 σ1) σ—makes the definition cumbersome. However this is just a
matter of convenience, and the algorithm can be adapted to the syntactic presentations of
MLF.

3 An example is the type ∀ (α > ∀ (β) β → β) α → α of choose id. As the bound of α is used twice, it
cannot be inlined.

124 Relating the syntactic and graphic presentations of MLF types

Let us write Vari(C) for the variance of the type constructor C on its ith argument; for
example, Var1(→) = − and Var2(→) = +. We define a predicate that asserts whether or
not a node can be inlined when translating a type τ .

Inline(τ, n) , ∃i ∈ N,∧





{π | τ̂(n) π−−⊸ n} = {i}

∨

[
⋄
τ(n) = (>) ∧ Vari(τ(n)) = +
⋄
τ(n) = (=) ∧ Vari(τ(n)) 6= +

The first condition ensures that n is used exactly under the node to which it is bound, and
only once. The second condition checks that the binding flag and the variance coincide.
The (straightforward) adaption of the algorithm S of Figure 8.2.1 to take into account the
fact that bounds can be inlined is presented in Figure 8.3.3. In fact, S is exactly SI in
which Inline is replaced by a predicate that is always false.

SI
τ (n) = B(n1) · · ·B(ni) τ(n)

(
V(n · 1), . . . , V(n · arity(τ(n)))

)

where n1, ... ni is one ordering of (−−_ n) for +−−⊸, lowest nodes first

and B(nk) ,

{
nothing if Inline(τ, nk)
∀ (αnk

⋄
τ(nk) SI

τ (nk)) otherwise

and V(n · k) ,

{
SI

τ (〈n · k〉) if Inline(τ, 〈n · k〉)
αn·k otherwise

Figure 8.3.3 – Translation from graphic to syntactic types with inlining

Interestingly, both the size of the resulting type and the complexity of the translation
are linear in the size of the argument.

Lemma 8.3.1 SI(τ) can be computed in linear time, and has linear size in the size of τ .�

Proof: Only bounds used linearly are inlined. This ensures that no bound is inlined more
than once, and the resulting syntactic type has a size linear in the size of the translated
graphic type.

To show that the translation can be performed in linear time, let us first show that we can
compute Inline(τ, n) in linear time for a whole type τ . For this, we perform a depth-first
traversal of τ . During the traversal, when encountering a node n (after having followed an
edge n′ i−−⊸ n), we mark n « non inlinable » if either:

• n̂ is not n′;

• n has already been encountered

• if Vari(τ (n′)) does not match
⋄
τ (n)

Then all nodes not marked « non-inlinable » can be inlined. Depth-first search has linear
complexity, and each of the operation above can be done in constant time. Thus the entire
operation can be done in linear time. The remainder of the proof is then the same as for
Lemma 8.2.3.

8.3. A simple syntactic sugar to display types 125

8.3.3 Inlining monomorphic nodes

When presenting types to the user, inlining monomorphic bounds is almost mandatory.
Indeed, they are only notational artifacts, and do not bring any useful information (§13.2
will give a formal meaning to this affirmation). Conversely, displaying them compromises
the readability of the types.

An algorithm inlining such nodes can be obtained very easily from SI , by modifying the
predicate Inline so that Inline(τ, n) also holds for all nodes n monomorphic in τ . There are
however two important consequences:

1. SI is no longer injective.

This is actually by design: similar types are mapped to the same syntactic type.
Moreover the converse property also holds: two types mapped to the same syntactic
type are similar. This justifies that this translation is still only a form of syntactic
sugar, but this time up to similarity.

2. The translation has exponential time worst-case complexity.

This is an unfortunate, but unavoidable consequence. The sharing of monomorphic
nodes bring some conciseness to the display of graphs, which is lost when monomorphic
bounds are inlined.

Of course, this is not specific to MLF graphic types. In syntactic MLF, the normal form
of a syntactic type can be exponentially bigger than the type itself, for exactly the same
reason. Similarly, in ML, the textual representation of a type can be exponentially
bigger than the internal representation of the type as a dag.

Part

II

Graphic constraints

127

9
Graphic constraints

Abstract

We extend graphic types to graphic constraints, which will be the basis for MLF

type inference. We first consider the basic constructs that would be needed to perform
ML type inference with graphic types (§9.1). We generalize these to MLF, and formally
define MLF constraints as a small extension of graphic types (§9.2). We isolate from
those constraints the subset of ML constraints, and propose a ML type instance relation
(§9.3). Finally we define how to translate a λ-term into a typing constraint (§9.4).

9.1 An informal presentation of graphic constraints

9.1.1 Our approach

We have shown in §7 how to perform unification on graphic MLF types. Thus, we could
theoretically perform MLF type inference using the syntactic MLF type inference algorithm
(Le Botlan and Rémy 2003): for the most part, this algorithm is the adaptation of the
ML type inference algorithm to the use of MLF unification. However, this would involve
repeatedly translating to and from graphic types; such an approach would be inelegant,
and would make reasoning difficult.

Thus we propose an entirely graphic approach to type inference. Moreover, we do not
limit ourselves to a type unification algorithm, but instead develop a constraint-based frame-
work. The interest of using constraints to perform type inference is well-known (Pottier
2004; Pottier and Rémy 2005). In our case, we present in fact two very similar constraints
systems, one for ML and one for MLF. This allows us to easily compare the expressivity
of both systems. Our approach can also easily be modified to accommodate other type
systems based on graphic types (§17.2).

In order to be more gentle, we start by considering ML type inference, and explain
what constructs are needed to encode ML typing problems into graphic constraints. The

129

130 Graphic constraints

extension to MLF graphic constraints will then be straightforward. The remainder of this
section is intendedly rather informal; formal definitions are given in the subsequent sections.

9.1.2 Graphic ML type inference without generalization

ML type inference is essentially based on first-order unification and type generalization. Let
us focus on unification first. In order to type an application a b, a straightforward ML type
inference algorithm typically proceeds as follows:

1. introduce two fresh type variables α and β;

2. recursively type a and b

3. unify the type found for a with α→ β;

4. unify the type found for b with α (which has potentially been instantiated by the
previous step)

5. return β (which has potentially been instantiated by the two previous steps).

Adapting this approach to graphic types is not really difficult once we add existential nodes,
which are nodes only present to constrain other parts of graphic types.

a

b

→

⊥ ⊥

→

⊥ a ⊥

x

Figure 9.1.1 – Typing graphically an application or an abstraction

◮ Example Figure 9.1.1 shows possible graphic constraints, for the typing of an application
a b and for an abstraction λ(x) a.

Let us focus on the constraint for the application (on the left) first. We introduce a
subconstraint for a, another one for b, and the graphic type for the type ∀α. ∀β. α → β.
Then we add unification edges (which have been introduced in §7.6 to represent
generalized unification problems) to the subconstraints for a and b—thus requiring that
the types of these expressions unify to α → β and α respectively. The resulting type for
the entire application is the node circled in blue, i.e. the codomain of the arrow, which
represents β. All nodes but this last one can can be viewed as existential nodes, as they are
not reachable from the result node through structure edges. Indeed, they exist merely for
type inference purposes, and are not part of the result.1

Let us now consider the constraint for the abstraction λ(x) a. We introduce again the
graphic type for ∀α. ∀β. α → β. This time however, this type is the return type for the
constraint. Then we constrain the type of a to be unified with β, and we constrain all the

1Of course, some sharing can occur, and some nodes will likely not be existential when the constraint
is solved. This is typically the case for the node representing α, which will be shared with the one for β if
a has a type instance of γ → γ.

9.1. An informal presentation of graphic constraints 131

occurrences of x in a to be unified with α (thus the leftmost unification edge is actually a
meta-edge, standing for possibly multiple edges). This time, only the subconstraint for a is
existential.

9.1.3 (Graphic) type schemes and generalization

ML type inference cannot be done solely using unification. Indeed, when typing a construct
let x = a in a′, the type found for a must be generalized when a′ is typed, and each
occurrence of x in a′ is typed with a fresh instance of the type for a.

In ML, this is partly done by distinguishing between types and type schemes, since
generalization can be seen as transforming a type into a type scheme. We use the same
mechanism in our graphic constraints, and introduce a type constructor G for the purpose
of representing type schemes. Nodes labelled by G, which we call gen nodes for reasons
explained below, are also used to delimit scopes and to bind variables.

χ G

g G

→

⊥

→

⊥

χ′ G

g G

→

⊥

→

⊥

χ′′ G

g G

→

⊥

→

Figure 9.1.2 – Graphic type schemes

◮ Example Consider the first three constraints of Figure 9.1.2. Each constraint contains
two gen nodes, the root 〈ǫ〉 and the node g, bound at 〈ǫ〉. We extend the syntax of paths to
allow named nodes such as g. For example, in all three constraints the rightmost lowermost
bottom node can be designated by either 〈g12〉, 〈11〉 or 〈12〉.

The node g of the constraint χ represents the type scheme ∀ (α) α→ β: the node 〈g11〉
representing α is bound at g, while the node 〈g12〉 representing β is bound above g, and is
thus the equivalent of a free variable for g. By contrast, in the constraint χ′, both variables
are bound above g; hence g represents the type scheme α→ β, which is monomorphic in the
context of g (and has thus no instances). The root node represents the same type scheme
∀ (β) β → β in all three constraints. Notice the binding edge between g and the root, which
is used to materialize the inclusion of scopes: g is in the scope of the root gen node.

9.1.3.1 Why gen nodes?

It might seem strange to introduce a special node for type schemes, as we have strongly
argued against the addition of special nodes for quantifiers (§3.3). We thus briefly motivate
our choice below.

First, we do not introduce a node for each quantifier: for example, the constraint χ of
Figure 9.1.3 represents the type scheme ∀ (α) ∀ (β) α → β. Similarly, we do not remove

132 Graphic constraints

χ G

→

⊥ ⊥

χ′ G

→

⊥

→

⊥ ⊥

Figure 9.1.3 – More advanced examples of graphic types schemes

gen nodes when they become monomorphic, as examplified by g in the constraints χ′ and
χ′′ of Figure 9.1.2. Thus the structure of the constraint will not change when variables are
instantiated, unlike what would have been needed for ∀ constructors.

Secondly, and more importantly, gen nodes do not only represent type schemes, but
also generalization levels (hence their names and the letter G). Generalization levels are
very similar to the notion of ranks used in efficient ML type inference algorithms (Pottier
and Rémy 2005; Kuan and MacQueen 2007; Rémy 1992), a fact which will become more
apparent once we present the translation from λ-terms to typing constraints.

Moreover, gen nodes are a mechanism to introduce schemes, not just a single scheme.
Indeed, by adjusting the number of structural successors of the constructor G, we can
introduce more than one type scheme. Those schemes are essentially independent—as long
as they do not share nodes—and are only linked by the fact that they are generalized
at the same level. Such a construction can be useful for example to type a construct
let x = . . . and y = . . . in

◮ Example The root gen node of the constraint χ′ of Figure 9.1.3 introduces two type
schemes, ∀α. α→ α and ∀α. ∀β. α→ β respectively.

Thus, in the following, we call type scheme a node of the form 〈g · i〉. We let the letter
s range over such nodes.

9.1.3.2 Merging variables

On graphic constraints, merging is restricted to variables bound at the same gen node: we
can only merge variables of the same scope. If this is not the case, at least one of the variable
must be raised beforehand. Notice the similarity with graphic types, in which nodes must
be binding-congruent.

◮ Example Consider the nodes 〈g11〉 and 〈g12〉 in Figure 9.1.2. In χ, they cannot be
merged. However, the node 〈g11〉 can be raised, resulting in the constraint χ′. The merging
is now possible, and results in the constraint χ′′.

In graphic constraints, raising results in the extrusion of the polymorphism to the enclos-
ing generalization level. Readers familiar with rank-based ML type inference can recognize
the similarity between such a raising and adjusting the ranks of two variables about to be
unified.

9.1. An informal presentation of graphic constraints 133

9.1.3.3 Binding nodes

In Figure 9.1.1, we have left some nodes (in particular the subconstraints for the expres-
sions a and b) unbound. However, this was only to avoid complicating the explanations at
this stage. Since variables need to be raised to a common binder before they are merged,
the binding edges in a graphic constraint must verify at least two properties:

1. the binding edges must form a tree;

2. a node on which a variable is transitively bound must itself be bound.

Notice the similarity between the first point and the equivalent one in graphic types.

9.1.4 Type instantiation

G

G
g

→

⊥

→

⊥ ⊥

→

⊥ ⊥

1
2

G

G
g

→

⊥

→

⊥ ⊥

→

n

⊥

→

⊥ ⊥

→

n′

⊥

1

2

G

G
g

→

⊥

→

⊥ ⊥

→

→

⊥

1

2

Figure 9.1.4 – Instantiation edges

Once we have introduced type schemes, we can add instantiation constraints, which require
a type to be an instance of a type scheme. As we mentioned, this is in particular needed
to type let constructs. We represent such an instantiation constraint by an oriented red
edge linking the type scheme to the constrained type. On gen nodes that introduce
more than one type scheme, we add on the edge an integer i that indicates which scheme
is meant.

◮ Example Consider the first constraint of Figure 9.1.4. The root gen node introduces the
type scheme ∀α. ∀β. α → β. The gen node g introduces the two type schemes ∀α. α → α
and ∀α. α→ γ, where γ is quantified at the level of the root.

The topmost instantiation edge (labelled by 1) constrains the node 〈1〉 to be an instance
of ∀α. α → α, while the lowermost one constrains 〈11〉 to be an instance of ∀α. α → γ.
In the second constraint, we have created a fresh instance of each scheme, and added the
unification edges corresponding to the instantiation ones. Notice that the node 〈n2〉 is
shared with 〈g22〉. Indeed, 〈g22〉 cannot be generalized when we take an instance of 〈g2〉,
as it is bound above g.

Solving the unification edges of the second constraint results in the third constraint of
the figure, in which the root gen node now represents ∀α. ∀γ. (α→ γ)→ (α→ γ). In this
graph, the constraints represented by the instantiation edgess are solved. Notice that we
do not remove the edges: by instantiating g more, the edges could become unsolved again.

134 Graphic constraints

9.2 Graphic constraints as an extension of graphic types

Instead of as an independent formalism, we choose to see graphic constraints as a small
extension of MLF graphic types. This avoids the introduction of an entirely new framework,
and allows reusing the results already established on graphic types.

There are some differences between the constraints we have presented informally in the
examples of the previous section and the ones we define below. There are three kinds of
reasons for these changes:

1. generalizing to MLF constraints;

2. seeing graphic constraints as an extension of graphic types;

3. simplifying the reasoning on constraints.

In particular, following point 2, we bind all the nodes (except the root), exactly as in graphic
types. The other most important difference, due to both points 2 and 3, is the fact that we
stratify constraints. That is, we do not allow a constructor G to appear under a constructor
such as → (such a construction is not useful to us anyway). Thus, constraints are split,
with a «constraint» part on the top, and a «type» part on the bottom. Thanks to this
separation, we will be able to reason about the type part exactly as on graphic types.

9.2.1 A formal definition of constraints

We extend the algebra of type constructors Σ by adding a family of symbols Gk, for every
integer k. We also introduce two sorts Gen and Type . A symbol Gk has signature

Gk : Typek ⇒ Gen

while all others constructors have signature

C : Typearity(C) ⇒ Type

Thus gen nodes cannot appear under nodes of sort Type, which are called type nodes. We
let the letter g range over gen nodes. Since we can always deduce which symbol Gk is meant
by looking at the number of its structural successors, we write all symbols Gk as G.

The formal definition of graphic constraints is given below; we simultaneously define the
nodes we call existential, and introduce a new definition of admissible unification problems.
For brevity, the definitions reuse some notations and terminology of graphic types.

Definition 9.2.1 (Graphic constraints) A graphic constraint χ is a graph built from
structure, binding, unification and instantiation edges, and which also associates to a node
n a binding flag ⋄

χ(n). We write χ̆ (resp. χ̂) the restriction of χ to structure edges (resp.
binding edges). The graph χ must moreover verify the following properties:

1. for any node n of χ, the graph χ̆/n is a well-formed acyclic term-graph, in which
constructors are well-sorted;

2. χ̂ forms an upside-down tree of domain dom(χ̆) rooted at 〈ǫ〉;

3. dom(
⋄
χ) = dom(χ) \ {〈ǫ〉}

4. the root node of χ is a gen node;

9.2. Graphic constraints as an extension of graphic types 135

5. all gen nodes are flexibly bound;

6. existential nodes (Definition 9.2.2) are bound on gen nodes;

7. unification edges link two type nodes;

8. unification edges are admissible (Definition 9.2.3);

9. an instantiation edge g
i

d links a gen node g of arity at least i to a type node;

10. any node destination of an instantiation edge is bound on a gen node;

11. χ is well-dominated, i.e. all mixed paths between the root and a node n contains n̂.

Constraints are moreover quotiented by the addition and removal of unification edges whose
two extremities are the same node. �

Definition 9.2.2 (Existential nodes) A node n of a constraint χ is existential if n and
χ̂(n) are in two different partitions of χ̆ for ∗−−⊸. A node different from the root is purely
existential if there does not exist a node n′ such that n′ −−⊸ n ∈ χ. �

Definition 9.2.3 (Admissible unification edges in constraints) A unification edge
n1 n2 is admissible on a constraint χ if either n1 or n2 is bound on a gen node. �

Let us comment those definitions. Disregarding unification and instantiation edges, condi-
tions 1, 2 and 3 ensure that the only difference between a graphic constraint and a graphic
type is the fact that some nodes are not structurally reachable from the root. However,
given the shape of χ̂, all nodes are reachable by a binding path, hence by a mixed path.

Condition 5 reflects the fact that the binding edges of gen nodes should not alter per-
missions. Indeed, those edges are only present to allow the extrusion of polymorphism from
one generalization level to the enclosing one. We could instead have introduced a third
kind of edges, «neutral» w.r.t. permissions, but they would have behaved the same way as
flexible edges.

Condition 6 is technical, and will be discussed in §11.1.1.
Condition 7 forbids unification edges between two gen nodes. Such an edge would be

unsolvable: gen nodes encode in particular the shape of the constraint, and this shape will
remain invariant through instance. Moreover, while we could give a meaning to the merging
of two generalization scopes, this meaning would be very different from the one of merging
two type nodes.

Condition 8 limits unification edges to ones solvable in a principal way. We do not reuse
the definition of admissibility on graphic types (Definition 7.2.1) because it is not entirely
immediate to generalize it to graphic constraints (since χ̆ is not necessarily a rooted graph,
the relation −−≫−⊸ is not always defined on χ). Moreover, even after having been properly
extended, this definition would still be too weak for the typing constraints we have in mind.
The correctness of our new definition will be proven in §11.2.

Condition 9 requires instantiation edges to be well-sorted. That is, they must constrain
a type to be an instance of a type scheme.

Condition 10 is also technical. Without it, our system would not be stable by the
propagation operation defined in §10.3.

Condition 11 is the same as in graphic types, and ensures that the type part of constraints
is correctly scoped.

136 Graphic constraints

Convention In the examples, we name the nodes to which we need to refer and that are
not reachable from the root by structure edges. We extend the syntax of paths using those
names, e.g. 〈g11〉. In drawings we never draw unification edges whose two extremities are
the same node. (In fact, we often suppose that constraints do not contain such edges.) We
also always omit the «1» on top of an instantiation edge g d1 if g has a single structural
successor.

9.2.1.1 Existential nodes

Our definition of existential nodes is mostly technical, and might seem a bit strange—in
fact, purely existential nodes are more natural to comprehend. In essence, a node n is
existential w.r.t. the subgraph it resides in. We can reason about a partition of χ̆ for ∗−−⊸
as if it were a graphic type, except on existential nodes which form a frontier between the
type part and the constraint part of constraints.

χ G

G
g

n →

→

⊥

→

concr(χ) G

G
g

n →

→

⊥

→

Figure 9.2.1 – Existential nodes

◮ Example Consider the constraint χ of Figure 9.2.1. The nodes n and g are both purely
existential and existential, while 〈g1〉, 〈n1〉 and 〈n11〉 are only existential.

By construction, purely existential nodes are existential, but the converse does not hold.
By well-sortedness, all gen nodes are purely existential. Notice that existential nodes, pure
or not, can be of any sort. However, gen existential nodes are above type existential nodes,
by condition 6. In the following we call existential edge a binding edge n −−_ n′ when n is
an existential node.

9.2.2 Properties of constraints

The well-formedness of constraints ensures some important invariants. We give three of
them below.

Property 9.2.4 All gen nodes have green or inert permissions. All existential nodes have
green, orange or inert (hence non-red) permissions. �

9.2. Graphic constraints as an extension of graphic types 137

Proof: By well-sortedness, the binding tree above a gen node g is of the form 〈ǫ〉 −̂−
g0 . . . −̂− g. The conclusion is then immediate by conditions 5 and 6 of Definition 9.2.1.

Lemma 9.2.5 Any node reachable (by a mixed path) from a type node is a type node. �

Proof: Let n be a type node. Consider n′ such that n P−̂⊸ n′. The proof is by induction
on P .

⊲ If P is the empty path: then n′ = n which is indeed a type node.

⊲ If P is n −−⊸ n′′ P ′

−̂⊸ n′: n′′ cannot be a gen node, by well-sortedness. Hence n′′ is a
type node. The conclusion is by induction hypothesis.

⊲ If P is n −̂− n′′ P ′

−̂⊸ n′: n is a type node, hence no gen node is bound on it. Conse-
quently, n′′ is a type node. The conclusion is again by induction hypothesis.

As a corollary of this second result, the existential edges of a constraint do not change the
set of paths under a type node. This shows the small amount of difference between the type
part of a constraint and a graphic type.

Corollary 9.2.6 Consider a type node n of a constraint χ. No mixed path starting from n
contains an existential edge. �

Proof: Consider a mixed path P starting from n, and suppose that it contains an existential
edge n′ −−_ n. Then n is a gen node by condition 6 of Definition 9.2.1. This contradicts
Lemma 9.2.5.

Finally, even though we only requested the acyclicity of the structural subgraphs of a
graphic constraint, the superposition of the structure and of the binding tree is acyclic, as
in graphic types.

Lemma 9.2.7 Given a constraint χ, the relation −̂⊸χ is acyclic. �

Proof: By contradiction, let n be a node of χ in a cycle. Let P be a non-empty mixed
path from n to n. By condition 1 of Definition 9.2.1, at least one of the edges of P is
an inverse binding edge n′ −̂− n′′; we call this edge e. Without loss of generality we can
suppose it is an existential one, as otherwise we could replace it by some structure edges,
and we would have a cycle for −−⊸. By condition 6, n′ is a gen node. By well-sortedness,
all the edges before e in P are binding edges between gen nodes. In particular, n is a gen
node. The edges after e in P cannot all be binding edges: χ̂ would be cyclic, contradicting
condition 2. Thus there exists a structure edge n′′′ −−⊸ n′′′′ in P , and n′′′′ is a type node.
Together with Lemma 9.2.5, this means that n is a type node: contradiction.

138 Graphic constraints

9.2.3 Instance on graphic constraints

The instance operations on graphic constraints are the same as on graphic types, except that
the transformations are only allowed on types nodes. We however do not duplicate all the
definitions of §4 and §5, as there would be little point in doing so. Instead, a definition on a
type τ is implicitly changed to a definition on a constraint χ by replacing τ̆ (resp. τ̂ , ⋄

τ) by
χ̆ (resp. χ̂, ⋄

χ). This is always meaningful: the instance operators are only concerned by the
subgraphs under the nodes they transform and the permissions of the nodes they operate
on. Moreover, the fact that we only operate on type nodes ensures (by Corollary 9.2.6) that
existential edges are unimportant. We will formally justify this point in §9.2.5.

We usually reuse the symbol ⊑ to mean instance on constraints, as the differences with
graphic types are quite small. In the rare cases where the distinction is important, we write
t⊑ and c⊑ the instance relations on types and constraints respectively.

Definition 9.2.8 (Instance on constraints) A constraint χ′ is an atomic instance of a
constraint χ if:

• χ ⊑1 χ′ holds according to the definitions of §5.3;

• constraints edges are preserved (i.e. if there is an instantiation or unification edge
between two nodes n1 and n2 in χ, the same edge is present between the corresponding
nodes in χ′);

• – if χ′ = Raise(n)(χ), n is not a gen node;

– if χ′ = Merge(n1, n2)(χ), n1 and n2 are not gen nodes;

– if χ′ = Weaken(n)(χ), n is not a gen node. �

In particular, if χ ⊑ χ′, the shape of the gen nodes is exactly the same in χ and χ′.

Property 9.2.9 Instance preserves the well-formedness of constraints. �

Proof: Let us first notice that the property «being bound on a gen node» is stable by
instance (1). This is immediate for all the operations but raising; for raising, we simply
conclude by the fact that the binder of a gen node is a gen node.

Let χ be a constraint, χ′ derived from χ by an instance operation. We must show that χ′

is a well-formed constraint. Most of the conditions of Definition 9.2.1 are immediate and
we justify the others below.

⊲ Condition 6: for the nodes that were existential in χ, the result is by (1) and well-
formedness of χ. Otherwise, consider a node n existential in χ′ but not in χ. Existential
nodes can only appear through raising, and we had n −−_ n′ −−_ n′′ in χ with n′

existential. Thus n′′, which is the binder of n in χ′, is a gen node, and the result holds.

⊲ Condition 8: no new unification edge appears by instance. The result is thus immediate
by (1), the well-formedness of χ and the definition of admissibility.

⊲ Condition 10: no instantiation edge appears by instance, the conclusion is thus imme-
diate by (1).

⊲ Condition 11: well-domination is trivially preserved by all operations but raising.
Suppose thus that χ′ = Raise(n)(χ). Let n′ be a node of χ′, and P ′ a mixed path from
〈ǫ〉 to n′ in χ′. We must show that χ̂′(n′) is in P ′.

9.2. Graphic constraints as an extension of graphic types 139

◦ Case χ̂′(n) −̂− n is not in P ′: then P ′ is a valid path of χ.

◦ Case n′ is not n: P ′ contains χ̂(n′) by well-domination, and χ̂′(n′) = χ̂(n) by
the subcase hypothesis. Thus the result holds.

◦ Case n′ is n: by well-domination of χ, P ′ contains χ̂(χ̂(n′)), which is χ̂′(n′) by
construction.

◦ Case χ̂′(n) −̂− n is in P ′ (2): we replace this edge by χ̂(χ̂(n)) −̂− χ̂(n) −̂− n.
This gives us a valid path P of χ.

◦ Case n′ is not bound on χ̂(n) in χ: by this hypothesis n 6= n′; hence χ̂′(n′) =

χ̂(n′), which is contained in P by well-domination. Moreover χ̂(n) is the only node
of P that is not in P ′. Hence χ̂′(n′) is in P ′.

◦ Case n′ is n: this case is immediate by (2) and the subcase hypothesis.

◦ Case n′ is bound on χ̂(n) in χ and is not n: by (2) and this subcase we have

n +−̂⊸ n′ ∈ χ, hence n +−−⊸ n′ by Corollary 9.2.6 (since n is raised, it is a type
node). This contradicts the fact that n was raisable in χ.

Permissions in drawings Permissions are defined exactly the same way in types and con-
straints (as all the instance relation). In examples of graphic constraints, we however do
not color nodes according to their permissions. Indeed, we rarely use rigid edges, and
most nodes would be green or white. Instead, this leaves us the possibility to use colors to
highlight some important nodes.

In the few examples where permissions are shown, we only color type nodes: Prop-
erty 9.2.4 ensures that gen nodes have green or inert nodes. Moreover they are not really
concerned with permissions since they cannot be transformed.

9.2.4 Transforming constraints

We introduce two operators to transform constraints, beyond instantiation.

Definition 9.2.10 (Restriction) Let χ be a constraint and N a subset of its nodes. The
restriction of χ to N , written χ ↾ N , is the subgraph composed of all the nodes of N and
all edges between two nodes of N . �

Definition 9.2.11 (Constraint projection) The constraint projection cproj(χ) of χ is
the constraint obtained by removing all unification and instantiation edges from χ. �

9.2.5 From graphic constraints to graphic types

In this section, we go one step further in seeing graphic constraints as graphic types, and
map the former into the latter. To do this, we remove all constraint edges, and add some
new structure edges so that all existential nodes become structurally reachable.

Definition 9.2.12 (Concretization) A concretization of a constraint χ is a graphic type
τ that differs from cproj(χ) by the addition of some structure edges of the form g −−⊸ n,
where n is bound on a gen node. Such an edge is called a virtual edge. �

140 Graphic constraints

Concretization is purely technical. In particular, it does not respect well-sortedness, and
changes the arity of gen nodes. Notice also that the definition above is highly non-
deterministic: it specifies neither which virtual edges should be added, nor the order in
which they should appear as the structural ancestor of the gen node from which they orig-
inate. This is indeed unimportant for the use we have in mind.

Let us first show that concretizations exist. Let concr be defined as

concr(χ) , cproj(χ) ∪ {χ̂(n) −−⊸ n | n is purely existential in χ}

This definition is still not entirely deterministic, as we do not specify the order in which
the virtual edges are added under gen nodes. Any arbitrary order is acceptable.

Lemma 9.2.13 Given a constraint χ, concr(χ) is a concretization of χ. �

Proof: All existential nodes are bound on gen nodes. Hence it suffices to show that concr(χ)
it is a well-formed graphic type. The correctness of τ̂ and

⋄
τ is by conditions 2 and 3 of

Definition 9.2.1. The correctness of χ̆ is by condition 1 and the structure edges we add:

⊲ τ̆ is acyclic: immediate consequence of Lemma 9.2.7 and of the fact that we only add
structure edges that follow binding edges.

⊲ all the nodes of χ are structurally reachable by the root: we show a slightly stronger
result: if there exists a mixed path from n to n′ in χ, there exists a structure path from
n to n′ in τ . The proof is by induction on the length of the longest path P from n to
n′ in χ, which exists as −̂⊸χ is acyclic (Lemma 9.2.7).

◦ If P is of a length 0: we have n = n′ and the result is proven.

◦ If P is of length 1 and n −−⊸ n′ ∈ χ: the result is immediate as n −−⊸ n′ is in τ .

◦ If P is n −̂− n′ and n 6−−⊸ n′: let us justify that n′ is purely existential (1). Oth-

erwise there would exists n′′ such that n′′ −−⊸ n′. Then n ∗−̂⊸ n′′ would hold by
well-domination, and we would have a longer path between n and n′, as n′′ cannot
be n (since n 6−−⊸ n′). By (1), the edge n −−⊸ n′ is in τ , which is the desired result.

◦ If P is of length k ≥ 2: we split P in two and conclude by induction hypothesis
applied to each part,

⊲ constructors respect arities: only the arities of the binders of the purely existential
nodes change. By condition 6, they are gen nodes and the G constructor can have any
arity.

Finally, let us show that τ is well-dominated. Given a node n of τ and a mixed path P
from the root to n in τ , we can change it into a mixed path P ′ of χ by replacing the newly
introduced structure edges by the corresponding binding edges. Then we have exactly the
same nodes in P and P ′ by construction of τ . By condition 11. we have χ̂(n) in P ′, and
this node is also τ̂n, hence the conclusion.

◮ Example A concretization of the constraint χ of Figure 9.2.1 is the type concr(χ) given
in the same figure.

Let us briefly justify why we do not define concretization as a function, for example
as the image of a constraint by concr. While this is technically possible, it would be of
limited use: some problems arise because concretization does not commute with instance.
For example, purely existential nodes can disappear when they are merged with non purely

9.2. Graphic constraints as an extension of graphic types 141

existential ones. Thus, if χ ⊑M χ′, we do not necessarily have concr(χ) ⊑M concr(χ′).
Defining concretization as a relation is sufficient to sidestep this issue entirely, as will be
shown by Lemma 9.2.15.

Importantly, virtual edges do not change the graph under type nodes. This results holds
in particular for the structure paths under such a type node n.

Property 9.2.14 Consider a constraint χ, and τ a concretization of χ. Let n be a type
node of χ (or τ). The mixed paths under n are exactly the same in χ and τ . �

Proof: Immediate consequence of the definition of concretization and Lemma 9.2.5.

We can now show that the instance operations on type nodes are really the same on
graphic constraints and on graphic types.

Lemma 9.2.15 Let χ be a constraint, τ a concretization of χ, and o an instance operation
on a type node of χ. Then o can be applied to χ and χ c⊑1 o(χ) holds if and only if o can
be applied to τ and τ t⊑1 o(τ) holds. Moreover o(τ) is a concretization of o(χ). �

Proof: We first prove that o can be applied to τ iff it can be applied to χ.

⊲ Case o = Graft(τ ′, n) or Weaken(n): the result is immediate, as those two operations
are not concerned with the new structure edges.

⊲ Case o = Raise(n): the binding tree and permissions are the same in τ and χ. We thus
focus on the fact that n is raisable.

◦ raisable in τ implies raisable in χ: there are less structure edges in χ than in τ ,
which implies the result.

◦ raisable in χ implies raisable in τ : by contradiction, suppose that n′ is bound on n̂

and n +−−⊸ n′ ∈ τ . By Property 9.2.14, this path is also is χ, as n is a type node.
This contradicts the fact that n is raisable in χ.

⊲ Case o = Merge(n1, n2): again, the permissions and binding trees are the same in χ
and τ , so it suffices to show that n1 and n2 are congruent. Let us suppose that n1 and
n2 are congruent in χ. By hypothesis, n1 and n2 are type nodes. By Property 9.2.14,
no structure edge is added under them in τ and they are still congruent. In the other
direction the proof is symmetric, as no edge under n1 and n2 is removed from τ to χ.

Let us now suppose that o applies to χ, and prove that o(τ) is a concretization of o(χ).
Since we already know that o(τ) is a graphic type, and by definition of o(χ) and o(τ), it
is sufficient to prove that the nodes of o(τ) on which a virtual edge arrives are bound on
a gen node. («Being a virtual edge» has a well-defined meaning in o(τ): since we do not
allow the merging of two gen nodes, a virtual edge is never merged with another edge.)
Let n be such a node. Necessarily there exists a node n′ of τ and χ such that n′ ⊆ n, and a
virtual edge arrives on n′ in τ . Since τ is a concretization of χ, n′ is bound on a gen node
in χ. Then n is bound on a gen node in o(χ), as this property is preserved by instance.

This result generalizes immediately to an entire instance derivation. Thus we can freely
reuse all the instance-related results established previously on graphic types.

142 Graphic constraints

9.2.6 Interiors

We introduce a last technical definition, which will be used in the next chapters.

Definition 9.2.16 (Interiors) The constraint interior of a node n, written Ic(n), is the
set (n ∗−̂−) of all the nodes transitively bound to n. The structural interior, written Is(n),
is the restriction of the constraint interior to the nodes structurally reachable from n, i.e.
Ic(n) ∩ (n ∗−−⊸).

The structural frontier of a node n, written Fs(n), is the set (Is(n) −−⊸) \ Is(n) of the
nodes outside Is(n) with a structural immediate predecessor inside Is(n). �

We write Ic
χ(n), Is

χ(n) and Fs
χ(n) when there is an ambiguity on χ. Notice that n ∈ Is(n)

and n ∈ Ic(n). Moreover, Is(n) is reduced to {n} when all the children of n are bound
strictly above n. If n is a type node, Is(n) and Ic(n) coincide, as there is no existential
node bound on n.

G

G g

→

n
→

→ →

→

⊥

Figure 9.2.2 – Examples of interiors

◮ Example Consider the constraint of Figure 9.2.2. The constraint interior of g is the set
of nodes highlighted in green, i.e. 〈g〉, 〈g1〉, 〈g11〉, 〈g12〉 and n. Its structural interior is
composed of all those nodes but the purely existential node n. The structural frontier of g
is the node 〈g111〉. The constraint and structural interiors of the node 〈g1〉 are composed of
〈g1〉 itself and 〈g12〉, as 〈g11〉 is bound above 〈g1〉 (and is in the structural frontier of 〈g1〉).

9.3 MLF and ML constraints

Consider a constraint χ. We call inner quantification the fact that a type node can be
bound on another type node. From now on, we distinguish MLF constraints (that use the
full range of MLF graphic types), from ML constraints in which types cannot use inner or
rigid quantification.

9.3. MLF and ML constraints 143

Definition 9.3.1 (ML constraints) A graphic constraint is an ML constraint if all the
type nodes of the constraint are flexibly bound, and on a gen node. �

Interestingly, while the instance relation on graphic ML constraints corresponds exactly
to the restriction of the MLF instance relation to ML constraints2, this property does not
hold for atomic instance steps. Indeed, unlike in MLF, we cannot graft closed types: the re-
sulting constraint would not be an ML one. Thus we introduce a specific grafting operation,
reminiscent of the one we defined for System F in §3.3.3.

Definition 9.3.2 (ML grafting) The ML grafting of a term-graph g at a bottom node n
of an ML constraint χ is the constraint χ′ which is χ everywhere, except under n where it
is g, with all the nodes of g being bound on n̂. �

By construction of ML constraints, n̂ is a gen node, and the resulting constraint is indeed
an ML one.

Definition 9.3.3 (ML instance) The ML instance relation ML⊑ is the relation

ML⊑
G
1 ⊙

ML⊑
R
1 ⊙

ML⊑
M
1

with ML⊑X
1 being the restriction of ⊑X

1 to ML constraints for X ∈ {M, R}, and χ ML⊑G
1 χ′

holding if χ′ is an ML grafting of χ. �

Notice that there is a raising operation in the ML instance relation, which is used to extrude
polymorphism from one gen node to its binder.

Likewise we can define an ML similarity relation. This time, the definition is simpler, as
the atomic operations are exactly the same in ML and MLF.

Definition 9.3.4 (ML similarity) The reversible ML instance relation ML⊑rm is the re-
lation

ML⊑
rm , ⊑rmw ∩ ML⊑ = ML⊑

r
1 ⊙

ML⊑
m
1

where ML⊑x
1 , ⊑x ∩ ML⊑ for x ∈ {r, m}. The ML modulo similarity relation is the relation

ML⊑≈ , ML⊑ ⊙ ML⊒rm �

It is immediate that ML⊑ is a subrelation of ⊑: an ML grafting can be simulated using
an MLF grafting and some raisings. The same result holds for ML similarity.

Property 9.3.5 Consider two ML constraints χ and χ′. If χ ML⊑ χ′ (resp. χ ML⊑≈ χ′),
then χ ⊑ χ′ (resp. χ ⊑≈ χ′). �

Proof: The result is by induction on the ML derivation. All atomic operations but ML⊑
G
1

are in both the ML and MLF relations. For ML grafting, suppose the grafted term-graph is
g, and that the grafting occurs at node n. Let τ be the MLF pre-type obtained by binding
flexibly all the nodes of g at the root; this pre-type is trivially well-dominated, hence it is a
type. Since χ is an ML constraint, n is green, and we can graft τ as an MLF operation; we
call χg the result. The constraint χ′ is obtained by multi-raising n. All the nodes bound
on n in χg are inert or green; thus χ ⊑G

1 χg ⊑
R χ′ holds, which is the desired result.

2This result is proven at the end of this section.

144 Graphic constraints

In fact, the inverse property holds: if two ML constraints are in MLF instance relation,
they are also in ML instance relation: the differences of presentation in the definitions of
grafting are not really significant. Thus we can reason about ML constraints using the MLF

instance relation, and reinterpret the obtained derivations as ML ones afterwards.

Lemma 9.3.6 Consider two ML constraints χ and χ′. If χ ⊑ χ′ holds, then χ ML⊑ χ′ also
holds. �

Proof: The proof is by noetherian induction on a canonical derivation χ ⊑|χ′ χ′. If it is
empty, the result is immediate. Otherwise, suppose that χ ⊑1 χ′′ ⊑|χ′ χ′. If ⊑1 is ⊑M

1 or
⊑R

1 , since χ is an ML constraint, χ ML⊑1 χ′ also holds, and the remainder of the result is
by induction hypothesis. Moreover ⊑1 cannot be a weakening, as the node would not be
flexible in χ′.

If ⊑1 is a grafting Graft(τ, n), we must do some surgery. By hypothesis, τ is a constructor
type. Let i be such that 1 ≤ i ≤ arity(τ (〈ǫ〉)). Notice that 〈n · i〉 can be raised in χ′′:
it is green, and raisable since there is no node under it. Moreover, since χ′ is an ML

constraint, the nodes 〈n · i〉 cannot be bound at n in χ′. Let χ′′′ be the constraint obtained
by raising once all the nodes 〈n ·i〉. By applying arity(τ (〈ǫ〉)) times Lemma 6.6.2, we obtain

χ′′ ⊑R χ′′′ ⊑ χ′. By construction, we also have χ ML⊑
G
1 χ′′′. The conclusion is then by

induction hypothesis applied to χ′′′ ⊑ χ′.

9.4 Typing constraints

As mentioned in §1.6, we consider the expressions of the λ-calculus

a ::= x | λ(x) a | a a | let x = a in a

To represent typing problems, we use a compositional translation from source terms to
constraints. We introduce expression nodes as a meta-notation standing for the subcon-
straint the expression represents. An expression node is represented by a rectangular box
in drawings. They receive from the typing environment a set of constraint edges, meant
to constrain the nodes corresponding to the free variables of the expression. Each edge is
labelled by the variable it constrains. In drawings we represent such a set of edges as a blue
edge , often leaving the labels implicit.

Expression nodes can be inductively transformed into simpler constraints using the rules
presented in Figure 9.4.1. We follow the logical presentation of ML type inference, where
generalization can be performed at every typing step, i.e. not only at let constructs. It is
well-known that, for ML, both presentations are equivalent. However, this is not the case
for MLF. Thus each basic expression is typed as a type scheme, and the root of a basic
constraint will always be a gen node. We have drawn those nodes in Figure 9.4.1 on top of
expression nodes, in order to disambiguate the origin and destination of edges.
Let us give some details on the translation:

• A variable x is typed as the universal type scheme ∀ (α) α. Graphically this scheme
is represented as a gen node g with a single child, this child being a bottom node
bound on g. This bottom node is constrained by the unique edge annotated by x in

9.4. Typing constraints 145

xX

⇓

G

⊥

x ∈ X

let x = a1 in a2

⇓

G

a2

G

a1

x

λ(x) a

⇓

G

→

⊥ G

a
⊥x

a1 a2

⇓

G

G

a1

G

a2

→

⊥ ⊥

Figure 9.4.1 – Typing of primitive expressions

the typing environment; if there is no such edge, the constraint is not closed, thus
untypable.

• A let-binding let x = a1 in a2 is simply typed as a2 in which all the occurrences of x
are constrained to be instances of a1.

• An abstraction λ(x) a is typed as a type scheme ∀ (α > ⊥) ∀ (β > ⊥) α → β. The
codomain of the arrow (i.e. β) is required to be an instance of the type of a, and the
type of the occurrences of x in a must unify with the domain of the arrow (i.e. α).

• An application a1 a2 is typed as the codomain of an arrow type existentially intro-
duced. The domain of the arrow is constrained to be an instance of the type of a2,
while the arrow type itself is constrained be an instance of the type of a1.

Definition 9.4.1 (Typing constraints) Typing constraints are the subset of constraints
generated from λ-terms by the rules of Figure 9.4.1. �

◮ Example Figure 9.4.2 shows a step by step transformation of the expression node for
the term let y = λ(x) x in y y into the corresponding typing constraint. At each step, we
develop the expression node highlighted in blue.

As shown below, typing constraints are well-formed constraints, and in particular ML
ones. Thus, typing constraints are exactly the same in ML and MLF; only the way in which
the constraints are interpreted (§10) changes between ML and MLF.

Property 9.4.2 Typing constraints are well-formed ML and MLF constraints. �

Proof: All points but conditions 8 and 10 in Definition 9.2.1 are immediate. We detail
them below:

⊲ Condition 10: the property is immediate for the instantiation edges introduced in
applications and abstractions. For the edge introduced for a let construct: the ending
of this edge necessarily goes to the bottom node of the subconstraint for a variable, and
this bottom node is bound on a gen node. Thus the condition holds for this edge.

146 Graphic constraints

let y = λ(x) x
in y y

y y

λ(x) x

y

G

y

λ(x) x
y

→

⊥ ⊥

y
y

G

G

⊥

λ(x) x

G

⊥

→

⊥ ⊥

G

G

⊥

G

→

⊥ x ⊥

x

G

⊥

→

⊥ ⊥

G

G

⊥

G

→

⊥ G

⊥

⊥

G

⊥

→

⊥ ⊥

Figure 9.4.2 – Obtaining the typing constraint for let y = λ(x) x in y y

⊲ Condition 8: consider an unification edge resulting from the typing of an abstrac-
tion. Its right extremity (in the drawing) is transitively bound to the gen node for the
abstraction. Hence this edge is admissible.

Finally, the fact that typing constraints are ML constraints is also immediate.

Notice that typing constraints only use gen nodes introducing a single type scheme, as
the grammar of our λ-terms does not permit mutual (non-recursive) let constructs. The
generalization to this construct is however immediate. Recursive let, mutual or not, are
discussed in §12.1.1.

10
Semantics of constraints

Abstract

This chapter studies the semantics of constraints. Given a type scheme, we start
by defining what it means to take a fresh instances of it (§10.1). Then we characterize
the instantiation edges that are solved in a constraint (§10.3). We define what it means
for a constraint to be solved, and for a type to be a solution of a constraint (§10.4).
The meaning of a constraint is simply the set of its solutions (§10.5). Finally, we relate
the meaning of ML and MLF constraints (§10.6).

10.1 Expanding a type scheme

Type generalization is an essential part of ML type inference, and this is also the case in
MLF. Thus, a crucial and very common operation consists in taking a fresh instance of a
type scheme. This requires taking into account the generalization level encoded by the gen
node introducing the type scheme. In fact, the structural interior of a gen node g exactly
contains the nodes generalizable at the level of g. Indeed, it would be unsafe to generalize
a node n in the exterior of g: n can only be generalized higher in the constraint.

Thus, consider the ith type scheme introduced by a gen node g. In order to take an
instance of this scheme:

• we copy the nodes under 〈g ·i〉 that are in the structural interior of g. The exact shape
of the binding tree of the copy is derived from the one of the structural interior, but
depends on whether we create an MLF or ML instance.

• for each node n in the structural frontier of g and under 〈g · i〉, we introduce a fresh
bottom node connected to the original node n by a unification edge. This ensures
that all instances of 〈g · i〉 will share n. We use unification edges because reusing n
directly could result in ill-dominated constraints.

147

148 Semantics of constraints

G

G

g

→ → s

→

p1

→

p2

→

⊥

f →

⊥

G

g′

⊥ → sc

>

→

pc
1

→

pc
2

⊥

f c

G

G

s →

⊥

⊥

sc

Figure 10.1.1 – Two examples of MLF expansion

The creation of a fresh instance of a type scheme is called expansion. Of course, it
must be given a destination gen node to which the nodes created by the expansion will be
bound. Expansion is slightly less general in ML than in MLF, as ML types do not allow inner
quantification; the difference will be explained through examples later.

Definition 10.1.1 (MLF and ML expansion) Let χ be a constraint, g a gen node of χ,
and s a type scheme introduced by g (i.e. g −−⊸ s). Let g′ be a gen node of χ. The
expansion of s at g′ is derived from χ by:

• adding to χ a copy of cproj(χ ↾ ((Is(g) ∪ Fs(g)) ∩ (s +−−⊸))).

We write pc the copy of a node p.

• for every copied node f of Fs(g), changing f c into a bottom node flexibly bound at
g′, and adding the unification edge f f c;

• binding sc flexibly to g′;

• for every copied node p different from g and such that p ⋄−−_ g, adding the binding
edge pc ⋄−−_ p′, where p′ is sc in MLF expansion, and g′ in ML expansion.

We call root of the expansion the node sc, and frontier unification edges the unification
edges we introduce. �

◮ Example An illustration of an MLF expansion is given as the left constraint in Fig-
ure 10.1.1. The right-hand side of the constraint is the result of expanding the scheme 〈g1〉
at g′. We have highlighted the nodes to be copied (s, p1, p2 and f , on the left) in dark blue
and their copies (sc, pc

1, pc
2 and f c, on the right) in red.

Notice that existential nodes and inner constraints are ignored during expansion, as
illustrated by the unification edge between p1 and p2 in Figure 10.1.1. Indeed, expansion is
concerned with the type structure, not with the constraint structure.

10.1. Expanding a type scheme 149

Expansion preserves the well-formedness of constraints.

Property 10.1.2 The MLF (resp. ML) expansion χ′ of a type scheme s at a gen node g′

in an MLF (resp. ML) constraint χ is an MLF (resp. ML) constraint. �

Proof: We first justify that χ is an MLF constraint.

A copied node has a bound, either because its binder has been copied, or because it has
been rebound explicitly. The new nodes form a valid-term graph: we essentially copy the
top of χ̆/s, and the nodes at which the copy stops are in the frontier, hence replaced by
bottom nodes for which the arity is correct. Well-domination is also simple. Most of the
other conditions of Definition 9.2.1 are immediate; we justify the others below:

⊲ Condition 6: In ML, all the fresh nodes are existential. In MLF, only the root of the
expansion and the copies of the nodes of the frontier are. However, all those nodes are
bound on g′, which is a gen node.

⊲ Condition 8: The new unification edges are admissible, as their extremities inside the
new structure are bound on g′.

Finally, suppose that we are considering an ML expansion in an ML constraint. All the
nodes in the expansion are flexible, and bound on g′, which is a gen node. Hence χ′ is an
ML constraint.

10.1.1 Degenerate type schemes

An interesting subcase occurs when s is not bound on g; in this case, the type scheme
represented by s is monomorphic. We say that s is degenerate. In terms of expansion, when
this scheme is expanded, only s is copied, and the copy is required to unify with s itself.

◮ Example The constraint on the right of Figure 10.1.1 is the result of expanding s at 〈ǫ〉
in the constraint composed of the leftmost part of this constraint.

Interestingly, all the λ-bound variables of a constraint are degenerate once their uni-
fication constraint has been solved. This shows that, as is customary with type systems
with second-order polymorphism and type inference (Peyton Jones et al. 2007; Leijen 2008),
unannotated lambda abstractions cannot receive really polymorphic arguments.

10.1.2 Flag and binding reset

Let us consider a scheme s. When performing an MLF expansion on s, the binding flag
of s is entirely ignored: sc is always flexibly bound. Similarly, if g is the gen node that
introduces s, the nodes bound on g and s are all bound on sc in the expansion. We call
those two properties flag and binding reset

At first, it would seem that the flag of s, and the fact that a node is bound on g or
s is indifferent. However, this is not the case, and is in fact deeply linked to the notion
of generalization itself. In essence, the fact that a node is bound on s expresses that the
polymorphism remains local to s. On the contrary, a node bound on g means that the
polymorphism has been forced to leave the scope of s—although it will “reappear” through
generalization.

150 Semantics of constraints

χ G

G

→

⊥

→

⊥ ⊥

χp G

G

→

⊥

→

→

⊥

χ′
p G

G

→

⊥

→

→

⊥

Figure 10.1.2 – Generalization and binding reset

◮ Example Consider the constraint χ of Figure 10.1.2, which represents a simplified typing
constraint for (λ(x) x) (λ(x) x). We have also shown two instances of χ, which are solved
(i.e. the constraints created by the instantiation edges are satisfied). The difference between
χp and χ′

p lies in the binder for the nodes 〈11〉, which is bound on the type scheme 〈1〉 in
χp, and on the gen node 〈ǫ〉 in χ′

p. As shown in Part III, we can translate those constraints
into explicitly-typed terms, and we obtain the two terms

id[σid] id and Λ(α) id[α→ α] id[α]

where id , Λ(α) λ(x : α) x. In the first term, the polymorphism of the two identity
functions is kept local. In the second, those functions are typed monomorphically, and the
type variable α is generalized at the front of the type. Of course the first case is only
possible in MLF, as there is no no inner polymorphism in ML constraints.

The binding flag of s is also important, as it can be used to restrict the way in which
the interior of s can be solved by instance. However, this is related to solving s, not to the
type scheme it represents. Thus, when we take an instance of s, we can safely ignore this
flag. In fact, we must ignore this flag, as we want to be able to instantiate the expanded
nodes.

◮ Example In the leftmost constraint of Figure 10.1.1, p2 is red, as s is rigidly bound.
Thus the unification edge of the constraint is unsolvable. The binding flag of s is however
ignored in the expansion, which represents s at this stage of the constraint solving.

10.2 An example

In the remainder of this chapter, we use as a threaded example the typing of the term

K , λ(x) λ(y) x

The typing constraint for K is the constraint χK presented in Figure 10.2.1. However, in
order to simplify the examples, we will reason on the simpler constraint χ; §11.3 will show
that the two constraints are in fact equivalent.

10.3. Solved constraint edges 151

χK G

→

⊥ G

→

⊥ G

⊥

⊥

⊥

χ G

→

⊥ G

→

⊥ ⊥

⊥

Figure 10.2.1 – Constraints for λ(x) λ(y) x

10.3 Solved constraint edges

Solved constraints are constraints in which edges are solved. For unification edges, this is
the case when they relate two nodes already merged.

Definition 10.3.1 (Solved unification edges) A unification edge n1 n2 is solved
if n1 and n2 are equal. �

An instantiation edge is solved when a fresh instance of the corresponding type scheme
matches the target of the edge, i.e. it unifies with the target without changing the con-
straint. This property can be checked by using an intermediate constraint that enforces this
matching.

Definition 10.3.2 (Propagation) Let e be an edge g n
i of a constraint χ. We call

propagation of e in χ, written χe, the constraint obtained by expanding 〈g · i〉 at n̂, and
adding a unification edge between n and the root of the expansion. �

This definition is well-formed: by condition 10 of Definition 9.2.1, n̂ is a gen node and the
expansion is defined.1

Intuitively, propagation enforces the constraint imposed by the instantiation edge by
forcing the unification of a fresh copy of the type scheme with the constrained node.

◮ Example The constraint χ′e in Figure 10.3.1 results from performing both an ML and
an MLF propagation on the unique instantiation edge of χ′. The nodes created by the ML
propagation are those in blue (under n1), while those created by the MLF propagation are
the red ones (under n2). Notice the highlighted binding edges, that show the difference
between ML and MLF expansion.

As for expansion, propagation preserves the well-formedness of constraints.

1We could in fact slightly relax condition 10, by changing the definition of propagation so that the ex-

pansion takes place at the first gen node g such that n +−−_ g. However, this would not increase expressivity:
solving the unification edge created by the propagation would raise n until it is bound on g.

152 Semantics of constraints

χ′ G

→

⊥

G

→

⊥

⊥

χ′e G

→

⊥

G

→

⊥

⊥ →

n1

⊥ ⊥

→

n2

⊥ ⊥

Figure 10.3.1 – Examples of propagation

Lemma 10.3.3 Given an instantiation edge e of an ML (resp. MLF) constraint χ, the
constraint χe is a well-formed ML (resp. MLF) constraint. �

Proof: Let e be g n. By Property 10.1.2 it suffices to prove that the unification edge
between n and the root of the expansion is admissible. This is the case, as the root of the
expansion is bound on n̂, which is a gen node by condition 10 of Definition 9.2.1.

An instantiation edge e is solved when the constrained node is already sufficiently in-
stantiated, i.e. when the constraints introduced by propagating e can be solved without
further instantiating the constraint. In order to be more general, we parameterize this def-
inition by the instance relation ⊏ to use. In the remainder of Part II, and unless stated
otherwise, ⊏ ranges over ⊑, ⊑≈, ⊑⊏−⊐−, ML⊑ or ML⊑≈.

Definition 10.3.4 (Solved instantiation edge) Given a constraint χ, an instantiation
constraint e of χ is ⊏-solved if χe ⊏ χ. �

◮ Examples The instantiation edge of χ′ in Figure 10.3.1 is not ⊏-solved: unifying the
unification edges resulting from the propagations would change the skeleton under the
node 〈11〉. Conversely, it is easy to check that this edge is ⊑-solved in the constraints χMLF,
χML and χ′

ML of Figure 10.4.1. Moreover, it is ML⊑-solved in χML and χ′
ML.

10.4 Solutions and presolutions of constraints

The semantic of graphic constraints is given in two steps. We begin by characterizing the
instances of a constraint that are solved, and use them to deduce the types that are solutions
of the constraint.

Definition 10.4.1 (Presolutions of constraints) A ⊏-presolution of χ is an instance
χp of χ for ⊏ (i.e. χ ⊏ χp) in which unification edges are solved and instantiation edges
are ⊏-solved. A ⊏-presolution is a constraint that is a ⊏-presolution of itself. �

10.4. Solutions and presolutions of constraints 153

(Since instance is reflexive, a presolution is simply a constraint in which all edges are solved.)

Interestingly, since we view constraints up to solved unification edges (Definition 9.2.1),
we can simply assume that presolutions do not contain unification edges. This is generally
what we do in proofs.

G

χMLF

→

⊥

G

→

⊥

→

⊥

→

τMLF

⊥

→

⊥

G

χML

→

⊥

G

→

⊥

→

⊥

→

τML

⊥

→

⊥

G

χ′
ML

→

⊥

G

g

→

⊥

→

Figure 10.4.1 – Presolutions and solutions of K

◮ Examples Consider again the constraint χ′ of Figure 10.3.1. It is an instance of the
constraint χ of Figure 10.2.1, but it is not a presolution, as the instantiation edge is not
solved. The constraint χ′ is further instantiated into the constraints χMLF, χML and χ′

ML of
Figure 10.4.1; the differences between these three constraints are highlighted. Those three
constraints are ⊑-presolutions of χ, as can be verified by performing a propagation. Notice
that χMLF is not a ML⊑-presolution, as it contains inner quantification: the node 〈121〉 is
not bound on 〈ǫ〉. However, both χML and χ′

ML are ML⊑-presolutions.
Interestingly, χMLF ⊑ χML ⊑ χ′

ML holds. In fact, χMLF is the principal presolution of χ

in MLF, as we will be able to prove in §12.

A presolution represents a fully solved, but also fully detailed form of a constraint, as
all the nodes of the original constraint are retained. On the contrary, the solutions of a
constraint are simply graphic types. More precisely, a solution is an instance of the type
scheme at the root of a presolution. We formalize this property using the encoding presented
in Figure 10.4.2, where τ is a solution of the constraint χ for which χp is a presolution.

Definition 10.4.2 (Solutions of constraints) A ⊏-solution of χ is a type τ such that
there exists a ⊏-presolution χp of χ for which the instantiation edge in the constraint of
Figure 10.4.2 is ⊏-solved. We say that χp witnesses τ . �

This definition has the advantage of being compositional, as the root node and the inner
gen nodes of χp are treated in a uniform way.

The solutions witnessed by a certain presolution χp are all the instances of the expan-
sion τ of the scheme at the root of χp. Thus, the set of solutions witnessed by χp is, by
construction, closed by instantiation; we refer to τ as «the principal solution witnessed by

154 Semantics of constraints

G

χp ·

τ

In MLF, τ is a closed type.
In ML, the nodes of τ are all bound at 〈ǫ〉.

Figure 10.4.2 – A constraint χp witnessing a type τ

χp». In order to show that two constraints have the same solutions, we often prove that
their presolutions witness the same set of principal solutions, or equivalently that their
presolutions expand to the same types. Of course, this does not implies that the set of all
the solutions of χ is principal: there could exist two presolutions χp and χ′

p witnessing two
principal solutions χ and χ′ incomparable for ⊏.

◮ Example The principal solutions witnessed by the presolutions χMLF, χML and χ′
ML of

χ are the types τMLF, τML and τML respectively. In particular, χML and χ′
ML witness exactly

the same solutions. Moreover, since χMLF ⊑ χML, all the solutions witnessed by χML and
χ′

ML are also witnessed by χMLF.
Syntactically, τML and τMLF are the types

∀ (α) ∀ (β) α→ β → α and ∀ (α) ∀ (γ > ∀ (β) β → α) α→ γ

Using our syntactic sugar, this second type can be written as

∀ (α) α→ (∀ (β) β → α)

Interestingly, both types are correct System F types for K.

10.4.1 Presolutions and explicitly typed terms

Presolutions are interesting objects in their own right. First, they are the equivalent of an
entire typing derivation. Moreover, given a λ-term a and a presolution χp of the typing
constraint corresponding to a, χp can be used to obtain a version of a where all type
information is fully explicit. This correspondence forms the basis of a translation into a
Church-style version of MLF, which is developed in Part III of this document.

10.5 Meaning of constraints

We are now able to define the meaning of a constraint.

Definition 10.5.1 (Meaning of constraints) The ⊏-meaning of a constraint is the set
of its ⊏-solutions. A constraint χ ⊏-entails a constraint χ′, written χ
⊏ χ′ if the ⊏-
meaning of χ is a subset of the ⊏-meaning of χ′. Two constraints χ and χ′ are ⊏-equivalent,
written χ ⊣⊢⊏ χ′, if they have the same ⊏-meaning. �

10.5. Meaning of constraints 155

It follows from the semantics of constraints that instantiation reduces the set of solutions,
i.e. if χ ⊏ χ′, then χ′
⊏ χ. In general, the inclusion is strict; in fact, instantiation
might change a solvable constraint into an unsolvable one. In certain cases, instantiation
may however preserve the meaning. Conversely, many constraints not in instance relation
have the same meaning. For example, two constraints with different gen nodes structure
(i.e. constraint shape), cannot be in instance relation, as this structure is invariant by
instantiation; however, they can still have the same meaning.

◮ Examples Consider the constraints χML and χMLF of Figure 10.4.1 which verify χMLF ⊑
χML. In this case, the ⊑-meaning of the constraint χML is strictly included in the one of
χMLF, as τMLF is in the latter but not in the former. Considering now the constraints χ of
Figure 10.2.1 and χ′ of Figure 10.3.1 (which differ only by the unification edge which is
solved in χ′), we again have χ ⊑ χ′. However they have the same ⊑- and ML⊑-meaning.2

Finally, the constraints χK and χ of Figure 10.2.1 have different shapes, but will be proven
⊑- and ML⊑-equivalent in §11.3.

Convention In the following, we focus mainly on ⊑ and ML⊑-solutions. Thus, we allow to
omit ⊑ in front of the relevant terms; for example a “presolution” must be understood as a
⊑-presolution. Similarly, we abbreviate ML⊑ as ML. Thus χ ⊣⊢ML χ′ means that χ and χ′

are ML⊑-equivalent.

10.5.1 Preserving presolutions

While we are ultimately interested in proving that constraints have the same set of solutions,
we often show the stronger result that presolutions are preserved by instantiation.

Definition 10.5.2 (Preservation of presolutions) We write χ
p χ′ if every presolu-
tion of χ′ is a presolution of χ, and χ ⊣⊢p χ′ if both constraints have the same set of
presolutions. �

10.5.2 The different flavours of MLF

The three instance relations ⊑, ⊑≈ and ⊑⊏−⊐− define three different systems, in which the set
of typable terms is not a priori the same. We name those three systems as follows:

Instance relation ⊑ ⊑≈ ⊑⊏−⊐−

System gMLF eMLF iMLF

The system iMLF is the implicit version of MLF, as it can be shown that adding type
annotations to terms or λ-abstractions does not increase its expressivity. By contrast,
eMLF is the explicit version, as type annotations are needed. Up to the difference in the set
of types (§3.4.3), both systems correspond to the syntactic systems presented in (Le Botlan
and Rémy 2007). The system gMLF is the graphic version of MLF—this system has never
been studied syntactically before.

Of course, since (⊑) ⊆ (⊑≈) ⊆ (⊑⊏−⊐−), all terms typable in gMLF are typable in eMLF,
and similarly for eMLF and iMLF. Thus the question is whether the inclusions between the

2We admit this result for now. It will be proven in §11.2.

156 Semantics of constraints

sets of typable terms are strict or not. In the following we focus mainly in gMLF, as it is the
most practical system to perform type inference in. We formally compare the expressivity
of the three systems in §13.

10.6 Relating the meaning of ML and MLF constraints

Consider the constraint χ′ in Figure 10.3.1, and more precisely the nodes resulting from
the ML expansion (in blue) and the MLF one (in red). The difference lies in the binders of
〈n1 · 1〉 and 〈n2 · 1〉, which we have highlighted. In the ML expansion, 〈n1 · 1〉 is bound on
〈ǫ〉. However, in the MLF expansion 〈n2 · 1〉 is bound on n2, creating inner polymorphism,
forbidden in ML.

More generally, MLF expansion is always more general than ML expansion: the former
can be obtained from the latter by performing a few raisings afterwards.

Property 10.6.1 Consider an ML constraint χ, s a type scheme and g a gen node. Let
χML (resp. χ

MLF
) be the result of performing an ML (resp. MLF) expansion of s at g in χ.

Then χ
MLF
⊑ χML. �

Proof: Let n be the root of the expansion in χ
MLF

. The constraint χML is obtained by
raising all the nodes bound on n, i.e. multi-raising n. By definition of an ML constraint
and of expansion, all the nodes bound on n are flexibly bound. Since n itself is green (as
it is flexibly bound to a gen node), the multi-raising is possible.

As the ML instance relation is a subrelation of the MLF one, it is then immediate that
MLF extends ML.

Property 10.6.2 Let ⊏ range over ⊑ and ⊑≈. Any ML⊏-(pre)solution of an ML constraint
is also a ⊏-(pre)solution. �

Proof: Let χ be an ML constraint. Let χp be a ⊏ML-presolution of χ. By hypothesis,
χ ML⊏ χp holds. By Property 9.3.5, χ ⊏ χp holds and it remains to prove that the
instantiation edges of χp are ⊏-solved. Consider such an edge e. Let χML and χ

MLF
be

the ML and MLF propagation of e in χp respectively. By hypothesis, χML
ML⊏ χp holds.

Thus χML ⊏ χp holds by Property 9.3.5. Moreover, by Property 10.6.1, χ
MLF
⊑ χML holds,

which implies χ
MLF

⊏ χML. This shows χ
MLF

⊏ χp, which is the desired result.

Interestingly, MLF presolutions containing only flexible edges can always be transformed
by raising into ML presolutions. Thus flexible quantification alone is not significantly more
expressive than ML quantification; it just gives more general types—and more opportunities
to use rigid quantification. This point is discussed further in §12.3.1.

Theorem 10.6.3 Consider an ML constraint χ with an MLF presolution χp in which all
binding edges are flexible. Then there exists solutions of χ witnessed by χp that are ML

types, and those types are also ML solutions of χ. �

10.6. Relating the meaning of ML and MLF constraints 157

Proof: Let us call χr the constraint derived from χp by binding any type node n on the
first gen node g such that n +−−_ g (if the binder of n is already a gen node, its binder is
unchanged). Thus defined, χr is an ML constraint. Moreover χr can be derived from χp by
multi-raising all the types nodes of χp. Since all the nodes of χp have green permissions,
χp ⊑

R χr holds (1).

Let us prove that χr is a ML presolution (2). We first show that χ ML⊑ χr holds. We
have χ ⊑ χr since χ ⊑ χp (as χp is a presolution) and by (1). Since both χ and χr are ML

constraints, the subresult is by Lemma 9.3.6.

Next, consider an instantiation edge e. Let χ′
p be the MLF propagation of e in χp. By

hypothesis, χ′
p ⊑ χp holds (3). Let χ′

r be the ML propagation of e in χr. It remains to
prove that e is ML-solved in χr, i.e. that χ′

r
ML⊑ χr holds, to prove (2).

Let us first prove that χ′
p ⊑

R χ′
r holds (4). Given a gen node g, Is

χp
(g) = Is

χr
(g); thus the

expanded nodes in both χ′
p and χ′

r have the same shape. It is them immediate that χ′
r is

the result of multi-raising all the type nodes of χ′
p. Since all the nodes of χ′

p are green, the
raising is possible, which implies (4).

We can now repeatedly apply Lemma 6.6.2 to χ′
p ⊑ χr (proven by (1) and (3)) and to

each node raised in (4). We obtain χ′
r ⊑ χr. Lemma 9.3.6 proves in turn that χ′

r
ML⊑ χr,

as both constraints are ML constraints. Thus (2) holds.

Finally, the expansion of χr is an instance of the expansion of χp (obtained by raising all
the nodes to the root), which shows that all solutions witnessed by χr are witnessed by
χp. This is the desired result.

11
Reasoning on constraints

Abstract

In this section, we study some equivalence rules on gMLF constraints: an exis-
tentially introduced subpart of a constraint that is not constrained can be removed
(§11.1); unification is sound, complete, and principal on constraints (§11.2); an instan-
tiation edge leaving a degenerate gen node is itself degenerate, and can be replaced
by a unification edge (§11.3); eager propagation of instantiation edges preserves the
meaning of constraints (11.4).

We also show two important auxiliary results. First, an instance derivation showing
that an instantiation edge is solved can be assumed to have a very specific shape (§11.5).
Second, solved instantiation edges remain solved through instance steps that change
unrelated parts of the constraint (11.6).

11.1 Removing unconstrained existential nodes

G

χ

→

n

⊥

→

→

⊥

G

g

→ ⊥

G

χ′

→

n

⊥

→

→

⊥

G

χ′′

→

→

⊥

G

⊥ G g

⊥

Figure 11.1.1 – Simplifying unconstrained existential nodes

159

160 Reasoning on constraints

Existential nodes are meant to introduce constraint edges. If it is not the case, for
example because those constraint edges have been solved or removed, the existence of the
existential nodes does not add constraints. Hence they are useless, and can be eliminated.
Implementation-wise, this allows saving memory; from a theoretical standpoint, it permits
reasoning on simpler constraints.

Definition 11.1.1 (Existential elimination) Let n be a purely existential node of a
constraint χ such that no node in Ic(n) is the origin or the target of an instantiation or
unification edge. We call existential elimination of n in χ the constraint χ↾(dom(χ) \ Ic(n))
obtained by removing from χ all the nodes of Ic(n) and all the dangling edges. We refer to
the rule transforming χ into this constraint as Exists-Elim. �

◮ Example In Figure 11.1.1, existentially eliminating g in χ results in χ′; eliminating n
in this constraint gives χ′′. The interiors of the eliminated nodes are highlighted. However
we cannot eliminate 〈g1〉 in the fourth constraint: while it is existential, it is not purely
existential because of the edge g −−⊸ 〈g1〉, and eliminating it would result in an ill-formed
constraint.

Property 11.1.2 Existential elimination preserves the well-formedness of constraints. �

Proof: Let χ be a constraint, and χ′ obtaining by existentially eliminating n in χ. The
only difficult property is the fact that constructors still have the correct arity in χ′. Thus,
let n′′ be a node of Ic(n), and n′ such that n′ −−⊸ n′′ ∈ χ; n′ could have an incorrect
arity in χ′.

Consider a mixed path P equal to 〈ǫ〉 −̂− n′ −−⊸ n′′ in χ. By well-domination, since by
hypothesis n′ ∗−−_ n, we know that n is contained in P . Moreover, the case n′′ = n is
impossible, as n is purely existential. This means that n′ ∗−−_ n, and n′ is eliminated when
n is eliminated.

The remainder of the section shows that existential elimination preserves solutions. We
write ∃E for an existential elimination, and ∃I for the inverse operation, called existential
introduction.

Lemma 11.1.3 Existential introduction and atomic instance commute. That is, let χ be
a constraint, χ′ be such that χ ∃I χ′, and χ′′ be such that χ ⊑1 χ′′ with χ′′ = o(χ). Then
χ′ ⊑1 o(χ′) and χ′′ ∃I o(χ′). �

Proof: Let r be the root of the structure existentially introduced. We first prove that o
can be applied to χ′, by case disjunction on o. In each case, the nodes existing in χ are
unchanged in χ′, including their permissions (1).

⊲ Case o is a grafting or a weakening: the result is immediate by (1).

⊲ Case o = Merge(n1, n2): n1 and n2 are still locally congruent in χ′, as both are type
nodes, and the new nodes are introduced under a gen node. By (1) the result holds.

⊲ Case o = Raise(n): by (1) it suffices to show that n is raisable in χ′. Since it was
raisable in χ, it suffices to consider new structure paths below n (that were not present
in χ). All new paths contain the edge r̂ −̂− r. However, since r is purely existential,
there is thus no new structure path starting from n. Thus n is still raisable in χ′.

11.1. Removing unconstrained existential nodes 161

Let now χ′′′ be o(χ′). It remains to prove χ′′′ ∃E χ′′ to conclude.

⊲ r is purely existential in χ′′′: (this ensures that r can be eliminated). This node is
purely existential in χ′. The only operation removing a purely existential node is the
merging of this node with another node. This is not the case, as o does not change r.

⊲ Ic
χ′′′(r) = Ic

χ′(r): (this ensures that we eliminate exactly the nodes that have been

introduced). This result holds, as interiors change only by the raising of a node of the
interior, and o does not change Is

χ′(r).

The commutation of instance with existential elimination is not as simple, as we must
distinguish the cases where the instance transformation occurs inside the part being elim-
inated. Also, if the interior of the node being eliminated is changed (by a raising), more
than one elimination might be needed.

Lemma 11.1.4 Let χ be a constraint, χ′ and χ′′ such that χ ⊑1 χ′ and χ ∃E χ′′ Then
χ′ = χ′′, or χ′ (∃E)+ χ′′, or the two operations commute. Moreover the two operations
commute if the instance operation does not change the nodes being eliminated. �

Proof: Let n the root of the existential elimination, o the instance operation. The proof
is by case analysis on o.

⊲ Case o = Graft(τ, n′) or o = Weaken(n′): If n′ ∈ Ic(n), eliminating n in χ′ gives χ′′.
Otherwise the two operations commute.

⊲ Case o = Raise(n′): If n′ ∈ Ic(n) and n′ is not bound on n, eliminating n in χ′ gives

χ′. If n′ is bound on n, eliminating n then n′ in χ′ gives χ′′ (by well-domination, n′ is
purely existential after the elimination of n). If n′ /∈ Ic(n), the two operations commute.

⊲ Case o = Merge(n1, n2): If n1 and n2 are both in Ic(n), eliminating n in χ′ gives χ′′.
If none are in Ic(n), the two operations commute. If one node is in Ic(n), and the other
is not, either n1 or n2 is n. Then χ′ = χ′′.

Lemma 11.1.5 Consider a constraint χ which is a presolution, and χ′ derived from χ
by performing an existential introduction or elimination (EEI). Then χ′ is a presolution
witnessing the same solutions as χ. �

Proof: Let us first show that χ′ is a presolution. It suffices to show that its instantiation
edges are solved. Let e be such an edge g d. It is also an edge of χ, as EEI preserves
constraint edges, and e is solved in χ since χ is a presolution. We prove the dashed lines
of the diagram below, the leftmost one being is the desired subresult.

χ χ′

χe χ′e

o ∈ ∃IE

eI ∈ ⊑ e

o

I

Propagation and EEI commute, as existential nodes are not copied during expansion.
Hence χ′e can be obtained from χe by the same EEI o that transforms χ into χ′, hence
the lowermost edge.

Consider now the instance operations I solving the unification edges introduced in χe:

162 Reasoning on constraints

⊲ If o is an introduction: Lemma 11.1.3 shows that this operation and I commute. Thus
I solves the unification edges of χ′e

p , and the resulting constraint is χ plus the EEI,
which is exactly χ′. Hence e is solved in χ′.

⊲ If o is an elimination: I transforms only the subgraph introduced by the expansion
and the nodes structurally under d. Necessarily those nodes are disjoint with the ones
eliminated by o, as the former are constrained by e. Thus, in this case, existential
elimination and instance commute (Lemma 11.1.4). The conclusion is then similar to
the previous case.

For the remainder of the full result: χ′ and χ expand to the same type, since expansion
ignores existential nodes. Hence they witness exactly the same solutions.

As a direct consequence of the previous lemmas:

Lemma 11.1.6 Existential elimination preserves solutions. �

Proof: Consider a constraint χ, and a constraint χ′ obtained by performing an existential
elimination in χ.

Suppose that χ has a presolution χp. Lemma 11.1.4 shows that there exists χ′
p such that

χp (∃E)∗ χ′
p and χ′ ⊑ χ′

p. Lemma 11.1.5 ensures that χ′
p is a presolution witnessing the

same solutions as χp. Thus χ′
p is a presolution of χ′. Since this holds for any presolution,

any solution of χ is a solution of χ′.

In the other direction, the reasoning is the same, using Lemma 11.1.3 instead of
Lemma 11.1.4.

11.1.1 Raising and existential nodes

χ′ G

G

⊥

G

→

⊥

∃E
χ G

G

⊥

G

⊥

⊑R
1 χ′′ G

G

⊥

G

⊥

Figure 11.1.2 – Instance and existential introduction

We do not allow transforming gen nodes along the instance relation c⊑ on constraints,
mainly because gen nodes encode the structure of the constraint and reflect the shape of
the λ-term being typed. However, even if we chose to abandon that interpretation, allowing
the raising of gen nodes would have very profound consequences. In particular, it would no
longer be the case that existential introduction and instance commute (Lemma 11.1.3)—
thus making reasoning on constraints much more complicated.

11.2. Solving unification edges 163

◮ Example Consider Figure 11.1.2, in which χ ∃I χ′ and χ ⊑ χ′′ hold for an instance
relation that would allow raising gen nodes. The two operations transforming χ into χ′

and χ′′ do not commute: the resulting constraint would be ill-dominated. Worse, the only
way to close the diagram would be to raise the two bottom nodes of the constraints. By
complicating slightly the example, we could in fact require the raising of nodes that were
untouched by both the instance operation and the existential introduction!

Notice that this is also the main reason why we do not allow existential nodes to be
bound on non-gen nodes.1 Indeed, in order to allow reusing all the results on graphic types,
it is crucial that type nodes can be raised independently of the constraint structure around
them, including existential nodes.

11.2 Solving unification edges

The level of generalization we brought to our graphic representation is small enough that
the unification algorithm on graphic types can be reused almost entirely unchanged: we
only suppose that it maintains the unification and instantiation edges that are present on
the graph it receives as argument. We show below that the resulting algorithm (which we
still call Unif) is sound, complete, and principal for c⊑.

Step 1 of Unif performs first-order unification on its argument. In the case of a constraint
χ, this may seem a bit puzzling: χ̆ is not really a term-graph, but a forest of term-graphs.
We can either perform unification on this forest (first-order unification does not require the
graph on which it operates to be rooted), or on a concretization of χ. We choose the second
option, as this allows us to remain within the framework of term-graphs. However, this is
only a technicality. In particular, if we quotient constraints by the addition or removal of
virtual edges, the result of Unif does not depend on the concretization: neither Unif nor
Rebind “see” the virtual edges added by the concretization, as those edges are above the
nodes to unify. In order to simplify the statements of the results of this section, we thus
proceed as follows: we reason on a concretization of the constraints, but implicitly read the
results up to removal of the virtual edges.

Lemma 11.2.1 Consider a constraint χ and e an admissible unification edge n1 n2

of χ. Let χv be an unifier of e in χ for c⊑, τ a concretization of χ. Let gU be the first-order
principal unifier of n1 and n2 in χ̆. Then rebind(χ, gU) ≺U χv. �

Proof: By definition, n1 or n2 is bound on a gen node (1). The proof is almost exactly the
same as the one of Lemma 7.4.15 (page 103). In one subcase we had concluded using the
fact that admissibility ancestors cannot be merged; here we conclude because gen nodes
cannot be merged by c⊑.

We prove this subcase below, reusing some of the notations of the original proof. Let χU

be rebind(χ, gU) and n a node of this graph. We want to prove that n +−−_ χ̂v(n) ∈ χU .
Let N be the node resulting from the merging of n1 and n2 in χU , m1, . . . , mk be the
nodes that are merged together in n in χU , and χr be such that χ ⊑GR χr ⊑

MW χv is a

1The other reason is related to permissions. Existential nodes mainly belong to the constraint structure,
and it is unclear whether they should follow the restrictions imposed by permissions. By requiring existential
nodes to be bound on gen nodes, we guarantee that they are never red.

164 Reasoning on constraints

canonical derivation of χ c⊑ χv. The interesting subcase is the one in which n is under
N in χU , and is bound strictly above N in χv (2). By (2) the nodes χ̂r(mi) are bound
strictly above n1 or n2 in χr. Hence at least one of them is bound on a gen node by (1).
Since they are merged on χv, they are all bound on a gen node. Since gen node cannot be
merged by c⊑, they are in fact all bound on the same gen node m. From there, the end
of the proof is unchanged.

(Although we do not use this generalization in typing constraints, it is immediate to extend
this result to a set N of nodes to unify, all but perhaps one being bound on a gen node.)

The result above is sufficient to conclude, as we have established the completeness and
principality results of Unif using ≺U. As a consequence, unification is sound, complete and
principal, and is an equivalence on constraints.

Lemma 11.2.2 On graphic constraints, the unification algorithm is sound; it is also com-
plete and principal when the unification edge it unifies is admissible. �

Proof: Let χ be a constraint, e an unification edge n1 n2 of χ.

⊲ Soundness: we assume that Unife(χ) returns χu, and need to prove that χ c⊑ Unife(χ)
holds. By Theorem 7.4.13, we have χ t⊑ Unife(χ). However Unif only merges nodes
above n1 and n2, by definition of first-order unification; similarly, Rebind only changes
the binding edges of nodes under n1 and n2. Thus, by Lemma 9.2.5, no operation of
χ t⊑ Unife(χ) occurs on a gen node and χ c⊑ Unife(χ) also holds.

For completeness and principality, we assume that e is admissible and that a c⊑-unifier
χv of e in χ exists. It is also a t⊑-unifier (1), as (c⊑) ⊂ (t⊑) up to constraint edges.

⊲ Completeness: by Theorem 7.4.17, Lemma 11.2.1 and (1) the computation of Unife(χ)
does not fail; this is the desired result.

⊲ Principality: by Theorem 7.4.22, Lemma 11.2.1 and (1) we have χu
t⊑ χv. By

soundness we have χ c⊑ χu, and we have χ c⊑ χv by hypothesis. Hence the shape of
gen nodes is exactly the same in χu and χv, and the relation χu

c⊑ χv also holds.

Lemma 11.2.3 Let e be an admissible unification edge of a constraint χ. If unifying e
in χ fails, χ has no solution. Otherwise, let χ′ be the principal unifier of e in χ. Then
χ ⊣⊢p χ′ �

Proof: Suppose that the unification of e fails, but that χ has a presolution χp. By definition
of presolutions, e is solved in χp, hence χp is a unifier of e in χ. This contradicts the
completeness of the unification algorithm (Lemma 11.2.2).

Consider now a presolution χp of χ. By definition, χ ⊑ χp holds. Since e is solved in
χp (by definition of presolutions), we have χ ⊑ χ′ ⊑ χp by principality of unification
(Lemma 11.2.2). Thus the presolutions of χ are presolutions of χ′. This implies the result,
as we have χ ⊑ χ′ by soundness (which implies that the presolutions of χ′ are presolutions
of χ).

11.3. Removing degenerate instantiation edges 165

11.2.1 Unification in ML constraints

It is immediate that unification on ML graphic types can be solved with the unification
algorithm for MLF graphic types. This follows from the fact that the unification algorithm
of MLF applied to ML graphic constraints returns ML graphic constraints, and Lemma 9.3.6.

Unlike in graphic types (§7.7), unification might raise some nodes, from one gen node to
a gen node above. However those raisings amount to updating generalization levels when
variables are merged, exactly as done in efficient implementations of ML type inference
based on ranks and term dags (Pottier and Rémy 2005; Rémy 1992).

11.3 Removing degenerate instantiation edges

Inst-Elim-Mono

G

G

+

·

·

⊣⊢ G

G

+

·

·

Figure 11.3.1 – Simplifying degenerate instantiation edges

A degenerate type scheme contains no polymorphism, as witnessed by the fact that
the fresh node created during its expansion must be unified with pre-existing structure
(Figure 10.1.1). An instantiation edge for a degenerate type scheme is itself degenerate, in
the sense that it is equivalent to a unification edge.

Definition 11.3.1 (Elimination of degenerate instantiation edges) Let χ be a con-
straint, g d

i be an instantiation edge e of χ such that 〈g · i〉 is degenerate in χ. We
call Inst-Elim-Mono the rule removing e from χ and replacing it by a unification edge
〈g · i〉 d. �

◮ Example A graphical depiction of Inst-Elim-Mono on the case where g has a single
successor is given Figure 11.3.1.

Lemma 11.3.2 Rule Inst-Elim-Mono preserves solutions. �

Proof: The proof steps are given below for the case arity(χ(g)) = 1; the generalization to
greater arities is immediate.

G

G

+

· s

·

d

(1)

⊣⊢p
G

G

+

· s

·

d

(2)

⊣⊢p
G

G

·

s, d

+

(3)

⊣⊢ G

G

·

s, d

+

(4)

⊣⊢p
G

G

+

· s

·

d

166 Reasoning on constraints

Step (1) is by equality of presolutions. Indeed, s is degenerate in any instance of both
constraints. Thus, the only way to solve the instantiation edge is by merging n and d:
in all the expansions, d will have to be merged with sc, which itself must be merged
with s.

Step (2) is by unification (Lemma 11.2.3).

Step (3) is by equality of presolutions. In all the presolutions, s and d are merged, hence
the instantiation edge is not constraining.

Step (4) is the inverse operation of step (2); the presence or the absence of the instanti-
ation edge does not change the execution of the unification algorithm.

Notice that this rule does not preserve presolutions strictly speaking, as it changes the
number of instantiation edges. However, it preserves the shape of presolutions, i.e. the
structure of gen nodes and type nodes.

λ(x) x

χ1

G

χ2

→

⊥ G

⊥

⊥

G

χ3

→

G

⊥

⊥

G

χ4

→

G

g

⊥

⊥

G

χ5

→

⊥ ⊥

G

χ6

→

⊥

Figure 11.3.2 – Typing λ(x) x

◮ Example: typing of the identity function Figure 11.3.2 presents a detailed solving of
the typing constraint for the identity function. On such a simple example, all steps are
valid in both ML and MLF. The first step (from χ2 to χ3) is by unification. χ4 is by Inst-

Elim-Mono on the instantiation edge. χ5 is by Exists-Elim on g (the only node removed
being g itself). χ6 is by unification. Hence all the solutions are witnessed by χ6, and the
meaning of all the constraints of this figure is the set of instances of the type τid equal to
∀ (α >⊥) α→ α.

◮ Another example We can now prove that the constraint χ of Figure 10.2.1 is equivalent
to the typing constraint χK for λ(x) λ(y) x presented in the same figure. Let us call g the
lowermost gen node, which corresponds to the occurrence of x in λ(y) x. Moreover, let e
be the instantiation edge on g. The constraint χ is obtained from χK by successively:

1. solving by unification the constraint edge on the node 〈11〉;

2. performing Inst-Elim-Mono on e, as 〈g1〉 is degenerate after the unification;

3. existentially eliminating g (whose interior is reduced to {g});

4. performing an inverse unification step.

Thus the equivalence is by Lemmas 11.2.3, 11.3.2 and 11.1.6.

11.4. Eager propagation 167

11.4 Eager propagation

A crucial property of gMLF is the fact that expansion and propagation are essentially
monotonic w.r.t. to instance. Indeed, while the property χ ⊑ χ′ =⇒ χe ⊑ χ′e does not
hold, if U(χe) and U(χ′e) are the constraints resulting from solving the unification edges
generated by the propagation in χe and χ′e, χ ⊑ χ′ =⇒ U(χe) ⊑ U(χ′e) does hold. We
prove a slightly weaker version of this monotony property below.

Lemma 11.4.1 Consider a constraint χ′ such that χ ⊑1 χ′, and e an instantiation edge
of χ. Then χ′e
p χe. �

Proof: Let e be g d
i

, s be 〈g · i〉, and N be Is(g) ∩ (s +−−⊸). We proceed by case
analysis on the operation o such that χ′ = o(χ).

In all but one case, we can write χ′e as I(χe), as shown below. Those equalities are actually
quite simple: either o changes N and we duplicate the operation (except if o involves s
itself, in which case the operation might have no effect in the expanded nodes), or o and
the expansion commute.

⊲ Case o = Graft(τ, n): if n ∈ N , then χ′e = (o ; Graft(τ, nc))(χe); else χ′e = o(χe)

⊲ Case o = Weaken(n): if n ∈ N and n 6= s then χ′e = (o ; Weaken(nc))(χe); otherwise

χ′e = o(χe). (The second hypothesis handles flag reset.)

⊲ Case o = Merge(n1, n2):

◦ If n1, n2 ∈ N : χ′e = (o ; Merge(n1
c, n2

c))(χe)

◦ If n1 ∈ N , n2 /∈ n (or the symmetrical case): necessarily n1 −−_ g and n2 −−_ g.

The nodes under s are unchanged, and χ′e = o(χe).

◦ If n1, n2 /∈ N : χ′e = o(χe).

⊲ Case o = Raise(d):

◦ If d /∈ N : then χ′e = (Raise(d);Raise(F c);Raise(sc))(χe) where F = Fs(g)∩(s +−−⊸).

◦ If d ∈ N : by well-formedness of instantiation edges, d −−_ g must hold. Then
χ′e = (Raise(d) ; Raise(F c) ; Raise(sc) ; Raise(dc) ; Merge(dc, d))(χe) with the same
notations as above.

⊲ Case o = Raise(n), with n 6= d:

◦ If n ∈ N and n 6−−_ g and ¬(n −−_ s −−_ g): χ′e = (o ; Raise(nc))(χe).

◦ If n /∈ N , or n ∈ I ∧ n −−_ s −−_ g: χ′e = o(χe). (The second hypothesis handles
the case of a binding reset.)

◦ If n ∈ N and n −−_ g: this is the non-trivial case, which is treated at the end of this
proof.

All the nodes transformed in the instance operations I that prove χe = I(χ′e) have enough
permissions to be transformed, either because they are copies of nodes already transformed
by χ ⊑ χ′ (and a copy has always more permissions in the expansion than the original
node), or because they are bound on a gen node, hence non-red. Thus the relation χe ⊑ χ′e

holds, which implies the result.

Let us come back to the remaining case, i.e. o = Raise(n), n ∈ N and n −−_ g. In χ, n
is in the interior, while it is in the exterior in χ′. In order to show that χ′e = I(χ), we
would need to merge the copied nodes under nc in χe with the nodes under n. However,
this cannot be done if n has not been raised high enough.

168 Reasoning on constraints

Thus we proceed otherwise. Consider χe. The node nc can be raised in this constraint:
it is raisable, as n was raisable in χ, and nc is not red as it is bound on the root of the
expansion. We call χ′′ the constraint Raise(n)(χe) in which we add an unification edge u

from nc to n. This edge is admissible, as n̂c is a gen node in χ′′. We have χ′′
p χe by
dropping of constraints and instance (1).

Notice next that n is in the structural frontier of g in χ′. Thus, by definition of expansion,
the only difference between χ′e and χ′′ is that there are some nodes under nc in χ′′. In
fact, since nc is a green bottom node in χ′e and the nodes under n and nc are the same in
χ′′, unifying u in χ′′ and χ′e results in the same constraint. Thus, by Lemma 11.2.3, we
have χ′e ⊣⊢p χ′′. Together with (1), this is the desired result.

An important consequence of this property is that we may propagate any instantiation
edge in any constraint without changing its presolutions.

Lemma 11.4.2 Propagation preserves presolutions. �

Proof: Let χ be a constraint, e one of its instantiation edges.

Consider a presolution χp of χ. We must show that χp is a presolution of χe. Since χp is
a presolution, it suffices to show that χe ⊑ χp. By Lemma 11.4.1, we have χe

p
p χe (1),
since χ ⊑ χp. By definition of χp and of solved instantiation edges, χp is a presolution of
χe

p. Thus χp is a presolution of χe by (1). This is the desired result.

Consider now a presolution χ′
p of χe. We must show it is a presolution of χ. Since it

is a presolution, it suffices to show that χ ⊑ χ′
p. By definition of χ′

p, all the unification
edges of χe are solved in χ′

p, in particular those resulting from the expansion. All the
existential nodes introduced by the propagation are thus merged in χ′

p, and χ ⊑ χ′
p holds

(a derivation of this fact can be obtained by removing all the operations on a node of the
expansion in the derivation χe ⊑ χ′

p).

This result is of course essential to reduce type inference to propagation (i.e. type scheme
instance) and unification. We have shown here that it holds for ⊑, hence for gMLF. However,
as we will see in §13.3, this is not the case for ⊑⊏−⊐−, hence for iMLF—in which type inference
is undecidable.

11.5 Normalized expansion solving

In this section, we consider an instantiation edge e of a presolution χp equal to g d,
and r the root of the type resulting from the expansion of e.

Inside a presolution, the instance steps needed to solve the propagation of an instantia-
tion edge are very specific. Indeed, since the constraint is by hypothesis solved, the nodes
outside of the interior of the expanded nodes cannot be changed. We define a set of instance
operations that reflect this property.

Definition 11.5.1 (Normalized instance derivation) We say that an instance χ ⊑ χ′

(for a constraint χ such that χe
p ⊑ χ holds) is normalized if it can be decomposed into

subsequences of the form

11.5. Normalized expansion solving 169

1. Graft(τ, n) or Weaken(n) with n in Is(r);

2. Merge(n1, n2) with n1 and n2 in Is(r);

3. Raise(n) with n +−−_−−_ r;

4. a sequence (Raise(n))k ; Merge(n, n′), with n ∈ Is(r) and n′ /∈ Is(r). We write those
operations RaiseMerge(n, n′). �

The first three kinds of operations preserve the interior of r. Conversely, in an operation
RaiseMerge(n, n′), n leaves the interior of r and is merged atomically with some preexisting
structure of the exterior of r.

In part III of this document, we will also use the fact the weakenings in such a derivation
are done as late as possible, so that nodes remain green as long as possible.

Definition 11.5.2 (Delayed weakenings) A normalized instance operation is said to
transform n if it is either Graft(τ, n), Raise(n), Weaken(n), Merge(n, n′), Merge(n′, n) or
RaiseMerge(n, n′). The weakenings in a normalized instance derivation o1 ; . . . ; ok are said
to be delayed if

∀i, ∀j > i, oi = Weaken(n) ∧ oj transforms n′ =⇒ ¬(n′ +−−_ n) �

Given a derivation of χe
p ⊑ χp, we cannot always assume it is normalized. Indeed, the

instance operations on the nodes of the expansion corresponding to the frontier of g do not
respect the conditions of Definition 11.5.1. However, it is always possible to perform those
steps first, and the remainder of the derivation can be normalized, as shown by the result
below.

Lemma 11.5.3 Consider a presolution χp, and e an instantiation edge g d of χp.
There exists instance derivations of χe

p ⊑ χp of the form Iu ; I with

• Iu(χe
p) is exactly the result of solving in χe

p all the frontier unification edges of χe
p;

• I is normalized, and the weakenings it performs are delayed. �

Proof: We let χ be the constraint obtained by unifying all the unification edges from the
frontier in χe

p. Since χp is a unifier of those edges (as χe
p ⊑ χp holds), we have χe

p ⊑ χ ⊑ χp

by principality of unification.

Let χ be Iu(χe
p). Let r be the root of the expansion in this graph. Given a node n under

r, we write rd the corresponding node under d, i.e. the unique node of χp in which r is
merged by the derivation χe

p ⊑ χp. We build I by noetherian induction on χ ⊑|χp χp. If χ
is not χp, we create a constraint χ′ such that χ ⊑ χ′ ⊑ χp (1) with χ 6= χ′, and conclude
by induction hypothesis applied to χ′.

1: if there exists n such that χ(n) 6= χ(nd), then necessarily χ(n) = ⊥. We let χ′

be Graft(τ, nd)(χ), with τ being the constructor type for χ(nd). We have (1) by
Lemma 6.6.1

1’: let N be the nodes such that for n ∈ N , n −−_ +−−_ r, and n is not bound on χ̂p(n) in
χ. We choose a node n in N as low as possible for −−⊸. It is routine to prove that
n is raisable (as otherwise χp would not be well-dominated). Necessarily n cannot be
red, as otherwise χ ⊑ χp could not hold. Thus we have (1) by Lemma 6.6.2.

170 Reasoning on constraints

1”: if there exists two nodes n1 and n2 such that n1, n2 −−_ n ∗−−_ r, with n1 and n2

mergeable, and nd
1 and nd

2 merged, we let χ′ be Merge(n1, n2)(χ). As above, n1 and
n2 cannot be red, and (1) holds by Lemma 6.6.3.

2: if none of the conditions above are verified, let N be the nodes such that for n ∈ N ,
we have n 6= r,

⋄
χ(n) = (>) and

⋄
χ(nd) = (=). We choose n ∈ N as low as possible for

−̂− (or equivalently −−⊸) and let χ′ be Weaken(n)(χ). Again, n cannot be red, as
χ ⊑ χp would not hold. At this stage, the interiors of n and n′ are identical (although
the frontiers might not be). We thus have (1) by Lemma 6.6.4.

3: once we have exhaustively applied the cases above, the only differences between the
subgraphs under d and r is the fact that, for some nodes bound on r, the corresponding
nodes are bound above d, and possibly also the binding flag of r. Importantly, the
bounds of the corresponding nodes under d and under r are exactly the same. Thus,
let N be the set of nodes such that if n ∈ N , we have n −−_ r and nd 6−−_ d. We
choose n ∈ N as low as possible for −−⊸; as usual, this ensures that n is raisable.
Then we let χ′ be RaiseMerge(n, nd)(χ), and we have (1) by Lemmas 6.6.2 and 6.6.3.

4: once all the nodes of the case above have been raised, n and d can be merged. Thus,
if d is rigid we let χ′ be (Weaken(r);RaiseMerge(r, d))(χ); otherwise we let χ′ be
RaiseMerge(r, d)(χ). (There is in fact no need to raise r, but our use of RaiseMerge

avoids the need to introduce a specific merging operation for r.) By construction, χ′

is actually χp.

The operations above define I , and it remains to justify that all the weakenings it contains
are delayed. The weakenings of step 2 are inserted bottom-up, hence delayed. The opera-
tions we insert after step 2 concern r or some nodes bound on r; those nodes are above or
at the same level as the nodes that are weakened in step 2. Thus the result holds.

11.6 Stability of solved instantiation edges

Another important reasoning tool is the stability of solved edges by unrelated transforma-
tions. Consider indeed a type scheme s. Expansion is only concerned with the nodes that
are both under s and in the structural interior of the corresponding gen node; a transfor-
mation that does not change those nodes leaves the expansion unchanged. We can in fact
lift this property to propagation, and by extension, to solved instantiation edges.

Lemma 11.6.1 An instantiation edge g d
i

that is solved in a constraint χ remains
solved in any instance of χ that leaves Is(g) ∩ (s +−−⊸) unchanged. �

Proof: We let e be g d, N be Is(g)∩(s +−−⊸) and r be the root of the expansion in χe

and χ′e. It suffices to show the result of one single step of a canonical instance derivation,
as the result then follows by induction. We thus consider an operation o such that χ ⊑1 χ′

and χ′ = o(χ), and show that χ′e ⊑ χ′. There are two cases, depending on whether o is
Raise(d) or not.

⊲ Case o 6= Raise(d): we consider a derivation of χe ⊑ χ of the form Iu ; I as per

Lemma 11.5.3. By hypothesis, I is normalized and we modify it into I ′ to prove that
I ′

u ; I ′ witnesses χ′e ⊑ χ′ instead (where I ′
u is simply obtained by solving the frontier

unification edges in o(χ)e; this always succeeds, as the instantiated nodes are green

11.6. Stability of solved instantiation edges 171

bottom nodes). The first three kinds of operation of Definition 11.5.1 need not be
changed. Indeed they operate on Is(r), which is the same in χe and χ′e by hypothesis.
Thus we consider an operation o′ = RaiseMerge(n, n′) in the normalized derivation, and
change o′ when it modifies the node on which o operates.

◦ Case o = Graft(τ, n′): we rewrite o′ into Graft(τ, n) ; RaiseMerge(n, n′)

◦ Case o = Weaken(n′): we rewrite o′ into Weaken(n) ; RaiseMerge(n, n′)

◦ Case o = Raise(n′): we do not change o′. Indeed, there exists k such that

o′ = ((Raise(n))k ; Merge(n, n′)), and after o we must instead apply ((Raise(n))k+1 ;
Merge(n, n′)); however this is still written RaiseMerge(n, n′).

◦ In all the other cases: we do not change o′.

⊲ Case o = Raise(d): then χ′e = (Raise(d) ; Raise(F c) ; Raise(r))(χe), where F = Fs(g)∩

(s +−−⊸) and r is the root of the expanded part. The nodes in F c and r are flexibly
bound to the root, hence not red. Thus χe ⊑R χ′e (1).
Let us next prove that all nodes of F are bound strictly above d̂ in χ (2). Consider
n ∈ F . Let π be such that s π−−⊸ n. Since e is solved, d π−−⊸ n also holds. By well-
domination, all nodes of F must be bound at least as high as d. But, since d can be
raised in χ, it is raisable and no node structurally under d can have been bound on d̂
in χ. This proves the desired subresult.
Let us now conclude. We have χe ⊑ χ′ (3), as both χe ⊑ χ and χ ⊑1 χ′ hold by
hypothesis. The nodes d and r are bound lower in χe than in χ′e, as d is raised in χ. It
is also the case for the nodes of F c by (2). By applying Lemma 6.6.2 |F | + 2 times to
(3) and (1), we obtain χ′e ⊑ χ′.

12
Type inference in MLF

Abstract

In this section, we show how to solve typing constraints, hence how to perform
type inference in MLF. We restrict our attention to a subset of constraints, called
acyclic, as type inference for the full set of constraints is undecidable (§12.1.1). We
show that acyclic constraints, which include all typing constraints, have principal de-
cidable presolutions and solutions (§12.1.3). We deduce from the strategy used to find
the principal presolution some simplification rules on acyclic constraints (§12.2). We
also show that the set of terms typable without type annotation in MLF and ML is the
same (§12.3.1), and formalize how type annotations are added to source terms—thus
giving MLF its expressivity (§12.3.2). We identify superfluous gen nodes inside typing
constraints, and propose some rules to remove them (§12.4). Finally, we study the
complexity of type inference (§12.5); our constraint framework can be used to per-
form type inference with optimal theoretical complexity, and with excellent practical
complexity. We conclude by discussing implementation-related issues (§12.6).

12.1 Solving acyclic constraints

12.1.1 Acyclic constraints

In their full generality, our constraints system can be used to encode typing problems with
polymorphic recursion, for which the typing problem is already undecidable in ML (Henglein
1993). Indeed, the constraint corresponding to a term such as «val rec x = a» is simply
obtained by building the typing constraint χ for a, and constraining all the occurrences of
x in a to be an instance of χ itself (using an instantiation edge).

Thus, in order to preserve decidability, we need to restrict ourselves to a subset of
constraints. In order to rule out all cases—direct or indirect—of polymorphic recursion, we
only consider constraints in which instantiation edges induce an acyclic relation.

173

174 Type inference in MLF

Definition 12.1.1 (Acyclic constraints) A gen node g depends on another gen node g′

if g′ is in the scope of g, or if g′ constrains the constraint interior of g, i.e.

g′ +−−_ g ∨ ∃n ∈ Ic(g), g′ n

A constraint χ is acyclic if the dependency relation on its gen nodes is acyclic, i.e. a strict
partial order. �

Typing constraints are acyclic: the instantiation edges follow the scopes of the variables
of the expression, which are themselves nested.

Property 12.1.2 A typing constraint χ is acyclic. �

Proof: Let a be a term such that χ is its typing constraint. Let R1 be the relation “is
a subterm” and R2 be the relation “is in the scope of”, both relations being restricted to
subterms of a. The relations R1, R

−1
1 , R2 and R−1

2 are well-founded and finite. Thus, so
is the transitive closure of R1 × R

−1
2 (1).

Consider two gen nodes g and g′ such that g depends on g′. We identify gen nodes with the
corresponding subterms of a. By definition of typing constraints and dependency, either
(1) g′ is a subterm of g (for abstractions or applications), or (2) g′ is the bound of a let

bound variable and g is the right-hand side of the let or a variable of this right-hand side.
Thus the dependency relation is a subrelation of R1 × R

−1
2 , and the conclusion is by (1).

Crucially, acyclicity is stable by instantiation.

Property 12.1.3 Let χ and χ′ be two constraints. If χ ⊑ χ′, the dependency relation of
χ′ is a subrelation of the dependency relation of χ. �

Proof: We show the property for an atomic instantiation step; the general case follows by
induction. Since gen nodes cannot be raised, we only need to consider the dependency
relation induced by instantiation edges.

⊲ Weakening: The relation remains completely unchanged.

⊲ Grafting: The interiors of gen nodes can grow, but with new nodes that do not contain
instantiation edges. Hence, the relation remains unchanged.

⊲ Raising: The interiors of gen nodes may only decrease: if the node raised is bound on a
gen node, its subgraph leaves the interior of this node, otherwise all gen nodes interiors
are left unchanged. Hence the relation diminishes or remains unchanged.

⊲ Merging: The interiors of gen nodes are left unchanged, as gen nodes cannot be merged.
Thus merging can only occur inside the interior of gen nodes, and the relation remains
unchanged.

12.1.2 Solving an instantiation edge

In acyclic constraints, propagating an instantiation edge and solving the resulting unification
edges is sufficient to solve the instantiation edge. Of course, this result is the key to reducing
type inference to unification, exactly as for ML type inference.

12.1. Solving acyclic constraints 175

Lemma 12.1.4 Let e be an instantiation edge g d of a constraint χ, with d not in
Ic(g). Let χ′ be the principal unifier of the unification edges introduced in χe (if this unifier
exists). Then χ′ is an instance of χ in which e is solved. �

The condition on n and Ic(g) vacuously holds on acyclic constraints, and ensures that the
interior of g will not be changed by the unification. Afterwards, the conclusion is simply by
idempotency of propagation-unification.

Proof: Let E be the set of unification edges resulting from the propagation. We prove the
three points below, the first and the third being the result.

1. χ′ is an instance of χ: The existential structure introduced during the propagation
is merged with the existing structure under d when the unification edges are solved.

2. Ic(g) has not been instantiated in χ′: by definition of the unification algorithm, the

nodes changed by the unification are those reachable by ∗−−⊸ from a node constrained
by an edge in E. These nodes are either fresh (i.e. created by the propagation), under
d, or under a node in the frontier (hence the exterior) of g. Hence, it suffices to prove
that no node structurally under d is in Ic(g).
By contradiction, suppose there exists n such that n ∈ Ic(g) and d ∗−−⊸ n. By well-
domination, since n +−−_ g, either g ∗−−_ d, or d ∗−−_ g. The second case is forbidden
by the hypothesis on d and g. The first case is impossible because d is a type node,
and g a gen node.

3. e is solved in χ′: we show that the diagram below holds:

χ χe χee

χ′ χ′e

e e

e

Unif

⊑M
1

Unif

⊑

Let us first justify the edge χee
Unif

−→ χ′e. Propagating e a second time in χe is similar
to doing an existential introduction and adding some unification edges. The new
nodes and edges are not considered by the unification algorithm, so the first expanded
nodes are merged exactly as in χ′. The square closes because the interior of g have
not changed, so the propagation creates the same nodes in χ′ and χe.
Next, χee ⊑M χe holds, as it is possible to merge the copies of the nodes of the
structural frontier, then the root of the two propagations. By soundness of unification,
this implies χee ⊑ χ′. Hence χ′ is an unifier of the edge introduced by the second
propagation in χee. by Lemma 11.2.3, this means that it is an instance of the principal
unifier of this edge, which is χ′e. (Indeed, the two propagated parts being equal,
solving one propagation edge or the other yields the same graph.) Hence the relation
χ′e ⊑ χ′ holds, which is exactly the desired result.

Notice that this result does not require the acyclicity of the constraint itself, only that
gen nodes are not “self-cyclic”.

176 Type inference in MLF

12.1.3 Solving an acyclic constraint

Using the result above, solving an acyclic constraint is immediate: we merely need to solve
the instantiation edges in the correct order, i.e. according to the dependencies between gen
nodes. The resulting algorithm SolveConstraint is shown in Figure 12.1.1.

Input: an acyclic constraint χ
Output: a presolution of χ

1. Compute an ordering for the instantiation edges of χ such that g d is visited
before g′ d′ if d′ depends on d in χ. This order can be found by a topological
sort of χ.

2. Solve all the unification edges by unification.

3. Visit the instantiation edges according to the order found in step 1. On each edge e:

a) perform a propagation on e;

b) unify the resulting unification edges.

Figure 12.1.1 – SolveConstraint algorithm

In order to show that this algorithm indeed solves the constraint, we introduce one
auxiliary definition.

Definition 12.1.5 A gen node g is recursively-solved if its interior is not the target of
a unification edge and for any edge e = g′ d with d ∈ Ic(g), e is solved and g′ is
recursively solved. �

Recursively solved gen nodes are completely solved: as shown in the proof below, their
interiors will remain invariant throughout the traversal of the instantiation edges by
SolveConstraint.

Theorem 12.1.6 Given an acyclic constraint χ, the algorithm SolveConstraint returns a
principal presolution of χ if χ has solutions, or fail if χ has no solutions. �

Proof: The preservation of presolutions follows from Lemma 11.2.3 for steps 2 and 3b and
from Lemma 11.4.2 for step 3a. Hence we only need to show that the type χp returned by
the algorithm if it does not fail is indeed a presolution of χ.

By step 2, χp only contains solved unification edges (1). We prove by induction on the
iterations of step 2 that all the instantiation edges of χp are solved. The invariant is that
all the already visited instantiation edges are solved in the current constraint, and that
their originating gen node is recursively solved (2). If all the edges have been visited, χp

is solved by (1) and (2).

Otherwise, let χ′ be the current constraint at the beginning of an iteration of step 2,
e = g d be the current instantiation edge to solve, E the edges visited before e, G
their gen nodes. By (1), the induction hypothesis, and the definition of the order used to

12.2. Simplifying acyclic constraints 177

choose e, g is recursively solved in χ′. Let χ′′ be the constraint obtained by propagating e
and solving the resulting unification edges (by construction this step must succeed, as we
consider only the cases where SolveConstraint returns). By Lemma 12.1.4, e is solved in
χ′′; it remains to prove that g is still recursively solved, that the gen nodes of G are still
recursively-solved, and that the edges of E are still solved. To do so, we prove that the
constraint interiors of the gen nodes of G ∪ {g} are unchanged in χ′′, which implies the
result by Lemma 11.6.1.

By definition of the unification algorithm, the nodes of χ changed by the propagation and
the unification are those structurally under d, or under the structural frontier of g. By
well-domination, the latter nodes can only be in the interior of gen nodes on which g is
transitively bound, which thus depend on g in χ′′ (3). Let now gd be the gen node on
which d is bound (by condition 10 of Definition 9.2.1). By definition, g′ depends on gd.
The nodes under d are also in Ic(gd), or on one of the gen node on which gd is transitively
bound, which all depend on gd (4). Thus, by (3) and (4), the nodes changed are only
in interiors of gen node which depend on g in χ′′. By Property 12.1.3, those nodes also
depend on g in χ. Hence, they are not in G∪{g} by acyclicity, which is the desired result.

As an immediate corollary, we can deduce that an acyclic constraint has a principal
solution, which is the solution witnessed by its principal presolution.

Corollary 12.1.7 Acyclic constraints have principal decidable (pre)solutions. �

Interestingly, the constraint returned by SolveConstraint does not depend on the ordering
chosen to enumerate the instantiation edges. Indeed, given two possible constraints returned
by the algorithm, they are both a principal presolution of χ, and verify χp ⊑ χ′

p and χ′
p ⊑ χp.

The kernel of instance is equality (Lemma 5.3.11), which proves that they are in fact equal.

Efficiency Using the order induced by the dependency relation ensures that an instantia-
tion edge never needs to be propagated more than once. Hence, the number of unification
steps that must be performed during inference is bounded by the number of instantiation
edges plus one (for the initial unification edges). A formal study of the complexity of this
algorithm on typing constraints will be given in §12.5.

12.2 Simplifying acyclic constraints

The proof of correctness of SolveConstraint (Theorem 12.1.6) gives us some insights on the
shape of the principal presolution of an acyclic constraint. We present three important
consequences in the next sections.

12.2.1 Removing solved instantiation edges

Once a gen node g is recursively solved, its interior will never need to be instantiated more
to obtain the principal presolution. Thus, after an outgoing instantiation edge of g has been
propagated, Lemmas 11.6.1 and 12.1.4 ensure that this edge can be soundly removed.

Corollary 12.2.1 Consider a recursively solved gen node g of an acyclic constraint χ. For
any edge e = g d, the constraints χ and χe \ {e} are equivalent. �

178 Type inference in MLF

In particular, this holds for unconstrained gen nodes, which are trivially recursively
solved.

Corollary 12.2.2 Let e be an edge g n of an acyclic constraint χ. If Ic(g) is not the
target of a constraint edge, then χ and χe \ {e} are equivalent. Under those hypotheses, we
call Inst-Expand the rule replacing χ by χe \ {e}. �

Interestingly, this gives us another proof of the correctness of rule Inst-Elim-Mono. How-
ever, Lemma 11.3.2 is more general, as it does not require the constraint to be acyclic.

χ1

let y = λ(x) x
in y y

χ2 y y

λ(x) x

y

χ3 G

G

⊥

n1

λ(x) x

G

⊥

n2

→

⊥ ⊥

χ4 G

G
g

→

⊥

→

⊥ ⊥

χ5 G

g G

→

⊥

→

⊥

→

⊥ ⊥

χ6 G

→

⊥
→

⊥

→

⊥ ⊥

χ7 G

n →

→

⊥

χ8 G

→

⊥

Figure 12.2.1 – Typing let y = λ(x) x in y y

◮ Example Figure 12.2.1 presents the typing of let y = λ(x) x in y y in MLF. In χ3 we
have developed the expression node for y y. In χ4 we have solved the box for λ(x) x as in
Figure 11.3.2, and applied the rule Var-Let (which will be presented in §12.4) to both n1

and n2. χ5 is by Inst-Expand on the lowermost instantiation edge. χ6 is by Inst-Expand

on the remaining instantiation edge, then by Exists-Elim on g. χ7 is by unification and
χ8 by Exists-Elim on n. Thus the principal solution is the type τid. The derivation is
essentially the same in ML, except that all the nodes not under g are bound at 〈ǫ〉 in χ5

to χ8.

Efficiency of constraint solving Often, we are not interested in the presolutions of a
constraint—only in its solutions. Finding the principal presolution then deducing the prin-
cipal solution can be costly memory-wise, as the former can be arbitrarily bigger than the
latter. Indeed, presolutions retain the shape of the initial constraint. Hence a better ap-
proach is to apply Inst-Expand to perform the propagation, then existential elimination to
the gen nodes that are no longer constrained. While this does not change time complexity,
it ensures that constraints remain as small as possible and can improve space complexity.

12.2. Simplifying acyclic constraints 179

12.2.2 Solving closed subconstraints

Since solving acyclic constraints amounts to performing unification and propagation steps,
gen nodes with no escaping edges can be solved locally.

Definition 12.2.3 (Closed subconstraint) The subconstraint under a gen node g is said
to be closed if

• (n ∗−̂⊸) = Ic(g)

• (Ic(g)) ∪ (Ic(g)) ∪ ((Ic(g) \ {g}) ⊆ Ic(g) �

Closed subconstraints only allow constraint edges within Ic(g), or outgoing instantiation
edges from g itself. The typing constraints generated from closed λ-terms are closed sub-
constraints.

Lemma 12.2.4 Let χ be an acyclic constraint, g a gen node of χ whose subconstraint is
closed. Suppose χ is solvable, and let χp be its principal presolution. Then the subconstraint
under g is closed in χp. �

Proof: The proof is by induction on the construction of the principal presolution; the
invariant is that the subconstraint under g remains closed after each step. The unification
of two nodes under g will never raise a binding edge above g, by definition of a least
common ancestor. The propagation of an instantiation edge from a gen node different
from g will create unification edges only inside Ic(g), as the destination node is inside
Ic(g). The propagation of an instantiation edge from g will not create unification edges
that go outside Ic(g), since Fs(g) is empty.

12.2.3 Splitting gen nodes

Inst-Copy

◦

◦

G

◦

◦

◦

⊣⊢ ◦

◦

G

◦

◦

◦

G

◦

Figure 12.2.2 – Rule Inst-Copy

An interesting rule to consider on acyclic constraints is Inst-Copy, presented schemat-
ically in Figure 12.2.2. It can be applied whenever a gen node has one or more outgoing
instantiation edge. The edges may be arbitrarily partitioned into two sequences, and the

180 Type inference in MLF

interior nodes and edges of the gen node are duplicated (as well as the edges between the
interior and the frontier).

Intuitively, one could think that the constraint in which the gen node has been split has
more solutions. Indeed, each scheme could seemingly pick a different type. However, this is
not the case on acyclic constraints. Indeed, since they have principal presolutions, the two
schemes can only pick instances of the most general solution. We sketch the proof of this
result below. However, since it is never used in the remainder of this document, we admit
an intermediary result (which can be proven by a tedious case disjunction on the unification
algorithm).

Lemma 12.2.5 Let χ be a constraint, g one of its gen nodes. Let C be one application of
Inst-Copy on g. The following holds:

χ χC

χ′

C

⊑1

C

⊑
�

Proof: Let g′ be the name of the copy of g in χC . The proof is by case disjunction on
the instance operation transforming χ into χ′. Each case is immediate: if the operation
involves a node of Ic(g), we duplicate it so that the copy occurs on the corresponding node
in Ic(g′); otherwise we do not change the operation.

Lemma 12.2.6 Let χ be a constraint, g one of its gen nodes, C an application of Inst-

Copy. Let U be the application of Unif on a given unification edge e, U ′ the application
of this algorithm to e if it is not duplicated by C, and to e and its copy otherwise. The
following holds:

χ χC

χ′ χ′
C

C

U

C

U ′

�

Lemma 12.2.7 Rule Inst-Copy preserves the meaning of acyclic constraints. �

Proof (sketch): Let χ be a constraint, C an application of Inst-Copy, χC the constraint
C(χ).

⊲ Consider a presolution χp of χ. Let χCp be C(χp). By Lemma 12.2.5, χC ⊑ χCp

holds. By hypothesis, χp is solved; hence it does not contain unification edges, and
all instantiation edges are solved. Thus χCp does not contain unification edges either.
Moreover, all its instantiation edges can be solved, by using the steps that solve them in
χp. Finally, χp and χCp witness the same solutions, as C does not change the expansion
of the root node. Hence all solutions of χ are solutions of χC .

12.3. Typability in annotated and unannotated MLF 181

⊲ In the other direction, we cannot apply the same approach. Indeed, the two copies of
g could seemingly be instantiated in different ways. Instead, we instrument the steps
of SolveConstraint on χ to build the principal presolution of χC . After each atomic
step of SolveConstraint on χ, we apply the same step to χC , as well as on the copy of
the transformed edge if it exists. Lemma 12.2.6 ensures that after each propagation
and unification step, χ and χC can be maintained synchronized. Thus the principal
presolution of χC is C(χp), and all solutions of χCp are solutions of χ.

12.3 Typability in annotated and unannotated MLF

12.3.1 Unannotated terms

The strategy for solving an acyclic constraint also gives us some insights on the expressive-
ness of MLF. Consider a typing constraint. By Property 9.4.2, it is an ML constraint; in
particular it contains only flexible edges. If it is solvable in MLF, its principal presolution
will contain only flexible edges. Then, by Theorem 10.6.3, it will have an ML solution.
Thus, a program without type annotations is typable in MLF if and only if it is typable
in ML. (In general, its principal type in ML will however be a strict instance of its principal
type in MLF.)

Theorem 12.3.1 Any expression typable without type annotations in MLF is also typable
in ML �

This result is a direct consequence of the following more general result:

Lemma 12.3.2 Consider an ML acyclic constraint. It is typable in ML if and only if it is
typable in MLF. �

Proof: Let χ be the constraint. The direction “typable in ML implies typable in MLF”
is proven in Property 10.6.2. Suppose then that χ is typable in MLF. By definition of
SolveConstraint, the principal presolution χp contains only flexible edges: unification does
not introduce fresh binding edges, and propagation only copies existing subgraphs. Thus
we can apply Theorem 10.6.3 to χp, which gives us an ML solution to χ.

12.3.2 Type annotations

Type annotations are thus the key to the expressivity of MLF. Conveniently, there is no
need to introduce special constructs or typing rules for annotated expressions. Instead, we
add to the typing environment a denumerable set of retyping, or coercion, functions. More
precisely, to any closed type τ we associate a constant cτ . Then (a : τ) and λ(x : τ) a are
both syntactic sugar:

(a : τ) , cτ a λ(x : τ) a , λ(x) let x = (x : τ) in a

Notice that type annotations are part of expressions: two terms with different annotations
are really different terms and do not usually have a common, most general type.

182 Type inference in MLF

12.3.2.1 Annotations in source terms

:

κ0

⊥

→

→

⊥

:

κ

τ

◦

⋄

→

cκ0

→

→

⊥

⊥

→

→

⊥

→

cκ

τ

=

◦

⋄ τ

>

Figure 12.3.1 – Types of coercion functions

In fact, we go one step further and introduce annotations that are more general than a
simple type. As an example, consider the annotation

(a : ∃β ∀ (α) β → (α→ α))

It contains both universal and existential quantification, and expresses that a must be a
function, the type of its first argument being left unspecified, and its return type being
exactly α → α. The existential part will be found (i.e. potentially instantiated) by type
inference.

The annotation above can be represented by the graph κ0 of Figure 12.3.1. The exis-
tential part is the node 〈11〉, which is bound at the root “ :” node. Conversely, the nodes
corresponding to the universal part are 〈1〉, 〈12〉 and 〈121〉. More general annotations are
depicted by the pseudo-type κ of the same figure. Again, the universal part is the interior
of 〈1〉. Conversely, the other nodes of κ, represented by the ◦ meta-node and bound on the
root, are those existentially quantified.

12.3.2.2 Coercion functions

We associate to an annotation κ a coercion function cκ which has the type depicted in
Figure 12.3.1. Each side of the arrow is a copy of τ ; hence, they could a priori be instan-
tiated independently. However, the domain is rigidly bound. Hence, its polymorphism is
requested, and thus cannot be weakened by instantiation: a must be of type τ . On the
contrary, the codomain is flexibly bound, meaning that the polymorphism is provided, and
can freely instantiated. In parallel, the nodes corresponding to the existential part of κ
are not duplicated: they are shared between the domain and the codomain, and will be
instantiated simultaneously on both sides.

◮ Example In Figure 12.3.1, the type of the coercion function corresponding to κ0 is cκ0
.

◮ Example: typing of an annotated term Figure 12.3.2 shows the typing of the term
λ(x : ∀ (α) α → α) x x. In this example we have colored the nodes according to their
permissions, as some nodes are orange and red.

The term we consider is desugared into the expression described in the constraint χ2. In
χ3 we have developed the expression nodes for the abstraction, the let, and the application
cκid

x. In χ4 we have developed the expression node for x, and simplified by Inst-Expand

12.3. Typability in annotated and unannotated MLF 183

χ1 λ(x : ∀ (α) α→ α) x x χ2 λ(x) let y = cκid
x in y y

χ3 G

→

⊥ G

cκid

x

→

⊥ ⊥

x

y y ⊥
y

χ4 G

→

⊥ G

→

→

⊥

→

⊥

G

g

⊥

→

⊥

n

⊥

y y ⊥
y

χ5 G

→

G

→

→

⊥

→

⊥

→

⊥ ⊥

y y ⊥
y

χ6 G

→

G

→

n′
→

⊥

→

⊥

y y ⊥
y

χ7 G

→

→

⊥

G

→

⊥

y y ⊥
y

χ8 G

→

→

⊥

G

→

⊥

⊥

χ9 G

→

→

⊥

→

⊥

⊥

χ10 G

→

→

⊥

→

⊥

Figure 12.3.2 – Typing λ(x : ∀ (α) α→ α) x x

184 Type inference in MLF

and Exists-Elim the instantiation edge on cκid
into a unification one. χ5 is by unification

on 〈g1〉, Inst-Elim-Mono on g, unification on the edge introduced by Inst-Elim-Mono

between 〈g1〉 and n, and existential elimination on g. χ6 is by unification on the remaining
unification edge. χ7 is by Exists-Elim on n′. Up to a few unimportant differences, the
circled nodes correspond to the constraint χ3 of Figure 12.2.1; simplifying those nodes thus
results in χ8. χ9 is by Inst-Expand on the instantiation edge, then by Exists-Elim. χ10

is by unification.
The principal solution is thus the type ∀ (α = τid) ∀ (β > τid) α→ β. Using our syntactic

sugar, this type is written τid → τid. The leftmost occurrence of τid occurs on the right of
an arrow, and can thus be instantiated.

Definition 12.3.3 (Initial typing environment) The initial typing environment for
MLF is composed of all the coercion functions cκ for all annotations κ. �

12.3.2.3 Soundness of coercion functions

→

τκ

τ

◦

⋄ τ

⊑W
→

τ ′
κ

τ

◦

⋄ τ

⊏−M
→

τ ′′
κ

τ

◦

⋄

Figure 12.3.3 – Soundness of coercion functions

Let us informally justify why the coercion functions are sound. We can instantiate the type
τκ of cκ into the types τ ′

κ and τ ′′
κ of Figure 12.3.3. It is immediate that the type τ ′′

κ is sound,
as it is an instance of the type τid of the identity function. Thus, by definition of abstraction
(which does not change the semantic of types), τ ′

κ is also sound. Finally, τκ is actually the
principal type of λ(x) cκ x, i.e. the η-expansion of cκ, and is as such sound.

Interestingly, we could give to coercion functions the type τ ′
κ above (instead of τκ)

without altering the expressivity of gMLF. Indeed, in an application cκ a, the binding edge
for the codomain of cκ is reset when the gen node for the application is expanded; this can
for example be seen by weakening the node 〈n2〉 in the constraint χ6 of Figure 12.3.2.

Given the remark above, the key point in Figure 12.3.3 is the step τ ′′
κ ⊐− τ ′

k. While it is
correct from a soundness point of view, this step is not possible in gMLF, as it is not part
of the instance relation ⊑. Indeed, allowing such an operation in ⊑ would permit—hence
require, for principality—to infer all the possible uses of coercion functions, making type
inference undecidable.

12.4 Simplifying typing constraints

Mainly for homogeneity reasons, typing constraints introduce a gen node for every sub-
expression. In a few cases, those nodes are superfluous, as they do not increase the expres-

12.4. Simplifying typing constraints 185

siveness of the constraint. In this section we propose a few simplifications rules to remove
them.

Importantly, even though the rules below are tailored for typing constraints, they are
not restricted to them. Indeed, they can be used on any constraint, including cyclic ones.

12.4.1 Simplifying the typing of variables

Var-Let

◦

G

+

◦
∗

G

+

⊥

◦

+

⊣⊢ ◦

G

+

◦
∗

◦
+

Var-Abs

◦

◦

+

◦
∗

G

+

⊥

◦

+

⊣⊢ ◦

◦

+

◦
∗

◦
+

Figure 12.4.1 – Simplifying the typing of variables

The gen nodes introduced in the typing of variables are superfluous:

• let-bound variables only generate indirections. Indeed, consider the typing constraint
for let x = a in a′, and a subconstraint for an occurrence of x in a′. This subconstraint
is constrained to have an instance of the type of a, and can be entirely removed

• λ-bound variables create gen nodes that will ultimately be degenerate. Indeed, those
variables can only be typed monomorphically.1

We introduce two simplifications rules to remove those gen nodes, presented in Figure 12.4.1,
and illustrated by the following examples:

• In Figure 11.3.2, the rule Var-Abs can be used to directly transform χ2 into χ5.

• In Figure 12.3.2, the step from χ4 to χ5 is by Var-Abs on the gen node containing
n, then by unification.

• In Figure 12.2.1, the step from χ3 to χ4 is by Var-Let applied twice, on each of the
instantiation edges for the constraint corresponding to λ(x) x.

Both rules are correct.

Lemma 12.4.1 Rule Var-Abs preserves solutions. �

Proof: By unification, Inst-Elim-Mono and existential elimination.

1Interestingly, this will not be the case in iMLF, in which a λ-bound variable can “guess” it has a
polymorphic type (§13.2).

186 Type inference in MLF

Lemma 12.4.2 Rule Var-Let preserves solutions. �

◦
χ1

◦
r

∗

g1 G

+
◦

∗

g2 G

+

⊥

◦n

+

e1

e2

◦
χ2

◦
r

∗

g1 G

+
◦

∗

g2 G

+

⊥

◦n

+

◦
χ3

◦
r

∗

g1 G

+
◦

∗

g2 G

+

⊥

◦n

+

◦
χ4

◦
r

∗

g1 G

+
◦

∗

◦n

+

Figure 12.4.2 – Steps proving the correctness of Var-Let

Proof: Consider the constraint of Figure 12.4.2. We have χ4 ⊣⊢ χ3 by Exists-Elim and
χ2
 χ1, χ3 by dropping of constraints. The entailments shown below are sufficient to
prove χ1 ⊣⊢

p χ2 ⊣⊢
p χ3 ⊣⊢

p χ4, which implies the result.

⊲ χ1
 χ2: : let χp be a presolution of χ1 in which we add an edge g1 n. We are
going to prove that χp is a presolution of χ2. It suffices to show that the instantiation
edge g1 n (which we call e3) is solved in that constraint: it is immediate that χp

is an instance of χ2, and all the other instantiation edges are solved.
Up to e3, χp is a presolution of χ1. Thus, let Iu

1 ; I1 and Iu
2 ; I2 be two decompositions of

χe1
p ⊑ χp and χe2

p ⊑ χp, as given by Lemma 11.5.3. Let us call χ′
p the constraint χe3

p ;
we need to show that χ′

p ⊑ χp to prove that e3 is solved. For this, we are essentially
going to do some glueing, and prove that χp = (I ; I ′

1 ; I2)(χ
′
p), where I will be defined

below, and I ′
1 is derived from I1. We call s1 the node 〈g11〉 and s2 the node 〈s21〉.

First, consider a path π such that 〈s1π〉 /∈ Is(g1). By definition of presolutions and
propagation, 〈s1π〉 = 〈s2π〉. Given the shape of the binding tree in χ1, those nodes are
bound above r, and 〈s2π〉 /∈ Is(g2). Thus, again again by definition of presolutions and
propagation, we have 〈s2π〉 = 〈nπ〉. Thus, the nodes of the structural frontier of g1 under
s1 are shared with s2 and n. This implies that, in χ′

p, the unification edges resulting
from the frontier nodes under s1 can be trivially solved, which gives us I ; moreover I
does not instantiate the node that have not been created by the expansion (1).

Next, let χ′′
p be I(χ′

p). By construction, the expanded nodes are exactly the same in
Iu
1 (χe1

p) and χ′′
p . The differences concern the root r′ of the expansion: this node is

bound to ĝ2 in Iu
1 (χe1

p), and to n̂ in χ′′
p . There is another difference, unimportant for

the time being, the destination of the unification edge for r′.
Thus the operations of I1 can be applied mostly unchanged to χ′′

p . Our goal is modify
I1 into I ′

1 so that I ′
1(χ

′′
p) contains exactly an expansion of s2 after the unification of the

frontier nodes. Since the expanded nodes of χ′′
p must be unified with 〈s2〉, there is little

work to do. We proceed by case disjunction on an operation o of I1.

◦ Case o = Weaken(r′): we remove this operation: by flag reset, an expansion of s2

would be flexibly bound.

◦ Case o = Merge(r′, s2): we remove this operation.

12.4. Simplifying typing constraints 187

◦ Case o is another weakening, a merging, a raising or a grafting: by definition this
operation involves only the interior of r′. Thus we leave it unchanged.

◦ Case o = RaiseMerge(n′, n′′) with n′′ −−_ g2: we transform this operation in a se-

quence of raise such as afterwards n′ −−_ r′. Indeed, by binding reset, n′′ would be
bound to the root of the expansion in an expansion of s2.

◦ Case o = RaiseMerge(n′, n′′) with n′′ 6−−_ g2: by definition of normalized deriva-

tions, n′′ is in the exterior of the expansion. By the second hypothesis, it is also
in the exterior of g2, as n′′ −−_ +−−_ g2 cannot hold: the merging operation would not
be possible, as n′ is not in the interior of g2. Moreover n′′ is structurally under s2,
as n′ is structurally under r′ which is merged with s2. This means that n′′ is in the
structural exterior of g2, and under s2. Since e2 is solved in χp, and, n′′ is shared
between s2 and n. Thus we can also apply the operation RaiseMerge(n′, n′′) to χ′′

p ,
and we do not change this operation at all.

We call I ′
1 the result of changing the operations of I1 as specified above, and let χ′′′

p be
I ′
1(χp). By construction χ′

p ⊑ χ′′
p , and I ′

1 does not change the original nodes of χp (2).
Since e2 was solved in χp, by (1) and (2) the nodes of the structural frontier of g2 and
under s2 are shared between g2 and n. By construction of the operations defining I ′

1,
the nodes of the expansion in χ′′′

p are exactly those of Iu
2 (χe2

p), i.e. the really generic
part of s2. In χ′′′

p , r′ is bound to n̂ and constrained to be unified with n, exactly as in
χe2

p . Thus we have χ′′′
p ⊑ χp by I2. Since we already had χe

p ⊑ χ′
p ⊑ χ′′

p by I and I ′
1, e3

is solved in χp.

⊲ χ4
 χ2: let χp be a presolution of χ4. Let χ′
p be χp plus g2, the bottom node

under it, and the two missing instantiation edges. The unification edges introduced by
propagating g1 〈g2 · 1〉 can be solved, as the bottom node under g2 creates no
constraint for the skeleton or the term-graph. Moreover, since χp is a presolution, all
the nodes in Fs(g1) are already bound above the least common binder of g1 and n,
which is r. Thus solving the unification edge does not raise a node already in χ4.
We call χ′′

p the resulting constraint. In this constraint, g1 and g2 have exactly the same
structural frontier, and their structural interior is the same up to expansion reset. Thus
g2 n is solved, and χ′′

p is a presolution. Given the nodes and edges we have added,
it is an instance of χ2, hence a presolution of this constraint. Moreover χ′′

p witnesses
the same solutions as χ4, since the expansion of the root node is unchanged. Thus all
solutions of χ4 are solutions of χ2.

The non-trivial cases of this proof show two very simple results:

1. successively instantiating, generalizing, and instantiating again a type scheme results
in an instance of this scheme;

2. trivial type schemes (i.e. a gen node with a single bottom child) do not really add
constraints.

The most interesting result is the first one. Unfortunately, the proof is tedious, because
we cannot just compose the instance derivations; instead, there is a lot of surgery to do.
Interestingly, in Part III of this document we will present another form of instance witnesses,
simpler than graphic instance derivations, and which can be composed.

Notice that we could have proceeded otherwise, and only shown the correctness of Var-

Let on acyclic constraints. To see this, consider the leftmost constraint of Figure 12.4.1. In
the principal presolution for this constraint, the middle gen node will always have the same

188 Type inference in MLF

structural interior as the leftmost one (up to flag and binding reset). Indeed, there is no
reason to instantiate it further. However the proof above is more interesting, more general
(it applies to cyclic constraints), and generalizes to iMLF, in which there are no principal
presolutions.

12.4.2 Simplifying ML typing constraints

ML-Extrude

G

g G

+

◦n′
+

·
n

e

⊣⊢ML
G

G

+

◦
+

· Condition:

e is the only instantiation edge
leaving g

Figure 12.4.3 – Simplifying ML constraints

In ML typing constraints, we can extrude some binding edges from one gen node to its
ancestor without loss of generality. This is shown by the rule ML-Extrude presented in
Figure 12.4.3. Of course, this is not always possible:

• the equivalence only holds in ML. In MLF, raising n′ outside of the interior of g means
that it will not be reset during expansion. This results in either untypable constraints,
or constraints with weaker principal solutions.

• if there is more than one instantiation edge leaving g, n′ might be instantiated in
incompatible ways at the various points it is used; thus we cannot raise n′, as once it
has left the interior of g, it must “choose” one of the types.

• we must have g +−−_ n̂. Otherwise, since n′ is no longer in the interior of g, solving e
might force a node under n to be raised.

Lemma 12.4.3 Rule ML-Extrude preserves the solutions of ML constraints. �

Proof: Let χ and χ′ be the left and right-hand sides of the rule respectively. One entailment
is immediate, as χ ML⊑ χ′

Thus, suppose that χp is an ML presolution of χ. We are going to prove that n′ and n can
be unified in χp, and that the result is a presolution. We let r be n̂ and N be Is(g).

The nodes in the structural frontier of g and below are bound on r or above (1), since e
is solved. Consider χe

p in which we have solved the unification edges for the frontier by
unification; we call this constraint χ′. By construction of presolutions, those unifications
do not change a node of χp (2), only the nodes corresponding to Fs(g) in the expansion.
In χ′ the nodes of the expansion have exactly the shape of the nodes of N , except for the
gen node itself which is not copied. Moreover those nodes are bound on r, while those in N

12.4. Simplifying typing constraints 189

are bound on g. Hence we can unify the root of the expansion with n′ itself, by changing
only the nodes of N (3): it suffices to raise sufficiently all the nodes of Is(g) (which is
possible by (1) and because they are not red, as we are considering an ML constraint) and
merging the nodes with the expansion afterwards.

Let us call χ′′ the result those operations. By (2) and (3) the nodes of the expansion are
unchanged, and we can apply the steps I proving χe

p ⊑ χp to χ′′, which merges n and n′;
we call χ′′′ this constraint. By definition of I this only changes the nodes which used to
be the expansion, i.e. now the nodes of N (4).

Finally, let us prove that χ′′′ is a presolution of χ witnessing the same solutions as χp:

⊲ χp
ML⊑ χ′′′: χp ⊑ χ′′′ holds as all the existentially introduced nodes have been merged

with existing structure. To obtain χ′′′ we have performed unification on χp which is
an ML constraint, raised nodes, and merged nodes. Thus χ′′′ is an ML constraint. The
conclusion is by Lemma 9.3.6 applied to χp ⊑ χ′′′.

⊲ χ′′′ witness the same solutions as χp: by (2), (3) and (4) we have only changed the

nodes of N . Thus the nodes under the root node 〈ǫ〉 are unchanged, and both χ′′′ and
χp expand to the same type.

⊲ all the instantiation edges are solved in χ′′′: by construction e is solved in χ′′′, as n =
n′. For all the other instantiation edges: by (2), (3) and (4) the structural interior of
their gen nodes are unchanged. By Lemma 11.6.1, those edges are thus still solved.

Rule ML-Extrude can be used as follows: in the typing constraint for an application
a1 a2, we can raise the nodes bound on the gen nodes g1 and g2 for a1 and a2. Similarly, in
an abstraction λ(x) a, we can raise the nodes bound on the gen node for a. After the raising,
the corresponding type schemes become degenerate, and we can transform the instantiation
edges into unification ones. Hence gen nodes are only needed for let-bound expressions, as
in the usual presentations of ML.

χ G

→

⊥ G

g

→

⊥ ⊥

⊥

χ′ G

→

⊥ G

g

→

⊥ ⊥

⊥

χ′′ G

→

⊥ G

g

→

⊥ ⊥

⊥

Figure 12.4.4 – Constraints for λ(x) λ(y) x with ML-Extrude

◮ Example The constraint χ in Figure 12.4.4 is the typing constraint for λ(x) λ(y) x,
except that we have used Var-Abs on the variable x. We can simplify this constraint
by applying ML-Extrude to the nodes 〈g1〉, 〈g11〉 and 〈g12〉, resulting in χ′′. In this
constraint 〈g1〉 is degenerate, and we can apply Inst-Elim-Mono to the instantiation edge,

190 Type inference in MLF

resulting in χ′′. Thus all three constraints are equivalent in ML. As expected, unifying the
various edges of χ′′ result in ∀α. ∀β. α→ β → α as the principal solution for λ(x) λ(y) x.

Notice that χ and χ′ are not equivalent in MLF: the principal solution ∀ (α) ∀ (γ > ∀ (β)
β → α) α → γ for λ(x) λ(y) x is not a solution of χ′. By raising 〈g11〉, the binder of this
node is not reset during expansion, and we lose the inner quantification of the MLF type.

12.4.3 Using the simplifications rules

All three simplifications rules (Var-Let, Var-Abs and ML-Extrude) can be applied to
existing constraints. Alternatively, they can be performed on-the-fly during the generation
of typing constraints. From an algorithmic standpoint, the second approach is actually
simpler. Indeed, depending on the representation of graphic constraints, detecting whether a
rule applies can be difficult. Conversely, simplifying the constraints while they are generated
is immediate, as their structure is simple and well-known; this is no longer the case after
some resolutions steps have occurred.

12.5 Analyzing the complexity of type inference

G

G

·

G

·

G

G

·

G

·

On the left-hand side, both inner type
schemes are introduced at the level of
the outside one, thus the embedding
is 2. On the right-hand side, one is in-
side the other and the embedding is 3.

Figure 12.5.1 – Type schemes embedding

While type inference for ML is DExp-Time complete (when types need not be output),
McAllester (2003) has shown that type inference has complexity O(kn(d + α(kn))) where
α is the inverse of the Ackermann function, k is the maximum size of type schemes during
inference, and d is the maximum embedding of type schemes—Figure 12.5.1 describes what
is meant by this expression in terms of MLF gen nodes.

In McAllester’s analysis, d corresponds to the maximum left-nesting of let constructs,
i.e. nestings of the form let x = (let y = . . . in . . .) in . . .; we refer the reader to the original
article as to why this is so, as the analysis is quite technical. McAllester argues that, in
practice, d is bounded by 5, and that k does not increase with the size of the program. Under
those assumptions, type inference in ML has O(nα(n)) complexity (i.e. linear complexity,
the term α(n) being completely negligible).

12.5. Analyzing the complexity of type inference 191

Our strategy for solving constraints is quite similar to the one used in efficient imple-
mentations of type inference for ML (Rémy 1994; McAllester 2003; Pottier and Rémy 2005;
Kuan and MacQueen 2007), including the one proposed by McAllester. In particular, type
schemes are also simplified in an innermost fashion. Moreover, unification in MLF can be
performed in linear time, as in ML. Thus the complexity analysis of McAllester for ML can
be transferred to our constraints setting. However, since MLF constraints use type general-
ization (i.e. gen nodes) for every construct and not only for let ones, we must reason on
the embedding of gen nodes, not on the left-nesting of let constructs.

12.5.1 Practical complexity bound for MLF type inference

More precisely, for our typing constraints, an examination of Figure 9.4.1 shows that the
embedding of gen nodes d verifies

d(x) = 1
d(λ(x) a) = d(a) + 1

d(a b) = max(d(a), d(b)) + 1
d(let x = a in b) = max(d(a) + 1, d(b))

If we apply Var-Let and Var-Abs during the generation of constraints, d moreover verifies
d(x) = 0.

Importantly, as for ML, d does not increase with the right-nesting of let bindings. In
fact, a large upper bound of d is the height of the biggest function of the program when it
is written as an abstract syntax tree. Thus we can transpose McAllester’s result to MLF:

Theorem 12.5.1 Under the two assumptions that

• large programs are composed of cascades of right-nested toplevel let declarations

• k does not increase with the size of the program,

type inference in our constraints system (thus in MLF) has linear complexity. �

Notice that annotated functions λ(x : τ) a in the surface language are syntactic sugar for
core language expressions λ(x) let x = (x : τ) in a and should thus also be treated as
let-constructs. Hence, uses of let-construct in ML programs and MLF programs might differ,
but we expect those differences to remain small.

12.5.2 Practical complexity bound for ML type inference in our system

Interestingly, if we restrict ourselves to ML, using rule ML-Extrude (Figure 12.4.3) will
eliminate the gen nodes for all the sub-expressions but the left-hand side of let constructs.2

Thus the function d verifies

d(x) = 1
d(λ(x) a) = d(a)

d(a b) = max(d(a), d(b))
d(let x = a in b) = max(d(a) + 1, d(b))

Hence, for ML, we obtain exactly the same complexity bound as McAllester.

2More precisely, the gen nodes are not removed, but the type schemes they introduce become degenerate.
Hence they are no longer important in the complexity analysis.

192 Type inference in MLF

12.5.3 Exact complexity bound for MLF type inference

The complexity bound O(kn(α(kn) + d)) of McAllester for type inference, and our adap-
tation to MLF gen nodes also provide an upper bound for the complexity of type inference.

Theorem 12.5.2 MLF type inference has 2O(n) complexity, where n is the size of the pro-
gram. �

Proof: Let us first consider the size of the principal presolution of a typing constraint.
The typing constraint has a size linear in n. Unification does not increase the size of a
constraint; only expansion does. At each expansion step, the size of the constraint can at
most double since we only copy existing nodes. Inside a typing constraint of size n, the
number of instantiation edges is bounded by O(n). Since each instantiation edge needs to
be expanded only once, the size of the principal presolution itself is bounded by 2O(n).

This shows in particular that the maximum size k of type schemes is bounded by 2O(n). In
parallel, by definition of typing constraints, the maximum depth of gen nodes d is bounded
by n. Following the analysis of McAllester, the complexity is thus in 2O(n)×n×(α(2O(n)×
n) + n), i.e. in 2O(n).

As ML programs are typable in MLF if and only if they are typable in ML, the complexity
bound for MLF cannot be better than the one for ML (Kanellakis et al. 1991), which
establishes the result.

12.6 Implementation

We have implemented an MLF type checker in OCaml (Leroy et al. 2007). This prototype
faithfully follows the type inference algorithm we have presented, and we detail its more
interesting points below.

Representing graphic types Much of the difficulty in implementing graphic constraints
lies in finding a good representation for graphic types, and implementing the unification
algorithm. Indeed, in graphic types, the graph structure and the binding tree are interwoven
and their edges go in inverse directions. Finding an efficient functional representation of
such a structure is not obvious, and we have used an imperative implementation. This only
causes problems when unification fails, i.e. when a type inference error occurs—it is then
too late too explain what caused the error, as most of the original structure of the graphic
types has been changed. In this case, we type the expression a second time, and explain
the error in terms of the last valid constraint.

Representing graphic constraints Interestingly, the representation we have chosen does
not store the nodes bound on a given node. Maintaining this set while preserving the linear
complexity of unification seems very difficult, and this information is not needed for inference
anyway. Going even further, we do not store the set of gen nodes present in a constraint
either: this set can almost entirely be deduced from the instantiation and unification edges
of the constraint. The gen nodes that cannot be found this way are unconstrained, and

12.6. Implementation 193

fun x → if x = 1 then True else x
Both branches of this ’if’ have incompatible types. The ’then’ part has

type bool while the ’else’ part has type int.

(fun x : ’a. ’a → ’a) → x x) succ
Cannot apply the first expression to the second: the argument is probably

not polymorphic enough.

The first expression has type (′a. ′a→′ a)→ (′c. ′c→′ c) while the second has

type int→ int.

Figure 12.6.1 – Examples of error messages

can be removed by Exists-Elim. Thus we do not implement this rule explicitly, as it is
implicitly performed by the OCaml garbage collector.

Generating constraints The generation of typing constraints from λ-terms is entirely
straightforward, using a single recursive function. Interestingly, typing constraints are sim-
ple enough that the dependency relation on instantiation edges needs not be computed.
Instead, we sort instantiation edges on-the-fly during constraint generation.

Type errors Explaining type inference errors raises two challenges: (1) explaining unifica-
tion clashes caused by MLF polymorphism; (2) associating a type inference error with the
corresponding part of the source term.

Point (2) may not seem obvious in our constraint setting. However the difficulty is only
apparent. Indeed, it is straightforward to associate a constraint edge with the expression
that lead to its creation. Our constraint-based approach also allows choosing a strategy
to solve the instantiation edges3; for example, the function in an application can be typed
before or after the argument. While our implementation already gives quite readable error
messages, we are also experimenting with other strategies.

Point (1) is trickier. In simple examples that do not result from encodings, a message
such as « function f expects an argument of type τ but receives a value of type τ ′; type τ ′

is probably not polymorphic enough » is often sufficient. More ambitiously, we could try
to explain precisely why the subterm that has type τ ′ is not not polymorphic enough. We
however leave this for future work.

3In general, there exists different strategies with optimal complexity.

13
Constraints up to similarity or abstraction

Abstract

We study in more details eMLF and iMLF. Both systems share some characteristics,
which we detail in §13.1. We then study typability in eMLF, and show that this system
is not more expressive than gMLF (§13.2). Finally we show that iMLF is strictly more
expressive than the two other systems; as a counterpart, it does not have principal
presolutions (§13.3).

13.1 Constraints and inverse instance

Studying eMLF and eMLF requires considering constraints modulo ≈ and ⊏−⊐−. From a purely
operational standpoint, there are some similarities between eMLF and iMLF, as ⊒rmw and
⊐− share some properties. Thus, in this section, we partially abstract over the system
considered. We let ⊏ range over ⊏− and ⊑rmw, and ⊏⊐ be ⊏ ⊙ ⊐. We say that a node n has
⊏ permissions if ⊏ is ⊑rmw and n is monomorphic, or if ⊏ is ⊏− and n is orange or inert.
Finally, we let ⊏⊐MLF be eMLF if ⊏ is ⊑rmw, and iMLF if ⊏ is ⊏−.

13.1.1 Inverse instance operations

Considering constraints up to inverse instance operations is not entirely obvious. Indeed,
while the splitting and lowering operations can be transposed from graphic types to graphic
constraints, there are a few potential pitfalls.

Splitting Consider the constraint χ in Figure 13.1.1 and let n be 〈111〉. As it is rigidly
bound, it can be unshared in iMLF. This results in χm, in which the instantiation edge
is duplicated on the two resulting nodes. However, perhaps surprisingly, it can also be

195

196 Constraints up to similarity or abstraction

χ G

G

⊥

→

→

→

⊥

χm G

G

⊥

→ n′

⊥

→

→

→

⊥

χ′
m G

G

⊥

→

⊥

→

→

→

⊥

χi G

G

⊥

→

→

→

⊥

χ′ G

G

⊥

→

⊥

→

→

→

⊥

Figure 13.1.1 – Lowering and unmerging nodes

unshared into χ′
m. Let us indeed call n′ the existential node resulting from the unmerging.

The relation χ = Merge(n, n′)(χ′
m) holds, thus χ ⊐−M

1 χ′
m must hold.

While potentially surprising, this property is entirely consistent with the intuition behind
⊏− and ⊑rmw. Even though n and n′ are distinct in χ′

m, they will never be able to pick
different instances for ⊏−⊐−; thus we only need to constrain one of the two in order to ensure
the soundness of the constraint.

This example also shows that fresh existential nodes can be introduced by ⊐M .
Thus it becomes slightly more difficult to keep track of nodes through (inverse) instance
operations—graphic constraints are more suited to transformations that increase sharing.
In the following, we say that a node n′ of a constraint χ′ such that χ ⊑⊏⊐ χ′ is derived from
a node n of χ if they share a path in a constraint of this derivation. For example, the nodes
n and 〈111〉 of χm are derived from the node 〈111〉 of χ, as 〈111〉 and n are shared in χ.

Lowering Some nodes that could be lowered (w.r.t. permissions and well-domination)
in graphic types cannot be lowered in graphic constraints. Indeed, the well-formedness of
constraints prevents nodes constrained by an instantiation edge to be bound on a type node.
Thus, for example n cannot be lowered in χ (and the constraint χi is invalid). Interestingly,
if lowering 〈111〉 is really needed, we can first unshare n into χ′

m, then lower 111 in this
constraint.

13.1.2 Properties of the modulo systems

There are some simple but important properties common to eMLF and iMLF, which ease
reasoning on these systems.

Property 13.1.1 Let χ be a constraint, χ′ be such that χ ⊑⊏⊐ χ′. If n has ⊏ permissions
in χ and n′ is derived from n in χ′, then n′ has ⊏ permissions in χ′. �

Proof: Immediate consequence of Lemma 5.4.1.

13.1. Constraints and inverse instance 197

Property 13.1.2 Let χ and χ′ be such that χ ⊑⊏⊐ χ′. Then there exists χ′′ such that
χ ⊑ χ′′ ⊐ χ′. �

Proof: By Lemma 6.7.10, this relation holds for the instance relations on graphic types.
By supposing that G constructors are polymorphic, the structure of gen nodes are the same
in χ, χ′′ and χ′ (as an instance operation on them could not be cancelled afterwards by
⊐). This ensures that χ ⊑ χ′′ holds for the instance relation on constraints c⊑. It remains
to show that χ′′ ⊐ χ′ holds. The only operation on graphic types in ⊐ that cannot be
transposed to graphic constraints is the lowering of a node constrained by an instantiation
edge. However, the property “failing condition 10 of Definition 9.2.1” is stable by ⊐. Thus,
if an operation of χ′′ ⊐ χ′ created an ill-formed constraint, χ′ would also be ill-formed.
This ensures that all operations of χ′′ ⊐ χ′ are correct on graphic constraints.

The result above means that we can leverage the principality of unification in gMLF to eMLF

and iMLF.

Property 13.1.3 Let χ be a ⊏-presolution, e an instantiation edge of χ. There exists
instance derivations of χe ⊑⊏⊐ χ of the form χ ⊑ χ′ ⊑ χ′′ ⊐ χ, where χ′ is the result of
solving of the unification edges of χe by unification. �

Proof: By definition, χe ⊑⊏⊐ χ holds. By Property 13.1.2, there exists χ′′ such that
χe ⊑ χ′′ ⊐ χ. In particular, χ′′ is a unifier of all the unification edges of χ. Thus by
completeness and principality of unification for ⊑, we have χe ⊑ χ′ ⊑ χ′′, hence the result.

Another useful property is the stability of nodes with ⊏ permissions by propagation.
However, this does not hold for the type scheme nodes themselves, because of flag and
binding reset.

Lemma 13.1.4 Let e = g d
i

be an instantiation edge of a constraint χ, n a node of
Is(g) with n 6= 〈g · i〉. If n has ⊑⊏⊐ permissions in χ, nc has ⊑⊏⊐ permissions in χe. �

Proof: Since n is not 〈g·i〉, the binding structure under n is exactly copied in the expansion.
Thus, if n is monomorphic or inert, nc is monomorphic or inert. The same reasoning holds
if n is inert. Finally, if n is rigid, nc has the same flag (since n is not 〈g · i〉). Otherwise
the flag path that shows that n is not inert is copied identically in the expansion, and the
permissions of n and nc are computed identically, since both n and nc are bound on gen
nodes. (There is no flag reset, since n is not nc.)

13.1.3 Shape of presolutions

Compared to gMLF, the presolutions of a constraint can have quite different shapes in eMLF

and iMLF. As a first example, consider Figure 13.1.2. In gMLF, the principal solution of χ
is χp. Thus, in all the ⊑-presolutions of χ, the node 〈g1〉 is shared with 〈1〉. This is not the
case in eMLF and iMLF: as 〈g1〉 is monomorphic, it can be freely unshared and lowered in
both. Thus χ′

p is a valid presolution of χ in both systems.

198 Constraints up to similarity or abstraction

χ G

G

g

→

⊥

⊥

χp G

G

→

⊥

χ′
p G

G

→

⊥

→

χ′′
p G

G

g

→

int

→

int int

Figure 13.1.2 – Presolutions in ⊏⊐MLF

Even more strikingly, the constraint χ′′
p is a presolution in ⊏⊐MLF. Indeed, even though

〈g1〉 and 〈1〉 are not shared in this constraint, the propagation of the instantiation edge can
be solved: those two nodes can be unified, and then unshared by ⊒rmw afterwards.

Importantly, this kind of freedom only concerns ⊏ nodes, as shown by the lemma below.

Lemma 13.1.5 Let e = g d
i

be an instantiation edge of a constraint χ. Let π and n
be such that g i·π−−⊸ n and n /∈ Is(g). If χ is a ⊑⊏⊐-presolution, then either d π−−⊸ n, or n
has ⊏ permissions. �

Proof: By hypothesis, χe ⊑⊏⊐ χ. Thus there exists χ′ such that χe ⊑ χ′ ⊐ χ. Necessarily
〈giπ〉 and 〈dπ〉 are merged in χ′, since the unification edges introduced by the propagation
are solved. ⊑⊏⊐-permissions are preserved by ⊏−1 (Property 13.1.1), hence the conclusion.

13.1.4 Stability of presolutions

Interestingly, presolutions of ⊏⊐MLF are stable by almost all the operations in ⊏⊐. We start
by proving this result for the operations that do not change the shape of gen nodes interiors
(merging, weakening and the symmetric operations), which are the easy cases.

Lemma 13.1.6 Let χ be a presolution in ⊏⊐MLF, χ′ = o(χ) with o ∈ ⊏⊐MW
1 . Then χ′ is a

presolution in ⊏⊐MLF. �

Proof: Let e = g d
i

be an instantiation edge of χ; we must prove that χ′e ⊑⊏⊐ χ′.

We let O be the steps transforming χe into χ, and write Flex(n) the strengthening of a
node n, Split(n1, n2) the splitting of a node n = n1∪n2 into two nodes n1 and n2 (by local
congruence, this defines a unique operation). We let N be Is(g)∪ (∗−−⊸ 〈g · i〉). The proof
is by case disjunction on o. When it involves a node copied in the expansion, we let o′ be
the same operation as o, but acting on nc when it acted on n (i.e. if o is Weaken(n), o′ is
Weaken(nc)). We start by writing χ′ as a transformation on χ′e.

⊲ Case o = Weaken(〈g · i〉) or o = Flex(〈g · i〉): by flag reset, the expanded part is un-

changed. Then χ′ = (o−1 ; O ; o)(χ′e). (1)

13.1. Constraints and inverse instance 199

⊲ Case o = Weaken(n) or o = Flex(n), n ∈ N \ {〈g · i〉}: then χ′e = (o ;o′)(χe) and (o−1 ;

o′
−1

; O ; o′ ; o)(χ′e) = χ′. (2)

⊲ Case o = Merge(n1, n2) or o = Split(n1, n2) with n1 and n2 both in N : by definition
of merging and splitting, n1 and n2 cannot be both 〈g · i〉. The same equalities as for
case (2) hold.

⊲ in the other cases: N is unchanged, χ′e is o(χe) and χ′ = (o−1 ; O ; o)(χ′e) holds. (3)

In each case the operations are on ⊏ nodes, either by construction for the nodes changed
by o, or by Lemma 13.1.4, for the nodes changed by o′. Thus χ′e ⊑⊏⊐ χ holds.

Presolutions are also stable by lowering of ⊏ nodes. The cases where the interiors of gen
nodes remain unchanged are easy, as above. Otherwise more generalization occur, but this
does not change the fact that the constraint is solved.

Lemma 13.1.7 Let χ be a presolution in ⊏⊐MLF, χ′ such that χ = Raise(n)(χ′), n having
⊏ permissions. Then χ′ is a presolution in ⊏⊐MLF. �

Proof: Let e = g d
i

be an instantiation edge; we must prove it is solved in χ′. We let
O be the operations transforming χe into χ, and N be Is

χ′(g) ∩ (〈g · i〉 ∗−−⊸) The proof is
by case disjunction on o.

⊲ Case n /∈ N and n 6= d: n is not in Is
χ(g)∩ (〈g · i〉 ∗−−⊸) either, and the expanded part

is unchanged between the two constraints. We conclude as in case (3) of the proof of
Lemma 13.1.6.

⊲ Case n = d and n ∈ N : , the expanded part is bound lower in χ′e than in χe. Let
S be the copies of the nodes of Fs(g) in χ′e, n′ the root of the expansion. Then
χe = (Raise(n) ; Raise(S) ; Raise(n′))(χ′e) holds. The copies of the frontiers nodes are
green, n is an ⊏-node, and n′ cannot be red as it is the root of an expansion. Thus
χ′e ⊑ χe holds. Moreover, since χ = O(χe) and χ′ = Lower(n)(χ), we have χ′e ⊑⊏⊐ χ′,
which is the desired result.

⊲ Case n 6= d and n ∈ N : there are three subcases:

◦ Case n −−_ g in χ: then the expanded part between χ and χ′ are the same, by
binding height reset. This case is similar to subcase (1) in the proof of Lemma 13.1.6.

◦ Case n −−_ +−−_ g in χ: the lowering occurs “deep” inside the expansion. This case
is similar to subcase (2) in the proof of Lemma 13.1.6.

◦ Case g −−_ χ̂(n) in χ: in this case the binding edge of n “enters” the interior of g in

χ′. The main difference between χe and χ′e is that nc is a bottom node bound on d̂
(and with a unification edge to n) in χe, and a whole subgraph identical to the one
under n in χ′e.
Let χ′′ be such that χe ⊑ χ′′ ⊏−1 χ (4). Let χ′′′ be χe in which nc is grafted the
subgraph under nc in χ′e then weakened if n is rigid (this is possible as nc has flexible
permissions). Since there is a unification edge between nc and n, solved in χ′′, it
is routine to prove (using the results of Section 6.6) that χe ⊑ χ′′′ ⊑ χ′′ (5). Now,
up to the unification edge between n and nc, χ′′′ = (Raise(n) ; Raise(nc))(χ′e), both
nodes being non-red. By definition n has ⊏ permissions, and nc has either the same
permissions by Lemma 13.1.4, or it is non-red if n is 〈g · i〉. Thus χ′e ⊑ χ′′′ holds. By
this result, (4), (5) and the definition of χ′ we have χ′e ⊑ χ′′′ ⊑ χ′′ ⊏−1 χ ⊏−1 χ′.
Hence χ′e ⊑⊏⊐ χ′ which is the desired result.

200 Constraints up to similarity or abstraction

⊲ Case n = d and n ∈ N : the only possible case is n = 〈g · 1〉; otherwise, since n is not
in Is(g) in χ, solving the frontier unification edge that would be created when e is
propagated would require χ to be cyclic. Thus n can only be bound on g in χ′. The
expansion only create copies of the nodes under n (until the frontier of g, which are
copied as green bottom nodes), and nc is bound on g. Thus all the unification edges
can simply be solved by unification in χ′e, and this does not change the nodes under g.
Thus χ′e ⊑ χ′ holds. (And thus so does χ′e ⊑⊏⊐ χ′.)

Presolutions are thus stable by ⊐RMW . This means that we can always maximally
unshare and lower nodes with ⊏ permissions in presolutions of ⊏⊐MLF. In particular, we
can always suppose that a ⊏ node n structurally under a gen node g is in the interior of
g. Indeed, once it is sufficiently unshared, it is always possible to lower n until it is bound
under g. This significantly simplifies reasonings on the shape of presolutions.

13.2 Constraints up to similarity

In eMLF, raising a monomorphic node outside of a scheme interior cannot make a constraint
unsolvable. Indeed, all monomorphic similar subgraphs could be shared. Thus we can prove
that presolutions are stable by⊑rmw (and are thus stable by≈, since we have already proven
that they are stable by ⊒rmw).

Lemma 13.2.1 Consider two constraints χ and χ′ such that χ is a presolution in eMLF

and χ ⊑r
1 χ′. Then χ′ is a presolution in eMLF. �

Proof: We let n be the node raised. We must prove that all instantiation edges are solved
in χ′. Let g d be such an edge e, s be 〈g1〉. Finally, let N be Is(g) ∩ (s +−−⊸).

⊲ Case n /∈ N , n 6= d: then χ′e = Raise(n)(χe). Thus χ′e ⊒r
1 χe ⊑≈ χ ⊑r

1 χ′; hence e is
solved.

⊲ Case n ∈ N , n −−_ s −−_ g ∈ χ, n 6= d: by binding reset, χ′e = Raise(n)(χe). The
conclusion is as above.

⊲ Case n ∈ N , n −−_−−_ g ∈ χ, χ̂(n) 6= s, n 6= d: then χ′e = (Raise(n);Raise(nc))(χe).

By Lemma 13.1.4, nc is also monomorphic. Thus χ′e ⊒r χe ⊑≈ χ ⊑r
1 χ′ holds, hence

the conclusion.

⊲ Case n /∈ N , n = d: let gd be χ̂(d). χe and χ′e differ only by the fact that the root
of the expansion, and the copies of the frontier nodes, are bound on ĝd in χ′e, instead
of on gd in χe. By Property 13.1.3, all the unification edges in χe can be solved by
unification. Since χ′e only differ from χe by some raising, the unification edges can also
be solved; we call χ′′ the resulting constraint. Compared to χ′, some nodes can have
been raised in χ′′. By definition of unification, those nodes are those structurally under
g and not copied in the expansion (hence bound above g). Consider such a non-⊏ node
n′. By Lemma 13.1.5 n′ and the corresponding node under d are merged in χ. Thus,
n′ is bound at least on the least common ancestor of g and d̂. Let g′ be this node.
Notice that g′ cannot be gd: d would not have been raisable. Thus, g′ is at least ĝd.
Since the nodes created by the expansion in χ′e are bound also bound on ĝd, solving
the unification edges in χ′e will not raise n′ above the node on which it is bound on χ.
Thus, compared to χ, all the nodes raised in χ′′ are ⊏. We can lower them, and finish
solving χ′e ⊑⊏⊐ χ′ by the ⊐ steps of χe ⊑⊏⊐ χ.

13.2. Constraints up to similarity 201

⊲ Case n ∈ N , n = d: the only possible case is n = s, as otherwise χ would need to be
cyclic. Then n is necessarily bound on g, and s is degenerate in χ′. Thus χ′e is χ′ plus
a fresh existential bottom node bound on ĝ, and constrained to be unified with s. This
edge can simply be solved by unification. Moreover, all the nodes under s are bound
under g or above ĝ by well-domination, and solving the unification does not raise nodes,
hence does not change the nodes under s at all. Thus χ′e ⊑ χ′ holds.

⊲ Case n ∈ N , n −−_ g ∈ χ: this is the most involved case. Let π be such that n = 〈sπ〉.
Let n′ be 〈scπ〉 in χe and χ′e. The difference between χe and χ′e (which we call χ1 and
χ′

1 from now on) lies on the subgraph under n′. In χ1 it is a real subgraph, while in χ′
1 it

is a bottom node constrained by an unification edge to unify with n. We let χ′
2 be χ′

1 in
which we have grafted the same graph as under n′ in χ1. The constraints χ1 and χ′

2 only
differ by the unification edge between n and n′, and possibly some frontier unification
edges on the nodes below n and n′ (1); those edges will be solved by congruence when
the first one is solved.
Let us justify that n′ is monomorphic in χ1 (2). If n is not 〈s1〉, the result is by
Lemma 13.1.4. Otherwise, since n can be raised, this means that no other node in N
is bound on g. Hence the nodes bound on sc are the copy of the ones bound on 〈g1〉.
Since 〈g1〉 is monomorphic, so is sc.1

As a first step, we solve by unification all the frontier edges of χ1, resulting in χ3.
Unlike in gMLF, this can raise some nodes under n. However, by slightly adapting
Lemma 13.1.5, those nodes are monomorphic. Hence, on the nodes that are present in
χ1 (i.e. not in the expansion), χ1 and χ3 differ only by the raising of some monomorphic
nodes.
Next, let g′ be the first gen node such that g +−−_ g′ and χ̂(d) ∗−−_ g′. In order to merge
n and n′, we must raise them until they are both bound at the same node, i.e. at least
on χ′. Since n is raisable in χ, we can also raise it once in χ3; this also ensures that
n′ can be raised once. Afterwards, there is no node under n or n′ bound on a node
between g and g′, or between ŝc and g′, as those nodes have been raised to g′ when
the unification edges of g1 have been solved. Hence both n and n′ can be raised until
g′. Moreover, those operations are in ⊑r, as n is monomorphic by hypothesis, and n′ is
monomorphic by (2).
We are almost ready to merge n and n′. By constructions of the raisings done, the
subgraphs under n and n′ (which were identical in χ3) are still identical. Thus the only
remaining difference is the binding flag of the two nodes. If n is not 〈g1〉, the bindings
flags are identical. Otherwise n can be rigid, and n′ can be flexible. However, by (2)
we can weaken n′ by ⊑w. Thus we have proven that n and n′ can be unified in χ3, the
operations being in ⊑rmw. We call χ4 the resulting graph.
We call I1 the sequence of instance operations transforming χ1 into χ3. By Prop-
erty 13.1.3, χ3 ⊑ χ. By this result, χ3 ⊑

rmw χ4, and Lemma 6.7.9 there exists χ5 such
that χ ⊑rmw χ5 and χ4 ⊑ χ5.
By (1), we can apply I1 to χ′

2, which solves all the unification edges of χ′
2 except the

edge between d and sc; in fact we obtain exactly χ3. Thus we have χ′e = χ′
1 ⊑ χ′

2 ⊑
χ3 ⊑

rmw χ4 ⊑ χ5 ⊒
rmw χ ⊑ χ′. This shows that χ′e ⊑≈ χ′, which is the desired result.

As a corollary of the result above and of Lemma 13.1.6, in eMLF, we can maximally
instantiate of presolution.

1Interestingly, the remainder of the proof would work unchanged in iMLF. However, this property does
not carry over to iMLF, as n can be orange while nc can be green.

202 Constraints up to similarity or abstraction

Lemma 13.2.2 Consider an eMLF presolution χ. The maximal instance of χ for ⊑rmw is
a presolution in eMLF. �

We are now almost ready to conclude: since in maximally instantiated presolutions there
is no need for inverse similarity steps, those presolutions are also gMLF presolutions.

Lemma 13.2.3 Let χp be a presolution in eMLF, χ′
p its maximal instance for ⊑rmw. Then

χ′
p is a presolution in gMLF. �

Proof: Let us show that the instantiation edges of χ′
p are ⊑-solved. Let e be an instanti-

ation edge. By Lemma 13.2.2, χ′
p is a presolution in eMLF; thus χ′e

p ⊑
≈ χ′

p. Hence there
exists χ′ such that χ′e

p ⊑ χ′ ⊒rmw χ′
p. By maximality of χ′

p for ⊑rmw, we must have
χ′ = χ′

p. Hence χ′
p is also a presolution in gMLF.

Using the results above, we can finally show that eMLF is not more expressive than
gMLF: all terms typable in eMLF are typable in gMLF (and conversely). Moreover, up to
similarity, terms have the same set of (pre)solutions.

Theorem 13.2.4 Let χ be a constraint. Any gMLF (pre)solution of χ is an eMLF

(pre)solution. Given an eMLF (pre)solution S of χ, there exists an eMLF (pre)solution
S′ of χ similar to S. �

Proof: It suffices to prove the result for presolutions. Moreover the first part of the result
is immediate, since (⊑) ⊂ (⊑≈). Thus let χp be a eMLF presolution of χ. By definition,
χ ⊑≈ χp. Let χ′

p be the maximal instance of χp for ⊑rmw. By construction, χp ⊑
rmw χ′

p,
hence χp and χ′

p are similar. By Lemma 13.2.2, it is a gMLF presolution. Thus it remains
to prove that it is a gMLF presolution of χ. We have χ ⊑≈ χp ⊑

rmw χ′
p, hence χ ⊑≈ χ′

p.
Thus, by Property 13.1.2, χ ⊑ ; ⊒rmw χ′

p holds. Since χ′
p is maximally shared, we have in

fact χ ⊑ χ′
p. This is the desired result.

For typing constraints, this justifies the fact that studying inference up to similarity is
not needed. Instead, we can limit ourselves to ⊑ solutions, as the ⊑≈ solutions can be easily
deduced.

Corollary 13.2.5 Let χ be a solvable typing constraint, S its principal gMLF (pre)solution.
The set of its eMLF (pre)solutions is {S′ | S ⊑≈ S′}. �

13.3 Constraints up to abstraction

13.3.1 Typability in iMLF

Let us show on an example why iMLF is the implicit version of MLF, in which type annota-
tions are not needed. We consider the problem of typing ω defined as λ(x) xx. The typing
constraint for ω is shown as χ in Figure 13.3.1.

We first simplify χ into χ′ by solving the unification edges. Next, in χ′′, which is also an
instance of χ, we have guessed the type of x to be ∀ (α) α → α and have instantiated the

13.3. Constraints up to abstraction 203

χ G

→

⊥ G

G
g1

⊥ G

g2

⊥

→

⊥ ⊥

⊥

⊑ χ′ G

→

G

G
g1

G

g2

⊥

→

⊥ ⊥

⊥

⊑

χ′′ G

→

G

G

g1

G
g2

→

⊥

→

→

⊥

→

⊥

⊐− χp G

→

→

⊥

G

G

g1

→

⊥

G
g2

→

⊥

→

→

⊥

→

⊥

Figure 13.3.1 – One typing of λ(x) xx in iMLF

remainder of the constraint accordingly. We have also turned the flexible flag of the node
〈11〉 into a rigid one.

This rigidification enables us to unshare the nodes 〈11〉, 〈g11〉 and 〈g21〉 by inverse ab-
straction. Moreover, we can also lower the binding edge of 〈g11〉 and 〈g21〉 until they are
bound at the same position as in χ—albeit rigidly instead of flexibly. In the resulting preso-
lution χp, 〈11〉 is still rigid. Hence the arrow type requires its argument to be polymorphic.
In fact, there is no way to turn this rigid binder into a flexible one; this is of course essential
for type soundness. On the other hand, for 〈g11〉 and 〈g21〉, the flag will be reset during
expansion, and each occurrence of x is free to pick a different instance of ∀ (α) α → α.
Here, the two occurrences receive the types ∀ (β) β → β and ∀ (γ > ∀ (β) β → β) γ → γ
respectively.

13.3.2 Properties of iMLF presolutions

Although eMLF and iMLF share some similarities in their presentation, they have very dif-
ferent properties. In particular, constraints do not in general have principal solutions or

204 Constraints up to similarity or abstraction

presolutions. Moreover, raising inert or orange nodes does not preserve presolutions.

G

χ

G

g

⊥

→

⊥

G

χp

G

⊥

→

⊥

G

χ′
p

G

→

⊥

→

→

⊥

G

χ′

G

→

⊥

→

→

⊥

Figure 13.3.2 – Presolutions in iMLF

Non-principal solutions Consider Figure 13.3.2. The constraint χ is unsolvable in gMLF,
as the bottom node 〈g ·1〉 is outside the interior of g, and would need to be unified with both
〈1〉 and 〈11〉. However, it has an infinity of presolutions in iMLF, of which two are shown:
χp and χ′

p. Notice that there are no principal presolution: necessarily, 〈g · 1〉 must be rigid,
and the different ways of instantiating this node makes the presolutions incomparable in
general. (In this very simple example, the set of solutions is principal, the principal solution
being ∀ (α) α→ α. This is not the case in general.)

Raising The constraint χ′ of the same figure also shows that presolutions are not stable by
raising. Indeed, χ′ is not a presolution in iMLF, although it is derived from the presolution
χ′

p by the raising of 〈g1〉, which is orange. Before the raising, each instantiation edge can
pick its own copy of 〈g1〉. After the raising, this is no longer possible. Moreover, unlike in
eMLF, we cannot share the constrained nodes, as they have taken different instances of the
type ∀ (α) α→ α.

Eager propagation This example shows that the equivalent of Lemma 11.4.2 (i.e. the fact
that eager propagation preserves presolutions) does not hold in iMLF. Indeed, propagating
eagerly the topmost unification edge of χ results in an unsolvable constraint, as there will
be no way to solve the second instantiation edge afterwards. However, χ′

p which is derived
from χ′ by an inverse abstraction step, has solutions.

It is worth mentioning that splitting (and lowering) the nodes of a constraint along ⊐−
as much as possible does not help, as χ exemplifies. Indeed, one must somehow “guess” the
polymorphic part, make it rigid by weakening, and then unshare it by inverse abstraction. In
MLF source terms, hence in gMLF this “guessing” part is explicitly done by the programmer,
through the use of type annotations.

13.3.3 Reasoning in Implicit MLF

Since iMLF allows polymorphism to be “guessed”, it does not permit type inference. We have
also seen that it does not have principal presolutions or solutions. Thus, it is unsurprising

13.3. Constraints up to abstraction 205

that the transformation rules for gMLF are unsound or incomplete in iMLF.
In particular, rule Inst-Copy is no longer sound. Indeed, by splitting the gen node for

the term λ(x) x x, we could find a typing for the term

let ω = λ(x) x x in (ω (λ(y) y), ω (λ(y) λ(z) y))

However, this term is not typable in iMLF. Indeed, it is not possible to find a type for ω
that makes both ω (λ(y) y) and ω (λ(y) λ(z) y)) simultaneously typable.

Conversely, rule Var-Abs is not complete in iMLF: this can be seen by applying this
rule to the constraint χ of Figure 13.3.1, which makes this constraint untypable. Indeed,
using rule Var-Abs forfeits the possibility to type the variables polymorphically. Finally,
as can be seen by considering χ′ in Figure 13.3.2, rule Inst-Elim-Mono is incomplete.

13.3.4 Expressivity of iMLF

Any term typable in System F is typable in iMLF—this is essentially immediate, since ⊑⊏−⊐−

is a superrelation of ⊑F, up to inlining of rigid edges in MLF types. Thus typability in iMLF

is likely to be undecidable, as it is undecidable in System F (Wells 1994).
In parallel, since type inference in gMLF is decidable and gMLF solutions are also iMLF

solutions, iMLF is strictly more expressive than gMLF. An example of one term typable in
a system but not in the other is λ(x) x x: in gMLF we must add some type annotations.
Interestingly, type annotations are sufficient to recover all the missing expressivity. That
is, any term a typable in iMLF can be transformed in a term a′ typable in gMLF, which
differ from a only by the addition of some type annotations. This result has already been
proved on the syntactic presentation of MLF (Le Botlan 2004; Le Botlan and Rémy 2007).
We leave a graphic proof for future work.

Part

III

An explicit language for MLF

207

14

xMLF, a Church-style language for MLF

Abstract

We introduce xMLF, a fully explicit version of MLF suitable for use as an internal
language. We explain in more detail the need for such a language, as well as its
characteristics (§14.1). We present the syntax of the language and the typing rules in
§14.2, while the reduction rules are studied in §14.3. We show the soundness of the
language in both a call-by-value and a call-by-name setting (§14.4). Finally, we show
that reduction is confluent (§14.5).

14.1 Why another explicit language for MLF?

The language gMLFwe have presented is partially in Church-style, as λ-abstractions (or even
entire expressions) can be annotated. However, a large amount of type information is still
inferred, and partial type information cannot be easily maintained during reduction. Hence,
while gMLF is a good surface language, it is not a good candidate for use as an internal
language during the compilation process, where some simple program transformations and
perhaps some reduction steps are being performed. This has been a problem for the adoption
of MLF in the Haskell community (Peyton Jones 2003): the GHC compilation chain uses an
internal explicitly typed language, especially (but not only) for evidence translation due to
the use of qualified types (Jones 1994).

This is also an obstacle to proving subject reduction, which does not hold in gMLF or
eMLF. In a way, this is unavoidable in a language with non-trivial partial type inference.
Indeed, type annotations cannot be completely dropped, but must at least be transformed
and reorganized during reduction. Still, one could expect that gMLF could be equipped
with reduction rules for type annotations that would preserve subject reduction. This has
actually been considered in the original presentation of MLF (Le Botlan 2004), but with
only partial success. The reduction kept track of annotation sites during reduction. This

209

210 xMLF, a Church-style language for MLF

showed, in particular, that no new annotation site needs to be introduced during reduction.
Unfortunately, the exact form of annotations could not be maintained during reduction by
lack of an appropriate language to describe their computation. As a result, it has only been
shown that some type derivation can be rebuilt after the reduction of a well-typed program,
but without exhibiting an algorithm to compute them during reduction.

xMLF In this chapter, we present a Church-style version of MLF, called xMLF, which con-
tains full type information. In fact, type checking becomes a simple and local verification
process—by contrast with type inference in gMLF, which is based on unification. In xMLF,
all parameters of functions are explicitly typed, and both type abstraction and type instan-
tiation are explicit, as in System F. However, type instantiation is more general and more
atomic than type application in System F: type instantiations are actually proof evidences
for the type instance relations in MLF.

In addition to the usual β-reduction, we give a series of reduction rules for simplifying
type instantiations. These rules are confluent when allowed in any context. They are also
sufficient to reduce all type instantiations when used in either a call-by-value or call-by-name
setting. Moreover, reduction preserves typings.

Interestingly, the difficulties in defining an internal language for MLF is not reflected in
the internal language itself, which we believe is quite simple to understand. Instead, most
of the pitfalls lie in the translation itself. Hence, we present xMLF in this chapter, and defer
the translation to the next one (§15).

14.2 Types and typing rules of xMLF

14.2.1 Types, terms, and environments

The types of xMLF are defined in Figure 14.2.1. They include flexible MLF quantification,
but also types of the form σ → σ, even when σ is a second-order type. Rigid quantification
is only useful for type inference purposes, and is thus not present in xMLF: rigid bounds are
directly inlined inside types.

α, β, γ, δ Type variables

σ ::= Types
| α Type variable
| σ → σ Arrow type
| C σ Constructor type
| ∀ (α > σ) σ Instance-bounded quantification
| ⊥ Bottom type

Figure 14.2.1 – Types of xMLF

Expressions are given in Figure 14.2.2. They are those of the λ-calculus enriched with
let constructs, with two small differences. Type instantiation is of the form a[ϕ], where ϕ

14.2. Types and typing rules of xMLF 211

is a type computation, and generalizes the type application of System F; we discuss type
computations in the next section. Moreover, a type abstraction Λ(α > σ) a is now given
an instance bound σ; α is bound in a, but not in σ. The type abstraction construction
Λ(α) a of System F can be simulated by Λ(α >⊥) a.

x, y, z Expression variables

a ::= Expressions
| x Variable
| λ(x : σ) a Function
| a a Application
| Λ(α > σ) a Type abstraction
| a[ϕ] Type instantiation
| let x = a in a Let-binding

Figure 14.2.2 – Terms of xMLF

Γ ::= Environments
| ∅ Empty environment
| Γ, α > σ Type variable
| Γ, x : σ Expression variable

Figure 14.2.3 – Environments of xMLF

Environments, defined in Figure 14.2.3 are standard. We call dom(Γ) the type or ex-
pression variables bound by Γ. As usual, all the variables appearing in either a judgment
or the environment itself must be bound in the environment. Moreover, we assume that an
environment does not bind twice the same variable. Both conditions can be ensured by the
well-formedness predicate of Figure 14.2.4. All environments are implicitly well-formed.

14.2.2 Type instance

Type instantiation in xMLF is explicit and details every instantiation step along the instance
relation ≤ of xMLF. This departs from System F where type instantiation is more atomic.
Instead, type instantiation in xMLF is fully determined by type computations: a type com-
putation ϕ is an explicit witness for the fact that a type σ can be instantiated into another
type σ′. We let ϕ range over type computations, which are described in Figure 14.2.5.

Type instance judgments, in Figure 14.2.6, are of the form Γ ⊢ ϕ : σ ≤ σ′, and state
that in environment Γ, the type computation ϕ witnesses that σ′ is an instance of σ.
The identity computation ε witnesses the fact that type instance is reflexive, while the
composition operator “;” witnesses the transitivity of type instance. The computation ⊲ σ
says that any type σ is an instance of the type ⊥. Under the hypothesis α > σ in the
environment, the computation α ⊳ says that α is an instance of type σ.

212 xMLF, a Church-style language for MLF

wf (∅)

wf (Γ) α /∈ dom(Γ) ftv(σ) ⊆ dom(Γ)

wf (Γ, α > σ)

wf (Γ) x /∈ dom(Γ) ftv(σ) ⊆ dom(Γ)

wf (Γ, x : σ)

Figure 14.2.4 – Well-formed environments

ϕ ::= Type computations
| ε Reflex
| ⊲ σ Bot
| α ⊳ Hyp
| ∀ (> ϕ) Inner
| ∀ (α >) ϕ Outer
| N Quantification elimination
| O Quantification introduction
| ϕ; ϕ Trans

Figure 14.2.5 – Type computations

The inner computation ∀ (> ϕ) applies the computation ϕ to instantiate the bound
σ′ of an instance-bounded quantification ∀ (α′ > σ′) σ. Conversely, the outer computation
∀ (α >) ϕ applies the computation ϕ to instantiate the type σ of the quantification. The type
variable α is bound in ϕ and the premise of the rule Inst-Outer is increased accordingly.

The computation O introduces a trivial quantification ∀ (α > ⊥). The computation N

eliminates the bound of a type of the form ∀ (α > σ) σ′ by substituting α by σ in σ′. This
amounts to definitively choosing the present bound σ for α.

Convention In the following, we identify types, expressions and computations up to re-
naming of their bound variables. The capture-avoiding substitution of a (resp. expression,
type) variable v by a (resp. expression, type) p inside a term q (which can, independently,
be an expression, a type, a type computation, or an environment) is written q{v← p}. By
a slight abuse of notation, we also write q{α ⊳ ← ϕ} for the capture-avoiding replacement
of all the occurrences of the computation α ⊳ by the computation ϕ in q.

◮ Example Consider the following four types

σK , ∀ (α >⊥) ∀ (β >⊥) α→ β → α σmin , ∀ (α >⊥) α→ α→ α

σcmp , ∀ (α >⊥) α→ α→ bool σand , bool→ bool→ bool

Let ϕ be the type computation ∀ (α >) (∀ (> ⊲α); N) and ϕ′ be the type computation
∀ (> ⊲ bool); N. Then we have ⊢ ϕ : σK ≤ σmin, and both ⊢ ϕ′ : σmin ≤ σand and ⊢ ϕ′ :

14.2. Types and typing rules of xMLF 213

Inst-Reflex

Γ ⊢ ε : σ ≤ σ

Inst-Trans
Γ ⊢ ϕ1 : σ1 ≤ σ2 Γ ⊢ ϕ2 : σ2 ≤ σ3

Γ ⊢ ϕ1; ϕ2 : σ1 ≤ σ3

Inst-Bot

Γ ⊢ ⊲ σ : ⊥ ≤ σ

Inst-Hyp
α > σ ∈ Γ

Γ ⊢ α ⊳ : σ ≤ α

Inst-Inner
Γ ⊢ ϕ : σ1 ≤ σ2

Γ ⊢ ∀ (> ϕ): ∀ (α > σ1) σ ≤ ∀ (α > σ2) σ

Inst-Outer
Γ, ϕ : α > σ ⊢ ϕ : σ1 ≤ σ2

Γ ⊢ ∀ (α >) ϕ : ∀ (α > σ) σ1 ≤ ∀ (α > σ) σ2

Inst-Quant-Elim

Γ ⊢ N : ∀ (α > σ) σ′ ≤ σ′{α← σ}

Inst-Quant-Intro

α /∈ ftv(σ)

Γ ⊢ O : σ ≤ ∀ (α >⊥) σ

Figure 14.2.6 – Type instantiation

σcmp ≤ σand.

14.2.2.1 A derived computation

As the example above shows, we often instantiate a quantification over ⊥ and immediately
substitutes the result—exactly as type application in System F. As this is a common pattern,
we define the computation σ as syntactic sugar for ∀ (> ⊲ σ); N. Then, the substitution ϕ
above can be written more concisely as ∀ (α >) α. Similarly, ϕ′ is just bool.

14.2.2.2 Computing on types

All type instance operations are made entirely explicit, through the use of computations.
In fact, type instantiation is deterministic.

Lemma 14.2.1 If Γ ⊢ ϕ : σ ≤ σ1 and Γ ⊢ ϕ : σ ≤ σ2, then σ1 = σ2. �

Proof: Immediate induction on the instance derivation.

Hence, type instance judgments also define a function that computes the application of
a computation to a type. Another more explicit definition is given in Figure 14.2.7. Notice
that this function is complete but not sound for the type instance judgment, as it does not
check the premise of rule Inst-Hyp. This is intentional, as it avoids parameterizing the
function by the type environment.

Property 14.2.2 If Γ ⊢ ϕ : σ ≤ σ′, then σ[ϕ] = σ′. �

214 xMLF, a Church-style language for MLF

(∀ (α > σ) σ′)[N] = σ′{α← σ}
σ[O] = ∀ (α >⊥) σ α /∈ ftv(σ)

σ[ϕ1; ϕ2] = (σ[ϕ1])[ϕ2]
(∀ (α > σ) σ′)[∀ (> ϕ)] = ∀ (α > σ[ϕ]) σ′

(∀ (α > σ) σ′)[∀ (α >) ϕ] = ∀ (α > σ) σ′[ϕ]
σ[α ⊳] = α
⊥[⊲ σ] = σ

σ[ε] = σ

Figure 14.2.7 – Application of a computation to a type

Proof: Immediate by induction on ϕ and the definition of instance.

14.2.3 Typing rules for xMLF

The typing rules of xMLF are given in Figure 14.2.8. They are quite standard: the only
novelty is rule TApp, which checks that the type computation ϕ transforms σ into σ′.

Var
x : σ ∈ Γ

Γ ⊢ x : σ

Abs
Γ, x : σ ⊢ a : σ′

Γ ⊢ λ(x : σ) a : σ → σ′

App
Γ ⊢ a1 : σ2 → σ1 Γ ⊢ a2 : σ2

Γ ⊢ a1 a2 : σ1

TAbs
Γ, α > σ′ ⊢ a : σ α /∈ ftv(Γ)

Γ ⊢ Λ(α > σ′) a : ∀ (α > σ′) σ

TApp
Γ ⊢ a : σ Γ ⊢ ϕ : σ ≤ σ′

Γ ⊢ a[ϕ] : σ′

Let
Γ ⊢ a : σ Γ, x : σ ⊢ a′ : σ′

Γ ⊢ let x = a in a′ : σ′

Figure 14.2.8 – Typing rules for xMLF

Notice that, as in System F, a closed expression has a unique type.

Lemma 14.2.3 If Γ ⊢ a : σ1 and Γ ⊢ a : σ2, then σ1 = σ2. �

Proof: Immediate by induction on the derivation and Lemma 14.2.1.

(In fact, the typing derivation is itself completely determined by the expression.)

Notice that Rule Let is not formally derivable via a syntactic translation: if we see a
let-binding let x = a1 in a2 as an abstraction (λ(x : σ1) a2) a1, we do not know what the

14.2. Types and typing rules of xMLF 215

type σ1 is—although it is entirely determined by a1. This is not new however, as it would
also be the case in System F extended with let-bindings.

◮ Example Let id be the identity function Λ(α >⊥) λ(x : α) x and σid the type ∀ (α >⊥)
α→ α. We have ⊢ id : σid. A definition of the function choose mentioned in the introduction
of this document may be

Λ(β >⊥) λ(x : β) λ(y : β) if true then x else y

assuming the existence of booleans and a conditional construct in the language, with the
obvious corresponding typing rules. We then have ⊢ choose : ∀ (β > ⊥) β → β → β. We
can define the application of choose to id as the expression choose_id equal to:

Λ(β > σid) choose[β] id[β ⊳]

which has type ∀ (β > σid) β → β.

The expression choose_id may also be given the weaker types below, by applying the
corresponding computations:

(choose_id)[O; ∀ (γ >) (∀ (> γ); N)] : ∀ (γ >⊥) (γ → γ)→ γ → γ
(choose_id)[N] : (∀ (β >⊥) β → β)→ (∀ (β >⊥) β → β)

◮ Another example This example is adapted from (Leijen and Löh 2005)

Let us continue the example of §14.2.2. Consider three values K, min and cmp of types
σK , σmin, σcmp respectively. Let us write nil the empty list, and cons the list concatenation
operator. We give below some fully explicit versions of the lists

x1 = nil x2 = cons K x1 x3 = cons min x2 x4 = cons cmp x3

That is, each list being obtained by adding one element at the beginning of the previous
one—thus refining its type:

x1 : ∀ (α >⊥) list α
= nil

x2 : ∀ (β > σK) list β
= Λ(β > σK) cons [β] K[β ⊳] x1[∀ (> ⊲ β)]

x3 : ∀ (γ > σmin) list γ
= Λ(γ > σmin) cons [γ] min[γ ⊳] x2[∀ (> ϕ; γ ⊳)]

x4 : list (bool→ bool→ bool)
= cons [σand] cmp[bool] x3[∀ (> ϕ′); N]

◮ System F like type application The derived typing rule for the type application a[σ] is
simply

Γ ⊢ a : ∀ (α >⊥) σ′

Γ ⊢ a[σ] : σ′{α← σ}

216 xMLF, a Church-style language for MLF

14.3 Reduction in xMLF

We define a non deterministic reduction semantics, where reduction rules can be applied in
any context (including under abstractions). More precisely, reduction can be performed as
per the following evaluation contexts:

E ::= {·}
| E[ϕ]
| λ(x : σ) E
| Λ(α > σ) E
| E a | a E
| let x = E in a | let x = a in E

The reduction rules are described in Figure 14.3.1. Rules (β) and (βLet) are the usual
β-reduction rules. Rule Context is also standard. The other rules deal with the reduction
of type computations and are described next.

(λ(x : σ) a1) a2 −→ a1{x← a2} (β)
let x = a2 in a1 −→ a1{x← a2} (βLet)

a[ε] −→ a Reflex

a[ϕ; ϕ′] −→ a[ϕ][ϕ′] Trans

a[O] −→ Λ(α >⊥) a if α /∈ ftv(a) Quant-Intro

(Λ(α > σ) a)[N] −→ a{α⊳← ε}{α← σ} Quant-Elim

(Λ(α > σ) a)[∀ (> ϕ)] −→ Λ(α > σ[ϕ]) a{α⊳← ϕ; α ⊳} Inner

(Λ(α > σ) a)[∀ (α >) ϕ] −→ Λ(α > σ) (a[ϕ]) Outer

E{a} −→ E{a′} if a −→ a′ Context

Figure 14.3.1 – Reduction rules

We define −→Λ as the type reduction subrelation, obtained by removing the rules (β)
and (βLet) from Figure 14.3.1. Similarly, we defined −→β as the expression reduction
subrelation, obtained by considering only (β), (βLet) and Context.

14.3.1 Type reduction rules

The rules Reflex, Trans and Quant-Intro reduce type applications of the computa-
tions ε, “ ;” and O respectively. As expected, an application of the identity computation
can be discarded, and the application of a composition of type computations reduces into
successive applications of each type computation. Rule Quant-Intro introduces a new
type abstraction. Rules Inner, Outer and Quant-Elim are more involved. They also
reduce type applications, but only to type abstractions Λ(α > σ) a. Rule Outer is the
simplest of the three, and it just propagates the type computation inside the body a.

Rule Quant-Elim reduces the application of the computation N to a type abstraction
Λ(α > σ) a. This is done by removing the type abstraction altogether, and substituting α

14.3. Reduction in xMLF 217

by σ everywhere in a. Moreover, computations α ⊳ —which coerce expressions of type σ
into expressions of type α—become vacuous as α is now σ, and are replaced by the identity
computation (which will eventually be eliminated by Rule Reflex).

◮ Example Let a be defined as

Λ(α > σ) λ(x : α→ α) λ(y : ⊥) y[⊲ (α→ α)] z[α ⊳]

Then a[N] reduces to
λ(x : σ → σ) λ(y : ⊥) y[⊲ (σ → σ)] z[ε]

Finally, rule Inner reduces the application of an inner substitution ∀ (> ϕ) to a type
abstraction Λ(α>σ) a. This is done by rewriting the bound σ to σ[ϕ], as one could expect,
and also updating uses of α ⊳ inside a. Indeed, the occurrences of α ⊳ inside a assume
that the bound of α is σ. After the reduction, this hypothesis becomes false, as α ranges
over instances of σ[ϕ]. Hence, we replace all occurrences of α ⊳ by the composition of type
computations (ϕ; α ⊳). This transforms an expression being instantiated by α ⊳, which is
necessarily of type σ, first into an expression of type σ[ϕ], then into an expression of type α.

◮ Example (continued) Reusing the expression a of the previous example, the type ap-
plication a[∀ (> ϕ)] reduces to

Λ(α > σ[ϕ]) λ(x : α→ α) λ(y : ⊥) y[⊲ (α→ α)] z[ϕ; α ⊳]

Notice that type applications of the form a[⊲ σ] or a[α ⊳] are not reducible. However the
latter can disappear by an outer application of Rule Quant-Elim.

◮ A longer example Consider again the expression choose_id defined in §14.2.3 as

Λ(β > σid) choose[β] id[β ⊳]

The type application choose[β] reduces to

λ(x : β) λ(y : β) if true then x else y

Thus, choose_id reduces (after the reduction above and a β-reduction step) to:

Λ(β > σid) λ(y : β) if true then id[β ⊳] else y

Consider the following three specialized versions of choose_id.

choose_id[∀ (> int); N] : (int→ int)→ int→ int
choose_id[N] : (∀ (α >⊥) α→ α)→ (∀ (α >⊥) α→ α)
choose_id[O; ∀ (α >) (∀ (> α); N)] : ∀ (α >⊥) (α→ α)→ α→ α

They respectively reduce to the terms

λ(y : int→ int) if true then (λ(x : int) x) else y
λ(y : ∀ (α >⊥) α→ α) if true then (Λ(α >⊥) λ(x : α) x) else y
Λ(α >⊥) λ(y : α→ α) if true then (λ(x : α) x) else y

In all three cases, all type instantiations can be eliminated by reduction.

218 xMLF, a Church-style language for MLF

14.3.2 Reducing only type applications

Let the type erasure of xMLF expressions be the untyped λ-term defined inductively by

⌈x⌉ = x

⌈λ(x : σ) a⌉ = λ(x) ⌈a⌉

⌈a1 a2⌉ = ⌈a1⌉ ⌈a2⌉

⌈Λ(α > σ) a⌉ = ⌈a⌉

⌈a[ϕ]⌉ = ⌈a⌉

⌈let x = a1 in a2⌉ = let x = ⌈a1⌉ in ⌈a2⌉

Type reduction preserves the shape of terms:

Lemma 14.3.1 If a −→Λ a′, then ⌈a⌉ = ⌈a′⌉. �

Proof: By induction on the reduction. The only non-immediate cases are Quant-Elim and
Inner, and the substitutions in these two rules only change the types or the computations
in the terms, which are removed by type erasure.

14.3.3 System F as a subsystem of xMLF

System F can be seen as a restriction of xMLF, using the following syntactic restrictions:

• all type computations are of the form σ;

• all type abstractions are of the form Λ(α >⊥) a. We may then write Λ(α) a instead
of Λ(α >⊥) a.

• all types inside term abstractions and type computations must be of the form

σ ::= α | σ → σ | C σ | ∀ (α >⊥) σ

We may thus write ∀ (α) σ instead of ∀ (α > ⊥) σ. Notice that ⊥ is not a valid type
anymore; however, as in System F, ∀ (α) α is.

Lemma 14.3.2 Given a System F type derivation, it is also a correct xMLF derivation. �

(See e.g. (Pierce 2002, §23) for the typing rules of System F.)

Proof: The proof is by induction on the derivation. Each case is immediate, as the typing
rules coincide in the two systems.

Moreover, let us consider a reducible System F like type application, which is of the
form (Λ(α) a)[σ]. In xMLF, it can be reduced as follows:

(Λ(α) a)[σ] = (Λ(α >⊥) a)[∀ (> ⊲ σ); N] (14.1)

−→ (Λ(α >⊥) a)[∀ (> ⊲ σ)][N] (14.2)

−→ (Λ(α > σ) a)[N] (14.3)

−→ a{α← σ} (14.4)

14.4. Type soundness 219

Step 14.1 is by definition; step 14.2 is by Trans; step 14.3 is by Inner, and the fact that
a{α ⊳← ⊲ σ; α ⊳} is a, since by construction α ⊳ does not occur in a; step 14.4 is by Quant-

Elim, and the fact that a{α ⊳← ε}{α← σ} is a{α← σ}, for the same reason. Notice that
a{α← σ} belongs to System F, as σ and a do. Thus, we get the System F type application
reduction rule as a derived rule in xMLF.

14.4 Type soundness

In this section, we show that reduction in xMLF preserves typings. This holds in particular
when reduction can be performed in any context, i.e. for strong reduction. We also show
that weak reduction, i.e. when reduction is not performed under λ-abstraction is sufficient
to reduce expressions to values. We consider both cases of a call-by-value and a call-by-
name setting—importantly, this is the first time that a variant of MLF is proven sound for
call-by-name evaluation. Hence, xMLF can be used as a general calculus, but also as the
core of a programming language, with either strict or lazy semantics.

14.4.1 Preservation of typings

As usual, the subject reduction property relies on the weakening and substitution lemmas,
which hold for both instance and typing judgments.

Lemma 14.4.1 (Weakening) Assume that wf (Γ, Γ′, Γ′′) holds.

• If Γ, Γ′′ ⊢ ϕ : σ1 ≤ σ2, then Γ, Γ′, Γ′′ ⊢ ϕ : σ1 ≤ σ2

• If Γ, Γ′′ ⊢ a : σ′, then Γ, Γ′, Γ′′ ⊢ a : σ′. �

Proof: Immediate induction on each derivation.

Lemma 14.4.2 (Term substitution) Assume that Γ ⊢ a′ : σ′ holds.

• If Γ, x : σ′, Γ′ ⊢ ϕ : σ1 ≤ σ2 then Γ, Γ′ ⊢ ϕ : σ1 ≤ σ2

• If Γ, x : σ′, Γ′ ⊢ a : σ, then Γ, Γ′ ⊢ a{x← a′} : σ �

Proof: By induction on each derivation. The result is immediate for the instance relation,
which never consider term variables in the environment. For the typing relation, the only
non-immediate case is the one for the variable x itself, which we develop below.

By hypothesis, we have Γ, x : σ′, Γ′ ⊢ x : σ. Only rule Var applies, thus σ = σ′

(1). By well-formedness of Γ, x : σ, Γ′, the environment Γ, Γ′ is well-formed. Thus, by
Lemma 14.4.1, Γ, Γ′ ⊢ a′ : σ′ (2). The conclusion is then by (1), (2) and the fact that
a′ = x{x← a′}.

The next lemma, which expresses that we can substitute an instance bound inside judg-
ments, ensures the correctness of rule Quant-Elim.

220 xMLF, a Church-style language for MLF

Lemma 14.4.3 (Bound substitution)

• If Γ, α > σ, Γ′ ⊢ ϕ : σ1 ≤ σ2 then

Γ, Γ′{α← σ} ⊢ ϕ{α ⊳← ε}{α← σ} : σ1{α← σ} ≤ σ2{α← σ}

• If Γ, α > σ, Γ′ ⊢ a : σ′ then

Γ, Γ′{α← σ} ⊢ a{α⊳← ε}{α← σ} : σ′{α← σ} �

Proof: We let Γ′′ be Γ, Γ′{α← σ}.

For type instance, the proof is by induction on the shape of ϕ. Let ϕ′ be ϕ{α ⊳← ε}{α←
σ}. In each case we show Γ′′ ⊢ ϕ′ : σ1{α← σ} ≤ σ2{α← σ} (1).

⊲ Case ε: then σ1 = σ2 and ϕ′ = ε. Then (1) holds by Inst-Reflex

⊲ Case ⊲ σ′: then σ1 = ⊥, σ2 = σ′, ϕ′ = ⊲ σ′{α ← σ} and σ1{α ← σ} = ⊥. Then (1)
holds by Inst-Bot.

⊲ Case α ⊳: then σ1 = σ, σ2 = α, ϕ′ = ε, σ1{α ← σ} = σ (α cannot be free in σ,
by well-formedness of environments) and σ2{α ← σ} = σ. Thus (1) holds by rule
Inst-Reflex.

⊲ Case β ⊳ (with α 6= β): then the bound of β in Γ, Γ′ is σ1, σ2 is β, ϕ′ is ϕ and σ2{α←
σ} is β. There are two subcases.

◦ Case β ∈ dom(Γ): σ1{α← σ} is σ1 as α /∈ ftv(σ′). Thus (1) holds by Inst-Hyp, as

Γ′′(β) = Γ(β) = σ1.

◦ Case β ∈ dom(Γ′): we have Γ′′(β) = (Γ′{α← σ})(β) = (Γ′(β)){α← σ} = σ1{α←
σ}, hence (1) holds by Inst-Hyp.

⊲ Case O: then σ2 = ∀ (β >⊥) σ1 with β /∈ ftv(σ1), ϕ′ = O and σ2{α← σ} = ∀ (γ >⊥)
σ1{α ← σ}, for a type variable γ fresh for both σ1 and σ. Hence the conclusion holds
by Inst-Quant-Intro.

⊲ Case N: then σ1 = ∀ (β > σ′
1) σ′′

1 for some σ′
1 and σ′′

1 , σ2 = σ′′
1 {β ← σ′

1}, ϕ′ = N.
Without loss of generality we can assume that β does not appear free in σ. Then σ1{α←
σ} = ∀ (β > σ′

1{α ← σ}) σ′′
1 {α← σ} and σ2{α ← σ} is σ′′

1 {α ← σ}{β ← σ′
1{α ← σ}}.

Hence (1) holds by Inst-Quant-Elim.

⊲ Case ∀ (β >) ϕ′′: then σ1 = ∀ (β>σ′
1) σ′′

1 , and σ2 = ∀ (β>σ′
1) σ′′

2 with Γ, α>σ, Γ′, β>

σ′
1 ⊢ ϕ′′ : σ′′

1 ≤ σ′′
2 . By induction hypothesis, Γ′′, β > σ′

1{α ← σ} ⊢ ϕ′′{α ⊳ ← ε}{α ←
σ} : σ′′

1 {α ← σ} ≤ σ′′
2 {α ← σ} holds. Since ϕ′ is ∀ (β >) ϕ′′{α ⊳ ← ε}{α ← σ}, (1)

holds by Inst-Outer.

⊲ Case ∀ (> ϕ′′): then σ1 = ∀ (β > σ′
1) σ′′

1 , and σ2 = ∀ (β > σ′
2) σ′′

1 with Γ, α > σ, Γ′ ⊢

ϕ′′ : σ′
1 ≤ σ′

2. By induction hypothesis, Γ′′ ⊢ ϕ′′{α ⊳ ← ε}{α ← σ} : σ′
1{α ← σ} ≤

σ′
2{α← σ} holds. Since ϕ′ is ∀ (>ϕ′′{α ⊳← ε}{α← σ}), (1) holds by Inst-Inner.

⊲ Case ϕ = ϕ1; ϕ2: by inversion of instance there exists σ0 such that Γ, α > σ, Γ′ ⊢ ϕ1 :
σ1 ≤ σ0 and Γ, α > σ, Γ′ ⊢ ϕ2 : σ0 ≤ σ2. By induction hypothesis, Γ′′ ⊢ ϕ1{α ⊳ ←
ε}{α ← σ} : σ1{α ← σ} ≤ σ0{α ← σ} and Γ′′ ⊢ ϕ2{α ⊳ ← ε}{α ← σ} : σ0{α ← σ} ≤
σ2{α← σ}; hence (1) holds by Inst-Trans.

(Notice that the only really interesting cases are those for α ⊳ and β ⊳.)

For the typing relation, the proof is by induction on the shape of a. We let a′ be a{α ⊳←
ε}{α← σ}.

⊲ Case x: Then σ′ is the type of x in the environment, and a′ is x. Thus σ′{α ← σ} is
indeed the type of x in Γ′′ (whether x is in Γ or Γ′), and the conclusion holds by Var.

14.4. Type soundness 221

⊲ Case λ(x : σ1) b: Then a′ is λ(x : σ1{α ← σ}) b{α ⊳ ← ε}{α ← σ}. The type σ′ is

σ1 → σ2, with Γ, α > σ, Γ′, x : σ1 ⊢ b : σ2. By induction hypothesis, Γ′′, x : σ1{α ←
σ} ⊢ b{α ⊳ ← ε}{α ← σ} : σ2{α ← σ} holds. Then by Abs, Γ′′ ⊢ a′ : σ1{α ← σ} →
σ2{α← σ}; this last type is exactly σ′{α← σ}, hence the result holds.

⊲ The cases for applications, type abstractions and let are similar.

⊲ Case a = b[ϕ]: Then a′ is b{α ⊳ ← ε}{α ← σ}[ϕ{α ⊳ ← ε}{α ← σ}], and there

exists σ′′ such that Γ, α > σ, Γ′ ⊢ b : σ′′ and Γ, α > σ, Γ′ ⊢ ϕ : σ′′ ≤ σ′ holds. By
induction hypothesis, Γ′′ ⊢ b{α ⊳← ε}{α← σ} : σ′′{α← σ}. By the result of instance,
Γ′′ ⊢ ϕ{α ⊳← ε}{α← σ} : σ′′{α← σ} ≤ σ′{α← σ}. Hence the result holds by TApp.

The following lemma, which expresses that an instance bound can be instantiated, en-
sures in turn the correctness of rule Inner.

Lemma 14.4.4 (Narrowing) Assume that Γ ⊢ ϕ : σ ≤ σ′ holds.

• If Γ, α > σ, Γ′ ⊢ ϕ′ : σ1 ≤ σ2 then

Γ, α > σ′, Γ′ ⊢ ϕ′{α ⊳← ϕ; α ⊳} : σ1 ≤ σ2

• If Γ, α > σ, Γ′ ⊢ a : σ′′ then

Γ, α > σ′, Γ′ ⊢ a{α ⊳← ϕ; α ⊳} : σ′′ �

Proof: Let Γ′′ be Γ, α > σ′, Γ′. For type instance, the proof is by induction on the shape
of ϕ. We let ϕ′ be ϕ{α ⊳← ϕ; α ⊳}.

⊲ Case α ⊳: then σ1 = σ, σ2 = α and ϕ′ = (ϕ; α ⊳). By hypothesis and Lemma 14.4.1,
we have Γ′′ ⊢ ϕ : σ ≤ σ′, and Γ′′ ⊢ α : σ′ ≤ α by Inst-Hyp. Hence the result holds by
Inst-Trans.

⊲ Case β ⊳ with α 6= β: Then the bound of β in in Γ, α > σ, Γ′ is σ1, σ2 is β and ϕ′ is ϕ.
Since α 6= β, the result is simply by Inst-Hyp.

As in the proof Lemma 14.4.3, all the other cases are directly by induction hypothesis.
This is also the case for the typing relation.

Subject reduction is an easy consequence of all these results.

Theorem 14.4.5 (Subject reduction) If Γ ⊢ a : σ and a −→ a′ then, Γ ⊢ a′ : σ. �

Proof: The proof is by induction on the reduction a −→ a′.

⊲ Case (β): then a = (λ(x : σ′) a1) a2 and a′ = a1{x ← a2} for some σ, a1 and

a2. By inversion of typing, Γ, x : σ′ ⊢ a1 : σ and Γ ⊢ a2 : σ′. The conclusion is by
Lemma 14.4.2.

⊲ Case (βLet): then a = let x = a2 in a1 for some a1 and a2, with a′ = a1{x ← a2}.

By inversion of typing there exists σ′ such that Γ ⊢ a2 : σ′ and Γ, x : σ′ ⊢ a1 : σ. The
conclusion is by Lemma 14.4.2.

222 xMLF, a Church-style language for MLF

⊲ Case Inner: then a = (Λ(α > σ1) a′′)[∀ (>ϕ)], a′ is Λ(α > σ1[ϕ]) a′′{α ⊳ ← ϕ; α ⊳}
for some a′′, σ1 and ϕ. By inversion of typing, there exists σ2 and σ′ such that σ =
∀ (α > σ2) σ′, Γ ⊢ ϕ′ : σ1 ≤ σ2 and Γ, α > σ1 ⊢ a′′ : σ′. By Lemma 14.4.4, Γ, α > σ2 ⊢
a′′{α ⊳ ← ϕ; α ⊳} : σ′. By rule TAbs Γ ⊢ Λ(α > σ2) a′′{α ⊳ ← ϕ; α ⊳} : ∀ (α > σ2) σ′.
The conclusion is immediate, as σ2 = σ1[ϕ].

⊲ Case Outer: then a = (Λ(α > σ′) a′′)[∀ (α >) ϕ], a′ is Λ(α > σ′) (a′′[ϕ]) for some a′′,
σ′ and ϕ. By inversion of typing, there exists σ1 and σ2 such that σ = ∀ (α > σ′) σ2,
Γ ⊢ ϕ′ : σ1 ≤ σ2 and Γ, α > σ′ ⊢ a′′ : σ1. By TApp and TAbs, Γ ⊢ Λ(α > σ′) (a′′[ϕ]) :
∀ (α > σ′) σ2.

⊲ Case Quant-Elim: then a = (Λ(α > σ′) a′′)[N], a′ is a′′{α ⊳ ← ε}{α ← σ} for some
a′′ and σ′. By inversion of typing, there exists σ′′ such that σ = σ′′{α ← σ′} and
Γ, α > σ′ ⊢ a′′ : σ′′. By Lemma 14.4.3, Γ ⊢ a′′{α ⊳← ε}{α← σ} : σ′′{α← σ′} which is
the desired result.

⊲ Case Reflex: then a = a′′[ε] and a′ = a′′. By inversion of typing, a′′ has type σ,
which is the desired result.

⊲ Case Trans: then a = a′′[ϕ1; ϕ2] and a′ = a′′[ϕ1][ϕ2]. By inversion of typing, there
exists σ0 and σ′

0 such that Γ ⊢ ϕ1 : σ0 ≤ σ′
0, Γ ⊢ ϕ2 : σ′

0 ≤ σ and Γ ⊢ a′′ : σ0. We
conclude by applying TApp twice.

⊲ Case Quant-Intro: then a = a′′[O] and a′ = Λ(α > ⊥) a′′ with α /∈ fv(a′′). By
inversion of typing, there exists σ′ such that Γ ⊢ a′′ : σ′ and σ = ∀ (α > ⊥) σ′ with
α /∈ ftv(σ′). We conclude by TAbs.

⊲ Case Context: then there exists E such that a = E[b], a′ = E[b′] and b −→ b′. The
proof is immediate by structural induction on E.

14.4.2 Progress with call-by-value and call-by-name semantics

In order to have a more general setting, we introduce a set of constants into our language;
each constant κ comes with its arity (written arity(κ)). We partition constants into con-
structors c and primitives f . The difference lies in their semantics: primitives (such as +)
are reduced when fully applied, while constructors (such as cons) can only be reduced by
some other primitives.

We also assume given an initial context Γ0 that assigns to every constant κ of arity n a
type σ of the form ∀ (α > σ) σ1 → . . . σn → σ0 where σ0 is of the form C σ with C 6= →
when κ is a constructor.1

Values The grammar of values is given in Figure 14.4.1. A value v is either an expression
abstraction, a type abstraction, a constructor application, or a partially applied primitive.
Applications of constants can involve a series of type computations, but only of a certain
form, and before all other arguments. The set W over which w ranges depends on whether
we are considering call-by-value or call-by-name reduction, and will be defined later. Notice
that a[⊲ σ] and a[α ⊳] are never values, even though they are irreducible expressions.

Importantly, values have non-bottom types.

Lemma 14.4.6 Let v be a value; if Γ0 ⊢ v : σ, σ is not ⊥. �

1It is possible to give more general types such as ∀ (α > σ) σ1 → ∀ (β > σ) σ2 → . . . to constants, but
this complicates the set of values and the definition of δ-rules.

14.4. Type soundness 223

v ::= λ(x : σ) a
| Λ(α : σ) a
| c [θ1] . . . [θk] w1 . . . wn n ≤ arity(c)
| f [θ1] . . . [θk] w1 . . . wn n < arity(f)

θ ::= ∀ (> ϕ)| ∀ (α >) ϕ | N

Figure 14.4.1 – Grammar of values

Proof: The proof is by case disjunction on the shape of v and unicity of typing. If v is
an abstraction, it has an arrow type. It v is type abstraction, it has a type of the form
∀ (α > σ′) σ′′. If v is a non fully applied constant, it has a type of the form ∀ (α > σ) σ′

or σ → σ′. If it is a fully applied constructor it cannot have type ⊥ by the hypothesis on
the return type σ0.

Reduction rules for primitives We finally assume that there exists a set of reduction rules
−→δ, called δ-rules, that reduce fully applied primitives, as per the following hypothesis:

(H) Well-typed full applications of primitive can be reduced.

This is, for any expression a of the form f [θ1] . . . [θk] w1 . . . wn with n = arity(f)
and verifying Γ0 ⊢ a : σ, then there exists an expression a′ such that a −→δ a′.

Of course, in order to ensure type soundness, we also assume that δ-rules preserve typings.
However, we will not use this last hypothesis in this section.

14.4.2.1 Call-by-value reduction

For call-by-value reduction, constructors and primitives must be applied to values. Hence
the set W is the set V of values itself, and the grammar of values is of the form

v ::= . . .
| c [θ1] . . . [θk] v1 . . . vn n ≤ arity(c)
| f [θ1] . . . [θk] v1 . . . vn n < arity(f)

The rules (β) and (βLet) are also limited to the substitution of values:

(λ(x : σ) a) v −→ a[v/x] let x = v in a −→ a[v/x]

The rules Reflex, Trans and Quant-Intro are also restricted so that they only apply
on values (e.g. v[ε] can be reduced by Reflex, but not (a1 a2)[ε]). Finally, we restrict rule
Context to contexts of the form

E ::= {·}
| E a
| v E
| E[ϕ]
| let x = E in a

224 xMLF, a Church-style language for MLF

We write −→v the resulting reduction relation. It follows from the above restrictions
that values are irreducible, and that the reduction is deterministic.

Property 14.4.7 If v is a value, v 6−→v. �

Proof: Immediate induction on the shape of v.

Lemma 14.4.8 If a −→v a′ and a −→v a′′, then a′ = a′′. �

Proof: For all the rules but Context it suffices to show that the reductions of a to a′ and
a′′ are done by the same rule, as the rules are deterministic. The proof is by induction on
the rule such that a −→v a′.

⊲ Case (β): a is of the form (λ(x : σ) a′) v, and only (β) applies as we cannot reduce v
or inside the abstraction.

⊲ Case (βLet): : a is of the form let x = v in a′. We cannot reduce in v or in a′, hence
only (βLet) applies.

⊲ Case Reflex: : then a is of the form v[ε]. Since v is irreducible, only Reflex applies.

⊲ Case Trans or Quant-Intro: : the reasoning is the same as in the previous case

⊲ Case Quant-Elim: : a is of the form Λ(α > σ) a′. We cannot reduce a′ as we cannot
reduce under type abstractions, hence only Quant-Elim applies.

⊲ Case Outer or Inner: : the reasoning is the same as above.

⊲ Case Context: by the case disjunction above, a −→v a′′ is also by Context. With-
out loss of generality, given the results above we can suppose that the reduction does
not occur in the context {·}. Property 14.4.7 ensures that both reductions occur at the
same subcontext, as an application can be reduced in only one way, and there is a single
context for all the other type of terms. The conclusion is then by induction hypothesis.

We may now show progress for call-by-value, which in combination with subject-
reduction ensures that evaluation of well-typed expressions “cannot go wrong”.

Theorem 14.4.9 If Γ0 ⊢ a : σ, either a is a value or there exists a′ such that a −→v a′.�

Proof: By induction on the shape of a:

⊲ Case x: variables are not typable in Γ0;

⊲ Case λ(x : σ) a′ or Λ(α > σ) a′: then a is a value

⊲ Case κ: if κ is a primitive f with arity(f) = 0, it can be reduced by the appropriate
δ-rule. All the other constants are values.

⊲ Case a1 a2: by inversion of typing, a1 and a2 are typable in Γ0, of type σ′ → σ and
σ′ for a certain σ′ respectively. If a1 is not a value, by induction hypothesis it can be
reduced, and so can a by Context. If a1 is a value but not a2, a2 can be reduced, and
so can a by Context again. Otherwise, if both a1 and a2 are values, we proceed by
case disjunction on the shape of a1 (which, we remind, is a value of type σ′ → σ)

◦ if a′ = λ(x : σ′) a′
1, a can be reduced by (β).

14.4. Type soundness 225

◦ a1 cannot be a type abstraction, as it would not have an arrow type.

◦ if a1 is a (partially) applied primitive, either a is a fully applied primitive and it can
be reduced by the appropriate δ-rule, or a is a value.

◦ if a1 is a partially applied constructor: by hypothesis on the typing of constructors,
a1 is of the form c [θ] . . . [θ] v1 . . . vn with n < arity(c) (as a full application would not
have an arrow type). Then a is a value.

⊲ Case let x = a2 in a1: by inversion of typing a2 is typable in Γ0. If it is not a value,
by induction hypothesis it can be reduced. Hence a can be reduced by rule Context.
Otherwise a can be reduced by rule (βLet).

⊲ Case a′[ϕ]: by inversion of typing a′ is typable in Γ0. If a′ is not a value, it can be
further reduced by induction hypothesis, and so can a by Context. Otherwise we
proceed by case analysis on ϕ:

◦ Case ε, O or ϕ1; ϕ2: a can be reduced by rules Reflex, Quant-Intro or Trans

◦ Case α ⊳: this case is impossible in Γ0, as a would not be well-typed.

◦ Case ⊲ σ: a′ is a value which cannot have type ⊥ by Lemma 14.4.6; hence this case
is impossible.

◦ Case N, ∀ (α >) ϕ′ or ∀ (> ϕ′): a′ must have type ∀ (α > σ′) σ′′ for some σ′ and

σ′′. Since it is a value, by shape analysis on a′ there are only two possible cases:

◦ Case a′ = Λ(α > σ) a′′: a can be reduced by Inner, Outer or Quant-Elim.

◦ Case a′ = κ [θ1] . . . [θk]: then a = κ [θ1] . . . [θk][ϕ], and it is a value, as ϕ is of the
form θ.

14.4.2.2 Value-restriction

The value-restriction (Wright and Felleisen 1994) is the standard way to add side effects
in a call-by-value language. It is thus important to verify that it can be transposed to
xMLF. This question may be surprising, as it is usually taken for granted. However, the
type instantiation rules of xMLF are quite unusual, as they permit the creation of type
abstraction by type reduction.

Typically, the value restriction amounts to restricting type generalizations to non-
expansive expressions, which contain at least value-forms, i.e. values and term variables,
as well as their type-instantiations. In an explicitly typed language such as ours, we in
fact limit the source terms. Hence, we obtain the grammar of Figure 14.4.2 for restricted
expressions r and non-expansive expressions u. As usual, we require let-bound expressions
to be non-expansive, since they implicitly contain a type generalization.

Of course, we must suppose that δ-rules are well-behaved w.r.t. the value restriction:

(H’) δ-rules reduce fully applied primitives into non-expansive expressions.

We can now show that the evaluation of expansive expressions cannot create polymorphism,
a condition that is sufficient to ensure the soundness with side-effects. Indeed, the value-
restriction is closed by reduction.

Lemma 14.4.10 Non-expansive expressions are closed by call-by-value reduction. �

Proof: Let u be a non-expansive expression. We prove by induction on the rule reducing
u that it reduces to a non-expansive expression.

226 xMLF, a Church-style language for MLF

r ::= u
| r r
| let x = u in r
| r[ϕ]

u ::= x
| λ(x : σ) r
| Λ(α : σ) u
| u [ϕ]
| c [θ1] . . . [θk] u1 . . . un n ≤ arity(c)
| f [θ1] . . . [θk] u1 . . . un n < arity(f)

Figure 14.4.2 – xMLF with value-restriction

⊲ Variables and abstractions are irreducible.

⊲ Reductions of fully-applied primitives by δ-rules are by hypothesis (H’).

⊲ Reductions of type applications or of arguments of constant by rule Context are by
induction hypothesis.

⊲ it remains to consider the reduction of a type application by a rule of −→Λ. Thus
u is of the form u′[ϕ], and we proceed by case disjunction on ϕ. If ϕ is of the form
ε, O or ϕ1; ϕ2, it is immediate that u reduces to a non-expansive expression by rules
Reflex, Quant-Intro and Trans. For the three other reduction rules, u is of the
form (Λ(α > σ) u′)[θ].

◦ Case ∀ (α >) ϕ: then u reduces by Outer to Λ(α > σ) u′[ϕ], which is indeed a
non-expansive expression.

◦ Case N: then u reduces by Quant-Elim to u′{α ⊳ ← ε}{α ← σ}. Moreover
u′{α ⊳← ε} is a non-expansive expression; this is immediate for all the non-expansive
expressions but constant applications. However, for this subcases, the substitutions
θ do not contain α ⊳ and are unchanged by the substitution. Since non-expansive
expression are also stable by type substitution, this shows that u′{α ⊳← ε}{α← σ}
is indeed an non-expansive expression.

◦ Case ∀ (> ϕ): then a reduces by Inner to u′{α ⊳← ϕ; α ⊳}. The reasoning is similar
to the case above.

Lemma 14.4.11 The value-restriction is closed by call-by-value reduction. �

Proof: Let r be a restricted expression. We prove by induction on the rule reducing r
that it reduces into a restricted expression. We only consider the cases when r is not an
non-expansive expression, as this case is already proven by Lemma 14.4.10.

⊲ Case Context: the result is by induction hypothesis.

⊲ Case (β): then r is of the form (λ(x : σ) r1) v, which reduces to r1{x← v}. Restricted
expressions are stable by the substitution of values, which ensure the result.

⊲ Case (βLet): then r is of the form let x = v in r1, which reduces to r1{x ← v}. The
conclusion is as above.

14.5. Confluence of reduction 227

⊲ Case δ: the result is by hypothesis (H’), as non-expansive expressions are restricted
expressions.

⊲ in the remaining case, r is a type application r′[ϕ], and reduces by a rule of −→v ∩ −→Λ.
This implies that r′ is a value. Hence r is non expansive and the conclusion is by
Lemma 14.4.10.

Hence, subject reduction holds with the value-restriction as well. It is then routine work
to extend the semantics with a global store to model side effects and verify type soundness
for this extension.

14.4.2.3 Call-by-name reduction

For call-by-name reduction semantics, partially applied constants do not require that their
arguments are values, and the set W is actually the set A of all values

v ::= . . .
| c [θ1] . . . [θk] a1 . . . an n ≤ arity(c)
| f [θ1] . . . [θk] a1 . . . an n < arity(f)

Rules Reflex, Trans and Quant-Intro are restricted to values, as for call-by-value
reduction. Evaluation contexts are of the form

E ::= {·}
| E a
| E[ϕ]

As usual, we can introduce strict type constructors or primitives (which require their argu-
ments to be evaluated) by changing the set of values and adding the necessary evaluation
contexts.

We write −→n the reduction relation obtained through the restrictions above. As for
call-by-value, values are irreducible and, reduction is deterministic, and progress holds. The
proofs are the same as for call-by-value for type reduction, and for ML for β-reduction; thus
we omit them.

Property 14.4.12 If v is a value, v 6−→n. �

Lemma 14.4.13 If a −→n a′ and a −→n a′′, then a′ = a′′. �

Theorem 14.4.14 If Γ0 ⊢ a : σ, either a is a value or there exists a′ such that a −→n a′.�

14.5 Confluence of reduction

In this section, we show that strong reduction is a confluent relation on well-typed terms,
ensuring that reductions can be performed in any order. We use the standard technique of
parallel reductions (Barendregt 1984).

We first define a parallel reduction relation
//
−→, given in Figure 14.5.1. Most rules

are immediate adaptations of the rules of Figure 14.3.1. For example, rule PBeta allows

228 xMLF, a Church-style language for MLF

reducing both the argument and the function during β-reduction. The congruence rules
PAbs, PApp, PTabs and PTApp are essentially the result of inlining rule Context; notice
however that rule PApp allows reducing both terms of the application simultaneously, unlike
Context.

PBeta

a1
//
−→ a′

1 a2
//
−→ a′

2

(λ(x : σ) a1) a2
//
−→ a′

1{x← a′
2}

PBetaLet

a1
//
−→ a′

1 a2
//
−→ a′

2

let x = a2 in a1
//
−→ a′

1{x← a′
2}

PVarRefl

x
//
−→ x

PAbs

a
//
−→ a′

λ(x : σ) a
//
−→ λ(x : σ) a′

PApp

a1
//
−→ a′

1 a2
//
−→ a′

2

a1 a2
//
−→ a′

1 a′
2

PTApp

a
//
−→ a′

a[ϕ]
//
−→ a′[ϕ]

PTAbs

a
//
−→ a′

Λ(α > σ) a
//
−→ Λ(α > σ) a′

PLet

a1
//
−→ a′

1 a2
//
−→ a′

2

let x = a1 in a2
//
−→ let x = a′

1 in a′
2

PQuant-Intro

a
//
−→ a′ α /∈ fv(a)

a[O; ∀ (> ⊲ σ)]
//
−→ Λ(α >⊥) a′

PQuant-Elim

a
//
−→ a′

(Λ(α > σ) a)[N]
//
−→ a′{α⊳← ε}{α← σ}

POuter

a
//
−→ a′

(Λ(α > σ) a)[∀ (α >) ϕ]
//
−→ Λ(α > σ) (a′[ϕ])

PTrans

a
//
−→ a′

a[ϕ1; ϕ2]
//
−→ (a′[ϕ1])[ϕ2]

PInner

a
//
−→ a′

(Λ(α > σ) a)[∀ (> ϕ)]
//
−→ Λ(α > σ[ϕ]) (a′{α ⊳← ϕ; α ⊳})

PReflex

a
//
−→ a′

a[ε]
//
−→ a′[ε]

Figure 14.5.1 – Parallel reduction

Rule PVarRefl expresses that a variable reduces to itself. This ensures that
//
−→ is

reflexive.

Lemma 14.5.1 The relation
//
−→ is reflexive. �

Proof: Immediate induction on the shape of the expression, using PVarRefl and the
congruence rules.

The relation
//
−→ is a subrelation of −→⋆, and is designed so that its reflexive transitive

closure is the same as the one of −→.

Lemma 14.5.2 The relations −→ ⊆
//
−→ ⊆ −→⋆ hold. �

14.5. Confluence of reduction 229

Proof: The inclusion (−→) ⊆ (
//
−→) is immediate by definition of

//
−→ and Lemma 14.5.1.

The inclusion (
//
−→) ⊆ (−→⋆) is immediate by induction on a derivation a

//
−→ a′.

Corollary 14.5.3 The relation (−→)⋆ = (
//
−→)⋆ hold. �

Our final result is the confluence of
//
−→, which implies the confluence of −→ by the

result above. However, we first need stating a few intermediary results for the compatibility
of

//
−→ with the various forms of substitutions. The proofs simple (if tedious).

Lemma 14.5.4 If a
//
−→ a′ and b

//
−→ b′, then a{x← b}

//
−→ a′{x← b′}. �

Proof: The proof is by induction on a
//
−→ a′. All the cases are immediate by induction

hypothesis; we detail two significant ones below.

⊲ Case PBeta: then a = (λ(y) a1) a2; without loss of generality we suppose that

y /∈ fv(b) ∪ fv(b′) (1). Then a′ = a′
1{y ← a′

2} with ai
//
−→ a′

i. We have a{x ← b} =
(λ(y) a1{x ← b}) (a2{x ← b}) by (1), which reduces by induction hypothesis and
PBeta to a′

1{x← b′}{y ← a′
2{x← b′}}, which is equal to a′

1{y ← a′
2}{x← b′} by (1).

⊲ Case PInner: then a = (Λ(α > σ) a1)[∀ (>ϕ)]; without loss of generality we suppose

that α /∈ fv(b) ∪ fv(b′) (2). Then a′ = Λ(α > σ[ϕ]) a′
1{α ⊳ ← ϕ; α ⊳} with a1

//
−→

a′
1. We have a{x ← b} = (Λ(α > σ) a1{x ← b})[∀ (>ϕ)] by (2), which reduces to

Λ(α >σ[ϕ]) a′
1{x← b′}{α ⊳← ϕ; α ⊳} by PInner and induction hypothesis. This term

is equal to (Λ(α > σ[ϕ]) a′
1{α ⊳← ϕ; α ⊳}){x← b′} by (2), which is the desired result.

Lemma 14.5.5 Let a be a term such that there exists a context Γ′, α > σ, Γ′′ under which

a is well-typed. Suppose a
//
−→ a′. Then

1. a{α ⊳← ε}{α← σ}
//
−→ a′{α⊳← ε}{α← σ}.

2. if Γ′ ⊢ ϕ : σ ≤ σ′ holds for a certain σ′, then a{α⊳← ϕ; α ⊳}
//
−→ a′{α⊳← ϕ; α ⊳}.�

Proof: We let Γ be Γ′, α > σ, Γ′′. In both cases, the proof is by induction on a
//
−→ a′; we

detail only the cases for PInner and PQuant-Elim, as all the other cases are simply by
induction hypothesis.

For a{α ⊳← ϕ; α ⊳}
//
−→ a′{α ⊳← ϕ; α ⊳}:

⊲ Case PInner: then a = (Λ(β > σ′′) b)[∀ (>ϕ′)] and a′ = Λ(β > σ′′[ϕ′]) (b′{β ⊳ ←

ϕ′; β ⊳}) with b
//
−→ b′. Without loss of generality we suppose that β does not appear

free in ϕ and σ, and that α and β are distinct (1). We have a{α ⊳ ← ϕ; α ⊳} =
(Λ(β > σ′′) b{α ⊳ ← ϕ; α ⊳})[∀ (>ϕ′{α ⊳ ← ϕ; α ⊳})] by (1). By induction hypothesis,

b{α ⊳ ← ϕ; α ⊳}
//
−→ b′{α ⊳ ← ϕ; α ⊳}. Thus a{α ⊳ ← ϕ; α ⊳}

//
−→ Λ(β > σ′′[ϕ′{α ⊳ ←

ϕ; α ⊳}]) b′{α ⊳ ← ϕ; α ⊳}{β ⊳ ← ϕ′{α ⊳ ← ϕ; α ⊳}; β ⊳} by PInner (2). Since β does
not appear in ϕ and α 6= β, we have b′{α ⊳ ← ϕ; α ⊳}{β ⊳ ← ϕ′{α ⊳ ← ϕ; α ⊳}; β ⊳} =

230 xMLF, a Church-style language for MLF

b′{β ⊳ ← ϕ′; β ⊳}{α ⊳ ← ϕ; α ⊳} (3). Let σ′′′ be such that Γ ⊢ ϕ′ : σ′′ ≤ σ′′′. By
Lemma 14.4.4, Γ ⊢ ϕ′{α ⊳ ← ϕ; α ⊳} : σ′′ ≤ σ′′′. Thus σ′′[ϕ′{α ⊳ ← ϕ; α ⊳}] = σ′′[ϕ′]

(4). By (2), (3) and (4), we have a{α ⊳← ϕ; α ⊳}
//
−→ a′{α ⊳← ϕ; α ⊳}.

⊲ Case PQuant-Elim: then a = (Λ(β > σ′′) b)[N] and a′ = b′{β ⊳ ← ε}{β ← σ′′}

with b
//
−→ b′. Without loss of generality we can suppose that β does not appear

free in ϕ and σ, and that α and β are distinct. Then we have a{α ⊳ ← ϕ; α ⊳} =
(Λ(α > σ′′) b{α ⊳← ϕ; α ⊳})[N]. By induction hypothesis and PQuant-Elim, we have

a{α ⊳← ϕ; α ⊳}
//
−→ b′{α ⊳← ϕ; α ⊳}{β ⊳← ε}{β ← σ′′}. Since β does not appear in ϕ

and α 6= β, this last term is b′{β ⊳← ε}{β ← σ′′}{α ⊳← ϕ; α ⊳}, hence the result.

For a
//
−→ a′, a{α ⊳ ← ε}{α ← σ}

//
−→ a′{α ⊳ ← ε}{α ← σ} we use the same notations

and freshness conventions as above.

⊲ Case PInner: by definition, we have a{α ⊳ ← ε}{α ← σ} = (Λ(β > σ′′{α ←
σ}) b{α ⊳ ← ε}{α ← σ})[∀ (>ϕ′{α ⊳ ← ε}{α ← σ})]. By induction hypothesis,

b{α ⊳ ← ε}{α ← σ}
//
−→ b′{α ⊳ ← ε}{α ← σ}. Thus a{α ⊳ ← ε}{α ← σ}

//
−→

Λ(β > σ′′{α ← σ}[ϕ′{α ⊳ ← ε}{α ← σ}]) b′{α ⊳ ← ε}{α ← σ}{β ⊳ ← ϕ′{α ⊳ ←
ε}{α ← σ}; β ⊳} holds by PInner (5). By definition of substitutions, we have
b′{α ⊳ ← ε}{α ← σ}{β ⊳ ← ϕ′{α ⊳ ← ε}{α ← σ}; β ⊳} = b′{β ⊳ ← ϕ′; β ⊳}{α ⊳ ←
ε}{α ← σ} (6). Let σ′′′ be such that Γ ⊢ ϕ′ : σ′′ ≤ σ′′′. By Lemma 14.4.3,
Γ′, Γ′′{α ← σ} ⊢ ϕ′{α ⊳ ← ε}{α ← σ} : σ′′{α ← σ} ≤ σ′′′{α ← σ}. Thus
σ′′{α ← σ}[ϕ′{α ⊳ ← ε}{α ← σ}] = σ′′[ϕ′]{α ← σ} (7). We have a{α ⊳ ← ε}{α ←

σ}
//
−→ a′{α ⊳← ε}{α← σ} by (5), (6) and (7).

⊲ Case PQuant-Elim: by definition we have a{α ⊳ ← ε}{α ← σ} = (Λ(α > σ′′{α ←
σ}) b{α ⊳ ← ε}{α ← σ})[N]. By induction hypothesis and PQuant-Elim, we have

a{α ⊳ ← ε}{α ← σ}
//
−→ b′{α ⊳ ← ε}{α ← σ}{β ⊳ ← ε}{β ← σ′′{α ← σ}}. Since β

does not appear in σ and α 6= β, this last term is b′{β ⊳← ε}{β ← σ′′}{α ⊳← ε}{α←
σ}, which is the desired result.

Notice the well-typedness hypotheses, made necessary by the fact that the function
applying a computation to a type is partial. Otherwise, if we rewrite a computation in
a way incompatible with the types on which it is used, the reduction could get stuck at
different points, depending on the reduction strategy we follow.

◮ Example Consider the expression

(Λ(α > ∀ (γ >⊥) γ) (Λ(β > int) x)[∀ (> α ⊳)])[∀ (> N)]

It is ill-typed in any context, because α ⊳ coerces terms of type ∀ (γ > ⊥) γ into α, but
here it is indirectly applied on an expression of type int. If we reduce the innermost type
application, we obtain the expression

(Λ(α > ∀ (γ >⊥) γ) (Λ(β > α) x))[∀ (> N)]

which in turn reduces to
(Λ(α >⊥) (Λ(β > α) x))

Meanwhile, if we reduce the rightmost type application in the first expression, we obtain
the expression

Λ(α >⊥) (Λ(β > int) x)[∀ (> N; α ⊳)]

14.5. Confluence of reduction 231

This time, we cannot reduce the remaining type application, since int[N] is undefined. Thus
we have to rule out those ill-typed terms.

Our main result is the fact that
//
−→ has the diamond property.

Theorem 14.5.6 (Confluence of
//
−→) Let a be a term, well-typed in some environment

Γ. If a
//
−→ a′ and a

//
−→ a′′, then there exists a′′′ such that a′ //

−→ a′′′ and a′′ //
−→ a′′′. �

Proof: The proof is by induction on a
//
−→ a′.

⊲ Case PBeta: Then a = (λ(x : σ) a1) a2 and a′ is a′
1{x ← a′

2} with ai
//
−→ a′

i. We

proceed by case analysis on a
//
−→ a′′.

◦ Case PBeta: then a′′ = a′′
1{x ← a′′

2} with ai
//
−→ a′′

i . By induction hypothesis

there exists a′′′
i such that a′

i, a
′′
i

//
−→ a′′′

i . By Lemma 14.5.4, a′, a′′ //
−→ a′′′

1 {x← a′′′
2 }.

◦ Case PApp: Then there exists b and a′′
2 such that λ(x : σ) a1

//
−→ b and a2

//
−→ a′′

2 .
For the first reduction, the only possibility is by PAbs, and there exists a′′

1 such

that a1
//
−→ a′′

1 . By induction hypothesis (IH), there exists a′′′
1 and a′′′

2 such that

a′
i, a

′′
i

//
−→ a′′′

i . Thus a′ //
−→ a′′′

1 {x← a′′′′
2 } by Lemma 14.5.4 and a′′ //

−→ a′′′
1 {x← a′′′′

2 }
by PBeta.

⊲ Case PBetaLet: then a = let x = a2 in a1 and a′ is a′
1{x ← a′

2} with ai
//
−→ a′

i. We

proceed by case analysis on a
//
−→ a′′.

◦ Case PBetaLet: this case is similar to the case PBeta/PBeta above

◦ Case PLet: then a′′ is let x = a′′
1 in a′′

2 with ai
//
−→ a′′

i . By IH, there exists

a′′′
i such that ai, a

′′
i

//
−→ a′′′

i . Then a′ //
−→ a′′′

1 {x ← a′′′
2 } by Lemma 14.5.4 and

a′′ //
−→ a′′′

2 {x← a′′′
2 } by PLet.

⊲ Case PVarRefl: In this case, a = a′ = a′′, and the conclusion is by Lemma 14.5.1.

⊲ Case PAbs: Then a = λ(x : σ) b and a′ = λ(x : σ) b′. Moreover, a
//
−→ a′′ must be by

PAbs, and there exists b′′ such that a′′ = λ(x : σ) b′′. By IH there exists b′′′ such that

b′, b′′
//
−→ b′′′. Hence a′, a′′ //

−→ λ(x : σ) b′′′ by PAbs.

⊲ Case PTabs: the reasoning is the same as in the previous case.

⊲ Case PApp: Then a = a1 a2 and a′ = a′
1 a′

2. We proceed by case analysis on a
//
−→ a′′.

◦ Case PBeta: the symmetrical case has been handled above.

◦ Case PApp: Then a′′ = a′′
1 a′′

2 . By IH, there exists a′′′
1 and a′′′

2 such that a′
i, a

′′
i

//
−→

a′′′
i . Hence a′, a′′ //

−→ a′′′
1 a′′′

2 by PApp.

⊲ Case Plet: this case is similar to the one above, with PBeta instead of PBetaLet.

⊲ Case PTApp: Then a = b[ϕ] and a′ = b′[ϕ]. We proceed by case disjunction on

a
//
−→ a′′.

◦ Case PTApp: the case is similar to the case PAbs/PAbs above.

◦ Case PReflex: Then ϕ is ε and a′′ is b′′. By IH, there exists b′′′ such that

b′, b′′
//
−→ b′′′. Thus a′ //

−→ b′′′ by PReflex and a′′ //
−→ b′′′ by hypothesis.

◦ Case PTrans: Then ϕ is ϕ1; ϕ2 and a′′ is (b′′[ϕ1])[ϕ2]. By IH, there exists b′′′

such that b′, b′′
//
−→ b′′′ and a′, a′′ //

−→ (b′′′[ϕ1])[ϕ2] by PTrans and congruence
respectively.

232 xMLF, a Church-style language for MLF

◦ Case PQuant-Intro: Then ϕ is O and a′′ is Λ(α > ⊥) b′′ with α /∈ fv(b). By

IH, there exists b′′′ such that b′, b′′
//
−→ b′′′ and a′, a′′ //

−→ Λ(α > ⊥) b′′′ by PFresh

and congruence respectively (in the second case, the relation α /∈ fv(b′) holds, since
reduction does not introduce free variables).

◦ Case PQuant-Elim: Then ϕ is N, b is Λ(α > σ) c, a′′ is c′′{α ⊳ ← ε}{α ← σ}

and b′ is Λ(α > σ) c′ (as only PTAbs applies for b
//
−→ b′), with c

//
−→ c′, c′′. By

IH, there exists c′′′ such that c′, c′′
//
−→ c′′′. Thus a′ //

−→ c′′′{α ⊳ ← ε}{α ← σ} by

PQuant-Elim and a′′ //
−→ c′′′{α ⊳← ε}{α← σ} by Lemma 14.5.5, point 1.

◦ Case POuter: Then ϕ is ∀ (α >) ϕ′, b is Λ(α > σ) c, a′′ is Λ(α > σ) (c′′[ϕ′]) and

b′ is Λ(α > σ) c′ (again, only PTAbs applies), with c
//
−→ c′, c′′. By IH, there exists

c′′′ such that c′, c′′
//
−→ c′′′. Thus a′, a′′ //

−→ Λ(α > σ) (c′′′[ϕ′]) by POuter and
congruence respectively.

◦ Case PInner: Then ϕ is ∀ (>ϕ′), b is Λ(α>σ) c, a′′ is Λ(α>σ[ϕ′]) c′′{α ⊳← σ; α ⊳}

and b′ is Λ(α > σ) c′ (only PTAbs applies), with c
//
−→ c′, c′′. By IH, there exists c′′′

such that c′, c′′
//
−→ c′′′. Thus a′, a′′ //

−→ Λ(α > σ[ϕ]) c′′′{α ⊳ ← σ; α ⊳} by PInner

for a′, and congruence and Lemma 14.5.5, point 2 for a′′.

⊲ Case PReflex: The case a
//
−→ a′′ by PTApp is symmetrical to a case already

handled. It remains a
//
−→ a′′ by PReflex. Thus a = b[ε] and a′ = b′, a′′ = b′′ with

a
//
−→ a′, a′′. The result is by induction hypothesis on b, b′ and b′′.

⊲ Case PTrans: The case a
//
−→ a′′ by PTApp is symmetrical to a case already handled.

It remains a
//
−→ a′′ by PTrans. Thus a = b[ϕ1; ϕ2] and a′ = (b′[ϕ1])[ϕ2], a′′ =

(b′′[ϕ1])[ϕ2] with a
//
−→ a′, a′′. By induction hypothesis, there exists b′′′ such that

b′, b′′
//
−→ b′′′. Thus a′, a′′ //

−→ (b′′′[ϕ1])[ϕ2] by congruence.

⊲ Case PQuant-Intro: it is similar to the case above.

⊲ Case PSubst: then a = (Λ(α > σ) b)[N] and a′ is b′{α ⊳← ε}{α← σ} with b
//
−→ b′.

We proceed by case analysis on a
//
−→ a′′.

◦ Case PTApp: it is symmetrical to a case already handled.

◦ Case PSubst: then a′′ = b′′{α ⊳ ← ε}{α ← σ}, with b
//
−→ b′′. By induction

hypothesis, there exists b′′′ such that b′, b′′
//
−→ b′′′. Thus a′, a′′ //

−→ b′′′{α ⊳ ←
ε}{α← σ} by Lemma 14.5.5, point 1.

⊲ Case POuter: is it similar to the subcase above, except that the conclusion is by
congruence instead of Lemma 14.5.5.

⊲ Case PInner: it is also similar to the subcase above, except that the conclusion is by
point 2 instead of point 1.

As an immediate corollary:

Theorem 14.5.7 The relation −→ is confluent on well-typed terms. �

Proof: By Lemma 14.5.2, we have −→∗ =
//
−→∗. Theorem 14.5.6 ensures that

//
−→ ∗ is

confluent, hence the result.

14.6. A formal proof of xMLF ? 233

Moreover, although is it not a corollary of the previous results per se, an examination
of the proofs above shows that both −→β and −→Λ are also confluent.

Theorem 14.5.8 The relation −→β is confluent. The relation −→Λ is confluent on well-
typed terms. �

In particular, this result shows that β-reduction and type reduction are mostly independent.
This is of particular interest in a language with side-effects, in which we could reduce type
applications without interference with β-reduction.

14.6 A formal proof of xMLF ?

We have used the Coq proof assistant (Coq development team 2007) to formally prove the
type soundness of a preliminary version of xMLF. The main difference with the current
presentation of the system was that the computations ε, ⊲ σ and α ⊳ were merged into a
single computation →σ, which witnessed either σ ≤ σ, ⊥ ≤ σ or σ ≤ α.

Our development uses a locally nameless representation of terms, and cofinite quantifica-
tion for free variable names, following Aydemir et al. (2008a). As suggested by the authors,
the development is split in three parts:

1. The trusted definitions contains the syntax, typing rules and reductions rules of xMLF,
as well as the statements of the type soundness theorems.

2. The infrastructure sets up the machinery for the core proofs. It includes auxiliary
results about substitutions, proofs on the well-formedness of terms and environments,
and a fair amount of Coq tactics to partly automatize the development.

3. The core lemmas part contains the lemmas that would normally be stated in an
informal presentation.

We have found the proofs of the main results to be very natural, and very close to the
pen-and-paper proofs. However, in our experience, the size of the infrastructure is very
important. In fact, as shown by the table below, it represents significantly more than half
the size of the whole development

Trusted definitions Infrastructure Main results

421 lines 1514 lines 652 lines

Infrastructure results are often simple, but also very tedious to state and prove; so it is a
bit disappointing to spend so much time on them. Moreover, as noted by Aydemir et al.
(2008b), the number of substitution-related results, hence the size of the infrastructure
itself, grows quadratically with the number of sorts of variables in the language. In xMLF

we have type, term and substitution variables, and the number of needed results is quite
high. Moreover, this hinders the readability of the proofs: while Coq allows defining custom
syntax, for example for substitution, we need a different syntax for e.g. the substitution of
a type variable in a type, a term, or a computation.

Another issue concerns the handling of renaming lemmas. Those lemmas allow changing
the name of a variable in a typing derivation. As noticed by Aydemir et al. (2008a), they

234 xMLF, a Church-style language for MLF

can be derived for free from the weakening and substitution lemmas. However, in one case
we had no need for the substitution lemma (which did not even exist, as its statement would
have been ill-sorted). In this case, an external tool deriving a renaming lemma, such as the
Nominal package for Isabelle (Urban 2008), would have been very handy.

15

Translating gMLF into xMLF

Abstract

Pursuing our goal to use xMLF as an internal language for MLF, we explain how to
translate a presolution of gMLF, eMLF or iMLF into a well-typed xMLF term. We start
by presenting some examples (§15.1), then detail which presolutions can be translated,
and which cannot (§15.2). The translation for gMLF is presented in §15.3. We explain
how the translation could be improved, so as to obtain smaller xMLF terms (§15.4).
We also adapt our approach to eMLF and iMLF (§15.5). Finally, we discuss the work
needed to translate the syntactic presentations of iMLF and eMLF into xMLF (§15.6).

15.1 An introductory example

15.1.1 Our approach

Typable terms of gMLF, eMLF or even iMLF can be translated into xMLF terms. However
we do not instrument the type inference and unification algorithms to return an xMLF

term—there are some complications in doing so, which we develop in §15.3.10. Instead, we
elaborate presolutions, which contain all the needed information, into xMLF terms. More
precisely:

• following the interpretation of gen nodes in terms of generalization levels, we translate
the nodes bound on a gen node into xMLF type abstractions.

• the fact that an instantiation edge g d
i is solved means that the type τ ′ under

d is an instance of the type scheme τ represented by 〈g · i〉. If σ and σ′ are xMLF

translation of τ and τ ′, we can find a type computation ϕ witnessing σ ≤ σ′, and
insert it at the appropriate place in the elaborated term.

235

236 Translating gMLF into xMLF

In this section, we however do not explain in detail these two steps. Instead, we simul-
taneously present some already elaborated terms and the presolutions they correspond to.
Hopefully, those examples should provide good intuitions for the formal development in the
next sections.

15.1.2 Example

G

χ

→

⊥ G

g

→

⊥ ⊥

⊥

G

χp

→

⊥

G

g

→

⊥

→

⊥

G

χ′
p

→

⊥

G

g

→

⊥

→

→

⊥

G

χ′′
p

→

⊥

G

g

→

→

⊥

Figure 15.1.1 – Some presolutions of λ(x) λ(y) x

Let us consider the term K defined as λ(x) λ(y) x. The corresponding typing constraint
is χ. Notice that we have used rule Var-Abs in order to obtain a simpler constraint, and
simpler examples; this is discussed in more detail in §15.4.2.

◮ A first presolution Let us consider χp, which is a presolution of χ. In this presolution,
K itself has type

∀ (α >⊥) ∀ (β > ∀ (δ >⊥) δ → α) α→ β

while the subterm λ(y) x has type ∀ (γ) γ → α. We thus introduce three type abstractions,
for α, β and γ respectively. Moreover, the first two are introduced before the λ-abstraction
λ(x) _ , while the last one is added before the abstraction λ(y) x. This results in the xMLF

term
Λ(α >⊥) Λ(β > ∀ (δ > ⊥) δ → α) λ(x : α) Λ(γ >⊥) λ(y : γ) x

While this term is well-typed, it has type

∀ (α >⊥) ∀ (β > ∀ (δ >⊥) δ → α) α→ (∀ (γ) γ → α)

which is not quite correct yet: the codomain of the toplevel arrow is erroneous. This can
however be fixed by abstracting the type of the abstraction λ(y) x under the name β, which
can be done using computation β ⊳. This results in the term below, which has the first type
given above.

Λ(α >⊥) Λ(β > ∀ (δ >⊥) δ → α) λ(x : α) (Λ(γ >⊥) λ(y : γ) x)[β ⊳]

15.2. Translatable presolutions 237

◮ Another presolution The constraint χp is the principal presolution for the term K.
Another presolution is χ′

p, in which we have instantiated the node 〈12〉. Interestingly, the
term λ(y) x itself is typed identically in both χp and χ′

p; the difference lies in the way this

term is used as the codomain of the abstraction λ(x) _ . On the elaborated xMLF term
representing χ′

p (which is given below), this is reflected by the fact that the λ-term for
λ(y) x does not change: only the computation does.

Notice also that χ′
p uses rigid quantification. However, since this form of quantification

is only useful for type inference purposes (and is not present in xMLF anyway), we inline all
the rigidly quantified types when translating presolutions into xMLF. Thus the abstraction
on β in the previous example disappears, as this bound is inlined.

Finally, let us describe the computation needed to instantiate the subterm λ(x) y. As
in χp, this subterm has type ∀ (γ >⊥) γ → α. However, it is used with type (∀ (ǫ >⊥) ǫ→
ǫ) → α. Hence, it suffices to instantiate γ by the type ∀ (ǫ > ⊥) ǫ → ǫ. This results in the
term

Λ(α >⊥) λ(x : α) (Λ(γ >⊥) λ(y : γ) x)[∀ (ǫ >⊥) ǫ→ ǫ]

which has type ∀ (α >⊥) α→ (∀ (ǫ >⊥) ǫ→ ǫ)→ α.

◮ A third possibility Finally, while preserving the type of K in our second example,
we could have instantiated the subconstraint corresponding to λ(y) x; this results in the
constraint χ′′

p . This time, the λ-term for λ(y) x changes. Moreover, since the corresponding
gen node is degenerate, its only instance is itself. Hence there is no computation to add,
and χ′′

p elaborates into the λ-term

Λ(α >⊥) λ(x : α) λ(y : ∀ (ǫ >⊥) ǫ→ ǫ) x

Interestingly, this term is also the result of fully reducing the term returned by the elab-
oration of χ′

p. (Which also shows that both terms have the same type, by preservation of
typing.)

15.2 Translatable presolutions

15.2.1 Pitfalls of the translation

Let us detail the translation a little more. We consider a λ-term a, χ its corresponding typing
constraint, and χp a presolution of χ. Elaborating χp into an xMLF term is essentially a
two step process:

1. Given a subterm a′ of a, let g be the gen node corresponding to a′ in χ. In the
elaborated term for a, we add type abstractions for the type nodes bound on g in χp.
Those abstractions are added in front of a′.

2. Consider an instantiation edge e from a gen node g to a node d in χp. By construction,
e is solved in χp, and the type under d is an instance of the type scheme represented
by 〈g1〉. A (graphic) witness of this fact is an instance derivation of χe

p ⊑ χp. We
translate this derivation into a computation, and insert it as a type application at the
appropriate place in the elaboration of a.

While seemingly simple, this approach actually contains several subtle points:

238 Translating gMLF into xMLF

• When translating a derivation χe
p ⊑ χp into a computation, some parts of this deriva-

tion are not related to instantiating the type scheme into the type of the constrained
node. Those subparts must not be translated.

• Not all operations inside χe
p ⊑ χp can be reflected in xMLF, as the type instance

relations of xMLF and gMLF do not exactly coincide. Thus we must rule out some of
those derivations (and in fact some entire presolutions).

• Unrelated quantifiers such as ∀ (α > σ) ∀ (β > σ) are not ordered in graphic types,
while they are ordered in xMLF. When translating graphic operations into xMLF

computations we must be careful to correctly order the type abstractions.

• Some nodes of χp, which include the nodes corresponding to type schemes and some
existential nodes, must not result in the addition of type abstractions in the elaborated
term for a.

• The typing constraint we use for let constructs is slightly unusual w.r.t. scopes, making
the translation unnecessarily difficult. We introduce an alternative possibility.

We detail all these points in the next five sections, and summarize the various hypotheses
we make on presolutions and instance derivations in §15.2.7. Once this is done, §15.3 will
present the algorithm for translating a gMLF presolution into an xMLF term.

15.2.2 Identifying which operations to translate

G

χp

→

α ⊥

G

g

→

γ ⊥

→

→

β ⊥ ⊥

G

χ′

→

⊥

G

→

⊥

→

→

⊥ ⊥

→

n

⊥ ⊥

G

χ′′

→

⊥

G

→

⊥

→

→

⊥ ⊥

→

n

⊥

Figure 15.2.1 – Propagation witnesses

When translating an instance derivation χe
p ⊑ χp into a computation, not all the deriva-

tion is useful. In fact, some parts of the derivation have no equivalent in xMLF and must
not be considered. We characterize them below, starting by an example.

15.2. Translatable presolutions 239

◮ Example Consider Figure 15.2.1. It features a presolution χp of the constraint χ of
Figure 15.1.1. The constraint χ′ is χe

p, i.e. the result of propagating the instantiation edge
e from g to 〈12〉. Notice that Fs(g) is not empty, as it contains 〈g12〉. Consequently, in χ′,
there is an unification edge between this node and the corresponding one in the expansion,
namely 〈n2〉. The steps solving this unification edge are not useful to us, as they are not
really related to the transformation of the type ∀ (γ) γ → α of g into the type under the
constrained node 〈12〉.

As we mentioned in §10.1, the unification edges resulting from frontier nodes are there
mostly for technical reasons: directly reusing nodes of the frontier in the expansion could
result in ill-dominated constraints. (Interestingly, this is no longer the case on presolutions,
as nodes have always been raised enough.) Still, we are not interested in the instantiation
steps solving this kind of unification edges, as they have no meaning in xMLF.

Interestingly, we have already proven in Lemma 11.5.3 that a derivation χe
p ⊑ χp can

always be unambiguously decomposed into two derivation Iu and I, the first one solving the
frontier unification edges. Hence, when translating χe

p ⊑ χp into a computation, we only
consider I.

Convention In fact, in the remainder of this chapter we are never interested in Iu. Since we
always reason about presolutions, we slightly change the meaning of «expansion», «propa-
gation» and of the notation χe, and assume that, in an expansion, all the frontier unification
edges are solved by unification.

◮ Example In Figure 15.2.1, χe
p no longer means the second constraint χ′, but χ′′, the

third—which is the result of solving the lowermost unification edge of χ′.

With this convention, Lemma 11.5.3 implies that all instance derivations χe
p ⊑ χp can

be assumed to be normalized, with the weakenings being delayed. In the following we only
consider this kind of derivation, which we call propagation witness.

Definition 15.2.1 (Propagation witness) A propagation witness for an instantiation
edge e of a presolution χp is a normalized derivation of χe

p ⊑ χp in which weakenings
are delayed. �

15.2.3 Removing operations on inert-locked nodes

Not all presolutions (and propagation witnesses) are suitable for translation. Indeed, there
are graphic operations which cannot be reflected in xMLF, namely those on an inert node
which is not transitively flexibly bound to the root. We call such a node inert-locked.

Definition 15.2.2 (Inert-locked nodes) Given a constraint χ, a node n of χ is said to
be inert-locked if ⋄

χ(n) = (>), ⋄χ(n) contains (=) and n is inert in χ. �

◮ Example Consider Figure 15.2.2. The node 〈11〉 is inert-locked. The graphic type τ
translates, after inlining of rigid bounds, into the xMLF type

σ , (∀ (α >⊥ → ⊥) α→ α)→ (∀ (α >⊥ → ⊥) α→ α)

Conversely, the graphic type τ ′ which is obtained by weakening 〈11〉 in τ , translates into

σ′ , ((⊥ → ⊥)→ (⊥ → ⊥))→ ((⊥ → ⊥)→ (⊥ → ⊥))

240 Translating gMLF into xMLF

τ →

→

→

⊥

τ ′ →

→

→

⊥

τ ′′ →

→

→

⊥

Figure 15.2.2 – Weakening inert-locked nodes

However σ′ is not in instance relation with σ in xMLF, as we cannot transform bounds under
the root arrow constructor.

Alternatively, we could have raised 〈11〉 in τ . This results in τ ′′, whose translation in
xMLF is

σ′′ , ∀ (α >⊥ → ⊥) (α→ α)→ (α→ α)

Again, σ′′ is not an instance of σ in xMLF.

At first, this could seem problematic, as propagation witnesses involving an operation
on an inert-locked node cannot be translated into xMLF. Our solution to this problem is
however simple: we rule out any presolution containing such a node, by selectively weakening
some nodes.

15.2.3.1 Inert-equivalent presolutions

We are going to be a bit more general than what is needed for this section: indeed, §15.2.5
will also rule out some presolutions as unsuitable for translation.

Definition 15.2.3 (Inert-equivalent presolutions) Two presolutions χp and χ′
p of a

typing constraint are inert-equivalent if χ̆p = χ̆p
′, χ̂p = χ̂p

′ and for any gen node g, the
nodes created by expanding 〈g1〉 at g in both constraints only differ by the binding flags of
some inert nodes. �

The idea behind this definition is the following: we identify presolutions in which subterms
have the same types up to the weakening of inert nodes. Thus the differences between
the presolutions are only superficial. Expanding 〈g1〉 at g is a simple technical solution to
obtain an instance of 〈g1〉 in a “safe” way (i.e. without raising the nodes of the structural
frontier of g).

Simply requiring ⋄
χp and ⋄

χp
′ to be equal except on inert nodes would not have been

sufficient. Indeed, we need the possibility to weaken some non-inert nodes that do not really
belong to the type part of the constraint. This includes for example existential nodes, or
the binder of a non-degenerate type scheme. Some examples will be given in §15.2.5.

15.2. Translatable presolutions 241

15.2.3.2 Removing inert-locked nodes

We are going to show that the inert-locked nodes of a presolution can be weakened. In such
a weakened presolution, propagation witnesses never transform inert-locked nodes. This
is the property we strive for, as such propagation witnesses can be translated into xMLF

computations.

First, we show that the constraint obtained by weakening an inert node of a presolution
can be transformed further, so as to re-obtain a presolution; moreover this can be done
merely by weakening some other inert nodes.

Lemma 15.2.4 Let χp be a presolution, n an inert flexibly bound node of χp. There exists
an instance χ′

p of χp that is a presolution inert equivalent to χp, and in which n is rigidly
bound. �

We give a constructive proof of the existence of χ′
p.

Proof: Let N be a set of nodes, and N (N) be



n′ | ∃n ∈ N, ∃e = g d, ∧





n ∈ Is(g)
n 6= 〈g1〉
nc is merged with n′ when χe

p ⊑ χp is solved





The operator N is used to find the nodes that must be weakened to obtain χ′
p. That is, if

N is a set of nodes we want to be rigid, then N (N) finds the nodes with which the (copies
of the) nodes of N are merged after a propagation. By monotony of instance on binding
flags, this means that the nodes of N (N) must also be rigid. Notice the special case if n
is of the form 〈g1〉. In this case the flag of n is reset during expansion, and the weakening
of n does not force the weakening of the nodes with which the copies of n are merged.

Thus, let N0 = N ′
0 = {n} and N ′

i+1 = Ni +N (Ni) for all i > 0. Necessarily, there exists k
such that Nk+1 = Nk, as there are finitely many nodes in χp. Notice that, given N , N (N)
is effectively computable: there are finitely many instantiation edges, and the propagation
steps can be solved by unification. Thus, k is also computable, and so is N ′

k.

Let us write Weaken(N) the weakening of all the nodes in N not already rigid. We call χ′
p

the constraint Weaken(N ′
k)(χp). Let us show it is of the desired form; as a side result, we

show that χp ⊏−W χ′
p.

⊲ χp ⊏−W χ′
p: it suffices to prove that all the nodes of N ′

k are inert in χp. Indeed,

as the weakening of inert nodes preserves permissions (Lemma 5.4.1), we can weaken
one (inert) node, and all the nodes remaining to weaken are still inert. Moreover, by
definition of Nk, and since n is inert, it also suffices to show that if all the nodes of N
are inert, the nodes of N (N) are inert.
For this last result, let n be an inert node of χp, and let n′ be a of N ({n}). Let e be
an edge verifying the hypotheses of the definition of N for n and n′. By hypothesis, n
is not of the form 〈g1〉. Thus the subgraphs under n and nc are identical in χe

p. Since
n is inert, this ensures that nc is inert. Since instance preserves inert nodes, n′ is inert,
which is the desired result.

⊲ χ′
p is a presolution: it suffices to show that χ′e

p ⊑ χ′
p holds (1) for any e. By hypothesis

and the point above, we have χe
p ⊑ χp ⊑ χ′

p (2). Let N ′
k

c
be the copies of the nodes

of N ′
k in the expansion of e in χ′e

p , except for the root of the expansion (whose flag is
reset during expansion). It is immediate that χ′e

p = (Weaken(N ′
k) ; Weaken(N ′

k
c
))(χp).

We also have χe
p ⊑

W χ′e
p (3) by the equality above, and the fact that all the nodes of

242 Translating gMLF into xMLF

N ′
k ∪ N ′

k
c

are inert. Moreover, by definition of χ′
p, the nodes with which the nodes of

N ′
k

c
are merged when χe

p ⊑ χp is solved are rigid in χ′
p (4). Thus (1) holds by (2), (3),

(4) and repeated application of Lemma 6.6.4.

⊲ χp and χ′
p are inert equivalent: since χp ⊑

W χ′
p, all nodes bound differently in χp and

χ′
p are inert. The only inert nodes can that become non-inert in an expansion are those

of the form 〈g1〉, but their flag are reset by the expansion. Hence the expansions of a
scheme 〈g1〉 in χp and χ′

p only differ by some inert nodes.

The algorithm used in this proof to find χ′
p weakens as few nodes as possible. However, let

N be the set of inert nodes of χp. Reusing the notations above, we have N (N) ⊆ N , as all
nodes of N (N) are inert. An immediate adaptation of the proof shows that the constraint
χ′′

p obtained by weakening all the nodes of N (i.e. all the inert nodes of χp) is also a
presolution instance of χp. This way, we can avoid the (costly) computation of N ′

k, at the
expense of potentially weakening more nodes.

As an immediate corollary, we can weaken all the inert-locked nodes in a presolution,
and apply the result above to obtain another inert-equivalent presolution.

Corollary 15.2.5 Given a presolution χp of a constraint χ, there exists a presolution χ′
p

of χ inert-equivalent to χp and which does not contain inert-locked nodes. �

Finally, given a presolution that does not contain inert-locked nodes, we can show that
none of its propagation witnesses transform inert-locked nodes—a consequence of the fact
that weakenings are delayed.

Lemma 15.2.6 Let χp be a presolution that does not contain inert-locked nodes. For any
instantiation edge e of χp, a propagation witness of χe

p ⊑ χp does not transform inert-locked
nodes. �

Proof: Let o1 ; . . . ; ok be the propagation witness χe
p ⊑ χp. We show by induction on i

that no constraint (o1 ; . . . ; oi)(χ
e
p) contains inert-locked node—which implies the result.

⊲ Case i = 0: expansion does not create inert nodes, but only copies existing ones. The
conclusion is thus immediate, as χp does not contain inert-locked nodes.

⊲ Case i = j + 1: let χj be (o1 ; . . . ; oj)(χ
e
p), χi = oi(σj). By induction hypothesis, no

node of χj is inert-locked (1). We prove by case disjunction on oi that it is still the
case in χi. It suffices to consider the nodes which become inert in χi (2), or whose
binding path become of the form >(>|=)∗ = (>|=)∗ in χi (3), and show that they are
not inert-locked in χi; for all the other nodes the result is by (1).

◦ Case Graft(τ, n): For the nodes freshly grafted: by definition of propagation wit-
nesses, τ is a constructor type, which does not contain rigidly bound nodes. Since
the grafting occurs at a green node, the grafted nodes cannot be inert-locked.
For the nodes already in χj : binding paths do not change; for (2), permissions change
only for the nodes on which n is transitively bound (Lemma 5.4.1), which are green
in σj , hence flexibly bound in χj and χi, hence not inert-locked in χi.

◦ Case Merge(n1, n2): binding paths and permissions do not change.

◦ Case Raise(n): for (2), only the permissions of n̂ can change (Lemma 5.4.1). In
order for n̂ to become inert, it must be green in χj (Lemma 5.4.1), hence flexibly
bound in χi and χj , hence not inert-locked in χi.
For (3): no binding path of the required form appears, as no rigid edge is introduced.

15.2. Translatable presolutions 243

◦ Case Weaken(n): for (2), only the nodes on which n are strictly transitively bound
can become inert, but this implies that they were green (Lemma 5.4.1), hence flexibly
bound in χj and χi, hence not inert-locked in χi.

For (3), suppose there exists n′ inert in χj with n′ >+

−−−−_ 〈ǫ〉 and n′ +−−_ n. By
monotony of instance, n′ is in χp; it is also flexibly bound in χp, as the weakening
are delayed in propagation witnesses and we have just transformed n which is strictly
above n′. Lemma 5.4.1 shows that inert nodes are stable by instance. Hence n′ is
inert-locked in χp, which is a contradiction.

In all cases, no node is inert-locked in σi, and the conclusion is by induction hypothesis.

15.2.4 Ordering the nodes

While graphic types do not impose an order on the nodes bound on another node, the
syntactic presentations of MLF, including xMLF, do: commuting two binders must be done
explicitly, for example through the rule of Eq-Comm in the original presentation of MLF

(Le Botlan and Rémy 2003). Thus, when we translate a presolution into an xMLF term, we
must take this ordering into account.

χ G

G

g

→

⊥ ⊥

→

⊥ ⊥

χ′ G

→

→

⊥ ⊥

→

n

→

⊥ ⊥

Figure 15.2.3 – Ordering nodes in syntactic types

◮ Example Consider the constraint χ of Figure 15.2.3; it is not the instance of a typing
constraint, but this is unimportant here. This constraint is solved, as the instantiation edge
e leaving g is trivially solved.

From a syntactic standpoint, suppose that the translation of the graphic type for g is

∀ (α >⊥) ∀ (β >⊥) α→ β

If the translation of the type under 〈1〉 is also ∀ (α >⊥) ∀ (β >⊥) α→ β, the computation
to insert for e is simply γ ⊳, where γ is the name of the bound for 〈1〉. Things are however
more complicated if one of the two types (but not both) is translated as

∀ (β >⊥) ∀ (α >⊥) α→ β

This time, applying γ ⊳ would be ill-typed.

244 Translating gMLF into xMLF

To remedy this problem, one possibility is to coerce one type into the other. In general,
in xMLF, transforming ∀ (α > σ) ∀ (β > σ′) σ′′ into ∀ (β > σ′) ∀ (α > σ) σ′′ (when α /∈ ftv(σ′)
and β /∈ ftv(σ)) can be done by the computation

O; ∀ (> ⊲ σ′); ∀ (β >) (O; ∀ (> ⊲ σ); ∀ (α >) (∀ (> α ⊳); N; ∀ (> β ⊳); N))

This computation first introduces two fresh bounds β and α (in this order), ranging over
σ′ and σ respectively. Then it abstracts the two preexisting bounds over the proper name,
and substitutes them.

Still, this approach is inelegant. First, it introduces very complicated (and big)
computations—something clearly undesirable if xMLF is used as an internal language. Also,
since permuting two binders is not reflected in graphic instance derivations, there is no clear
guide as to when we should insert a computation such as the one above. Thus, and unlike
what we did in the previous chapters (for example in §8.2.1), we choose to totally order the
nodes in the graphic types. We use this order in the translation to syntactic types, when
we have to choose the first bound to translate.

Of course, this order cannot be arbitrary, as it must at least respect the syntactic scope
of variables. We present a suitable order below.

Definition 15.2.7 (Leftmost-lowermost order) Given two paths π and π′ we write <P

the lexicographic order on paths inductively defined by

∀π, π <P ǫ
∀i1, i2, π1, π2, i1 · π1 <P i2 · π2 ⇐⇒ i1 < i2 ∨ (i1 = i2 ∧ π1 <P π2)

We extend this path to nodes by

n1 <P n2 ⇐⇒ min<P
{π1 ∈ n1} <P min<P

{π2 ∈ n2} �

Notice that this order is slightly unusual: π <P ǫ holds, while the converse usually does.
Indeed, we want lower nodes to appear (hence to be bound) first—otherwise some variables
would be out of scope.

Let us show that this order extends the two ones imposed by structure and binding
edges.

Property 15.2.8 Given a graphic type τ , if n −−⊸ n′ or n −̂− n′ holds, then n′ <P n. �

Proof: ⊲ For n −−⊸ n′: let Π′′ be {π′′ | ∃π ∈ n, ∃π′ ∈ n′, π′ = π · π′′}. By congruence,
π′ = {ππ′′ | π ∈ n, π′′ ∈ Π′′} (1). Let π′′ be min<P

Π′′. By (1), we have min<P
{π′ ∈

n′} = min<P
{π ∈ n} · π′′, which implies the result by definition of <P.

⊲ For n −̂− n′: on graphic types, this relation implies n +−−⊸ n′ and the result is imme-
diate by transitivity of <P and the previous result.

The result above is restricted to graphic types: on a gen node of a graphic constraint, we
would also need to impose an order on existential nodes. This is however not needed for the
use of <P we have in mind, as we will always use it on type nodes of graphic constraints.

Since the algorithm S of §8.2.1 orders bounds according to +−−⊸ and lowermost nodes
first, <P is a suitable order for the translation.

15.2. Translatable presolutions 245

Corollary 15.2.9 Ordering the bounds according to <P in the algorithm S is correct. �

Notice also that, since <P is a total order, the translation is now deterministic; this was the
desired goal.

15.2.4.1 Preserving the order on nodes through instance operations

Importantly, it is not sufficient to translate the bounds in the correct order: we must
also preserve this invariant when we build the computations. Consider as an example
the constraint χ′ of Figure 15.2.3. As for χ, it is not a typing constraint, but this is
also unimportant here. Since we have 〈111〉 <P 〈112〉 <P 〈11〉 and 〈n11〉 <P 〈n12〉, the
translations of the types under the nodes 〈1〉 and n are respectively

σ〈1〉 , ∀ (α >⊥) ∀ (β >⊥) ∀ (γ > α→ β) γ → γ

σn , ∀ (γ > ∀ (α >⊥) ∀ (β >⊥) α→ β) γ → γ

A normalized instance derivation merging n and 〈1〉 is for example

Raise(〈n12〉) ; Raise(〈n11〉) ; Merge(n, 〈1〉)

Applying the first raising to σn is non-ambiguous, and results in

σ′
n , ∀ (β >⊥) ∀ (γ > ∀ (α >⊥) α→ β) γ → γ

However, for the second raising we can choose to bind α before or after β. In order to
respect <P, only the former possibility is applicable. Thus a computation that reflects this
raising in σ′

n must take this invariant into account.

15.2.5 Adding xMLF type abstractions

As we mentioned in the introduction of this section, we translate the nodes bound on gen
nodes into xMLF type abstraction. However, we do not do so for all nodes.

• Rigid quantification is always inlined; thus we do not introduce type abstractions for
rigidly bound nodes.

• Given a term a whose corresponding gen node is g, we are interested in the type of
a in the presolution, i.e. the type of 〈g1〉. This type corresponds to the nodes of the
structural interior of g, except for 〈g1〉 itself. With the revised definition of expansion
(given in §15.2.2), this type is also exactly the type obtained by expanding 〈g1〉.

Thus, given a gen node g, we should introduce type abstractions for the nodes of the
structural interior of g that are flexibly bound, except for 〈g1〉 itself. In particular we
should not translate the existential nodes bound on g.

We detail these points through examples below. There are additional subtleties with
the typing of applications and abstractions, which are dealt with in the last part of this
section. In the examples, we use a term f of type ∀ (α > τ) ∀ (β > τ) α → β, and another
term v of type τ ; we suppose that τ is polymorphic. We consider various presolutions of
the typing constraint for f v, which is given at the left of Figure 15.2.4 (we have removed
the subconstraint for v for brevity). Finally, we assume that σ is the xMLF translation of τ .

246 Translating gMLF into xMLF

G

g G

→

τ τ

→

n

τ τ

χ1
p G

g G

→

τ τ

→

n

τ τ

χ2
p G

g G

→

τ τ

→

n

τ τ

χ3
p G

g G

→

τ τ

→

n

τ τ

χ4
p G

g G

→

τ τ

→

n

τ τ

Figure 15.2.4 – Typing constraint for f v

15.2.5.1 Inlining scheme nodes

Consider a non-degenerate type scheme 〈g1〉. Whether it is flexibly or rigidly bound should
be indifferent for the translation, as the binding flag is reset during expansion. As it happens
however, allowing 〈g1〉 to be flexible in presolutions needlessly complicates the translation,
as we show below.

◮ Example Consider the presolution χ1
p of Figure 15.2.4. If we introduce type abstractions

for the nodes 〈g1〉 and 〈1〉, f and f v receive respectively the types

∀ (α > σ) ∀ (β > σ) ∀ (γ > α→ β) γ and ∀ (δ > σ) δ

Of course, the quantifications for γ and δ are useless. If we entirely elaborate the term, we
obtain

Λ(δ > σ) f [N; ∀ (> δ ⊳); N; N] v[δ ⊳]

This is needlessly complicated: the quantification for γ is eliminated by the third compu-
tation N, and the quantification Λ(δ > σ) requires to abstract β and the type of v under
the name δ. Worse, when f v will be «used», we will likely start by eliminating the dummy
quantification on δ.

A much better solution is to rigidify the nodes 〈g1〉 and 〈1〉. The resulting constraint
χ4

p is still a presolution, as the flag of those nodes was reset during expansion anyway.
Afterwards, we obtain the simpler term

f [N; N] v

This approach is fully general. Hence, we suppose that non-degenerate schemes are rigid in
presolutions.

15.2.5.2 Naming the domain of a decorrelated application

There is a subtlety in the typing of an application, related to the domain of the argument of
the application. If we introduce type abstractions only for the nodes in the structural interior
of gen nodes (which are the only nodes appearing in the expansion of the corresponding
type schemes), some problems occur for an application a1 a2, when the domain and the
codomain of the type of a1 are not correlated. Indeed, we might not have a name to refer
to the (existentially introduced) domain of the arrow.

15.2. Translatable presolutions 247

◮ Example Consider the presolution χ2
p of Figure 15.2.4. To build the computation for the

instantiation edge, we must instantiate the type of f into the type of the node n. However,
by lack of a name for 〈n1〉, this last type is actually undefined!

As in the previous section, a possible solution would be to introduce a dummy type
quantification in front of f v. This would result in the (well-typed) xMLF term

a2 , Λ(α > σ) f [∀ (> α ⊳); N; N] v[α ⊳]

However, this term has type ∀ (α>σ) σ, not σ. As a workaround, we could instead consider
a2[N] instead of N, which indeed has type σ (and which reduces to f [N; N] v). However,
this is not really satisfactory: the term for a2 is needlessly complicated, and we need to
insert a computation N everywhere it is used.

Thankfully, there exists a much cleaner solution, which consists in rigidifying 〈n2〉. The
resulting constraint is again χ4

p. This time, we are assured that the resulting constraint is
still a presolution by Lemma 11.6.1, since 〈n1〉 is not in the structural interior of the root
gen node.

15.2.5.3 Existential application node

There is a potential problem with the arrow existentially introduced in the typing constraint
for an application, orthogonal to the issues above. In xMLF, a term a1 in an application
a1 a2 must have an arrow type σ1 → σ2. Hence, the elaborated λ-term must not abstract
the type of the arrow node as a variable of the typing environment.

◮ A first example Consider the constraint χ3
p of Figure 15.2.4. If we introduce a type

abstraction Λ(α> τ → τ) for the node n, f would have type α in this presolution. There is
no way to cast this type into an arrow type in xMLF, and the elaboration would necessarily
be ill-typed.

In this example, we may remedy this problem by rigidifying n; we then obtain χ4
p yet

again. Notice that n is existential, which ensures that we can rigidify it. However, this is
not always the case, as we illustrate below.

◮ A more involved example Figure 15.2.5 shows a slightly simplified typing constraint for
the term λ(x) x 1, in which we have solved and removed the subconstraint for the integer 1.
The constraint χp is a presolution of χ. Observe that the existential node n introduced for
the argument of the application in χ becomes the node 〈11〉 in χp, and that this node is in
the structural interior of the root gen node. If we introduce a type quantification for this
node at the toplevel of the elaborated λ-term, the resulting term will be of the form

Λ(α >⊥) Λ(β > int→ α) λ(x : β) x[ϕ] 1

However this term is ill-typed for any ϕ, as we cannot give to x (which has type β) an arrow
type.

Thankfully, the node n is inert in χp, and also in χ. We can weaken it, resulting in
the presolution χ′

p in which the bound of n will be inlined. Indeed, χ′
p, translates into the

well-typed term
Λ(α >⊥) λ(x : int→ α) x 1

which has type ∀ (α >⊥) (int→ α)→ α

248 Translating gMLF into xMLF

χ G

→

⊥ G

G

g

⊥

→

n

int ⊥

⊥

χp G

→

G

g G

→

int ⊥

χ′
p G

→

G

g G

→

int ⊥

Figure 15.2.5 – Typing constraint for λ(x) x 1

We us call application arrow node the arrow node introduced in the typing constraint
for an application. The reasoning done for this example is fully general: an application
arrow node is inert in a typing constraint, and inert nodes are stable by instance. Thus by
Lemma 15.2.4 we can suppose that those nodes are rigid in all the presolutions we consider.

15.2.5.4 Arrow node in abstractions

We call abstraction arrow node the node 〈g1〉 of the typing constraint for an abstraction.
Those nodes suffer from the same problem as application arrow nodes. (One can for example
consider the constraint χ′′

p of Figure 15.1.1, and imagine that the node 〈11〉 is flexibly
bound.) We want an abstraction to have an arrow type, not a variable of the typing
environment. Thus, as for application arrow nodes, we suppose that abstraction arrow
nodes are inert in presolutions.

15.2.6 Scopes in a let construct

G

b

G

a

x

G

⊥ G

b

G

a

x

G

·

τb

G

b

G

a

x

G

·

τb

G

b

G

a

x

Figure 15.2.6 – Alternative typing for a let construct

15.2. Translatable presolutions 249

Consider a term let x = a in b. The basic typing constraint for this construction, which
we have reproduced in the left of Figure 15.2.6, does not introduce a new gen node for the
entire let expression. Instead, it piggybacks the one introduced for the subterm b. Another
possibility would have been the second constraint of the figure, in which we have added a
trivial type scheme for the let expression.

From a type inference point of view, the leftmost constraint is the good one, as it is
simpler. Indeed, the root gen node in the second constraint can only pick instances of the
one of b. In the principal presolution of this constraint, both would even have exactly the
same type. Hence the root gen node is redundant.

From the point of view of the the translation into xMLF, things are not so clear. In
the second constraint, we have a supplementary instantiation edge; hence a priori another
computation to insert. On the other hand, things are simpler w.r.t. scopes. Indeed, in the
leftmost constraint, the scope of the let expression, hence of b itself, is visible by a. This is
quite unusual, and severely complicates the translation. Moreover, as we justify below, the
extra edge translates into the identity computation if the presolution being translated is
the principal presolution of the constraint. Hence we choose to translate presolutions built
using the second form of constraint.

15.2.6.1 Computations for trivial type schemes

Let us consider the trivial type schemes (corresponding to the type ∀α. α) introduced in the
typing for let-bound variables, or in the revised typing for a let expression. The rightmost
part of Figure 15.2.6 shows the principal typing for an expression let x = a in b. The root
(trivial) type scheme has exactly the type of b in the presolution, as the bottom node 〈1〉
is not otherwise constrained. Following the convention we have established in §15.2.5.1, we
in fact translate the last constraint of the figure. This means that all the type abstractions
introduced on the root node would also have been present with the “regular” typing for a
let construct (on the left of the figure). Moreover, the type computations corresponding to
the instantiation edge for the trivial scheme will simply be the identity computation, since
there is no difference between the type of b and the type of the root gen node.

The reasoning is exactly the same for the type scheme for a let bound variable. More
generally, we can safely insert such trivial type schemes inside constraints: they will not sig-
nificantly complicate the term resulting from the elaboration of the principal presolution of
a constraint—which is the one we are interested when xMLF is used as an internal language.

15.2.7 Translatable presolutions

Let us summarize:

Definition 15.2.10 (Translatable presolutions) Consider a typing constraint χ, in
which let constructs are typed using the rightmost constraint of Figure 15.2.6. A pres-
olution χp of χ is said to be translatable if the following conditions hold:

1. χp does not contain inert-locked nodes;

2. non-degenerate type schemes nodes are rigidly bound;

3. application and abstraction arrow nodes are rigidly bound;

250 Translating gMLF into xMLF

4. a node bound on a gen node but which is not in its structural interior is rigidly
bound. �

Theorem 15.2.11 Consider a presolution χp of a typing constraint χ created with the al-
ternative typing for let. There exists a translatable presolution of χ which is inert-equivalent
to χp. �

Proof: We consider χ, and we weaken all its inert-locked and application or abstraction
arrow nodes. Inert locked nodes are inert by definition, and application or abstraction
arrow nodes are inert by monotony of instance (as they are inert in χ). Then we use
Lemma 15.2.4 to obtain a presolution χ′

p instance of χp and inert-equivalent to χp. Finally,
in χ′

p, we weaken all the non-degenerate type scheme nodes, and all the nodes bound on
gen nodes that are not on a structural interior and are flexibly bound. Those nodes are
bound on a gen node, hence are not red. The resulting constraint χ′′

p is thus an instance of
χ′

p, and a presolution by flag reset and Lemma 11.6.1. Moreover, by definition of the nodes
weakened, the expansions are unchanged between χ′

p and χ′′
p , and those two constraints

are inert-equivalent.

Without loss of generality, we also suppose that an operation Merge(n, n′) appearing in
a propagation witness verifies n′ <P n. This makes the translation of a propagation witness
into a computations a bit simpler.

15.2.8 Using xMLF as an internal language

The proof of Theorem 15.2.11 has been designed to weaken as few inert nodes as possible.
However, if xMLF is used as an internal language, the translation must be modular. To do
so, we will be slightly less fined-grained in regard to inert nodes. Indeed, we weaken all
inert nodes in a presolution; Corollary 15.2.5 ensures that the resulting constraint is still a
presolution, which is moreover inert-equivalent to the initial one.

Let us explain why this is sufficient to make the translation modular. Given a type τ ,
we write W(τ) the type obtained by weakening all the inert nodes of τ , and use the same
notation for a constraint. Consider a term a that has (graphic) type τ . In xMLF, a will
have type W(τ). Suppose now that a is used inside a term a′. In the typing constraint χ
for a′, a has type τ . In a presolution χp of χ, it has type τ ′, with τ ⊑ τ ′.

Let now χ′ be the typing constraint for a′, except that in this constraint a has type W(τ)
instead of τ . In order to be modular, it must be possible to deduce from χp a presolution
of χ′. By construction of W we have χ ⊏−W χ′ and χp ⊏−W W(χp). Since χp is a presolution
of χ we also have χ ⊑ χp. Finally, since inert nodes are preserved by instance, all the
nodes weakened between χ and χ′ are weakened between χ and W(χp). Thus Lemma 6.6.4
ensures that χ′ ⊑W(χp), and W(χp) is a presolution of χ′.

Hence the translation is modular: type inference and W essentially commute. Type
inference is done as usual, using gMLF types. Internally, those types are normalized using
W into xMLF ones. The gMLF presolutions are also normalized using W, and the resulting
constraints are presolutions in which the subterms have their xMLF type.

15.3. Translating presolutions into xMLF 251

15.3 Translating presolutions into xMLF

We now describe how to translate a presolution of gMLF into an xMLF term in a systematic
way. In the remainder of the section, we consider a gMLF term a, χt its corresponding
typing constraint, and χp a translatable gMLF presolution of χt. Without loss of generality,
we suppose that all term variables of a are distinct, which avoids α-conversion problems.
Given a subterm a′ of a, we write ga′ the gen node that corresponds to a′ in χt and χp. In
order to simplify some notations, we often identify a′ and ga′

◮ (Running) example In this section, we will use as our main example the typing of
λ(x) λ(y) x. Unlike in Figure 15.2.1, we do not use Var-Abs. The resulting typing
constraint χt and the translatable presolution χp on which we will work are given in Fig-
ure 15.3.1.

χt G

→

⊥ G

g

→

⊥ G

g′

⊥

⊥
e′

⊥e

χp G

→

⊥

G

g

→

⊥ G

g′

→

→

⊥ ⊥

e

e′

χe
p G

→

⊥

G

→

⊥ G

g′

→

→

⊥ ⊥

→

n

⊥

Figure 15.3.1 – An example translatable presolution

15.3.1 Obtaining syntactic types

The first step in translating χp into an xMLF λ-term consists in naming all the type nodes
which will be translated into type quantifications, so that we can refer to them. By the
various restrictions on translatable presolutions, this is actually the set of type nodes flexibly
bound on gen nodes. We call them named nodes. In order not to burden ourselves with
α-conversion issues, we suppose that each named node n is associated to a variable αn. (To
simplify the examples, if π is such that 〈π〉 = n, we often write απ instead of α〈π〉.)

◮ Example In our example, the named nodes of χp are the nodes 〈11〉, 〈1211〉 and 〈g11〉.

Figure 15.3.2 presents an algorithm to translate a subpart of χp into a syntactic type—
we have simply specialized the algorithm of Figure 8.3.3 to the inlining of rigid nodes. We
have also defined a variant S′χp

, which differs from Sχp only on named nodes. In general, we
will use S′χp

; however Sχp is needed to compute the bounds of the named nodes themselves.

252 Translating gMLF into xMLF

Sχp(n) = B(n1) · · ·B(nk) χp(n)
(
V(n · 1), . . . , V(n · arity(χp(n)))

)

where {n1, . . . , nk} = (>−−_ n) and n1 <P . . . <P nk

and B(ni) , ∀ (α〈ni〉 > Sχp(ni))

and V(n · i) ,

{
Sχp(〈n · i〉) if 〈n · i〉 is rigidly bound
α〈n·i〉 otherwise

S′χp
(n) =

{
αn if n is named
Sχp(n) otherwise

Figure 15.3.2 – Translation of a subpart of a constraint

Let us mention that the two algorithms are deterministic when called on any type node
of χp. Indeed, they will only reach nodes accessible by +−−⊸, which are thus totally ordered
by <P. We also often translate the type created by an expansion of a scheme of χ, or even an
instance of this expansion. This translation is also well-defined: the flexible nodes translated
are either in the interior of the root of the expansion (and then structurally reachable from
this root), or merged with some existing structure of χp, which is necessarily a named node.

15.3.2 Types and environments of subterms

15.3.2.1 Gen nodes abstractions

Once we know how to translate graphic types into syntactic ones, we can build the type
abstractions that will be added in front of terms in the xMLF elaborations of χp.

Definition 15.3.1 (Abstractions for a subterm) Let a′ be a subterm of a, and g the
gen node ga′ . Let also n0, . . . , nk be the set of named nodes bound on ga′ , ordered according
to <P. We write Γa′

(or Γg) the type environment αn0
>Sχp(n0), . . . , αnk

>Sχp(nk), called
the abstractions for a′. �

By construction of translatable presolutions, the ni are in the structural interior of g; hence
they are indeed ordered by <P and the definition of Γa′

is unambiguous. The abstractions
for a′ are exactly the type abstractions that will be introduced in front of a′ (and in this
order).

Convention Given an environment Γ equal to α1 > σ1, . . . , αk > σk, we write Λ(Γ) for
Λ(α1 > σ1) . . . Λ(αk > σk) and ∀ (Γ) for ∀ (α1 > σ1) . . . ∀ (αk > σk). If Γ contains some
term bindings of the form x : σ, they are ignored.

15.3.2.2 Type of a subterm

Our next step is to define the type a subterm a′ of a will have in the elaboration of χp.

Definition 15.3.2 (Type of a subterm) The type Typ(a′) (or Typ(ga′)) of a subterm a′

of a is the type ∀ (Γa′

) S′χp
(〈ga′ · 1〉) �

15.3. Translating presolutions into xMLF 253

Notice that we use S′ and not S: if 〈ga′1〉 is named, we must use that name and not inline
its bound.

◮ Example In χp, we have

Typ(g) = ∀ (αg11 >⊥) αg11 → α11 Typ(g′) = α11

Typ(〈ǫ〉) = ∀ (α11 >⊥) ∀ (α1211 >⊥) α11 → ((∀ (α1212 >⊥) α1211 → α1212)→ α11)

Unfortunately, even though we will carefully maintain the bounds of syn-
tactic types correctly ordered w.r.t. <P, there is still one case where the gMLF

representation of types will clash with the xMLF one. This happens when some
nodes are bound on a node g, and some others on 〈g1〉. For example, if we con-
sider the gen node on the right, we have Typ(〈ǫ〉) = ∀ (β >⊥) ∀ (α>⊥) α→ β,
while the translation of an expansion of g is ∀ (α>⊥) ∀ (β >⊥) α→ β: the or-

gex G

→

⊥ ⊥

dering between the type quantifications differ. This is of course problematic, as propagation
witnesses “reason” on the second type, and xMLF on the first.

There is unfortunately no way to entirely avoid this issue. It is not always possible to
raise the nodes bound on a scheme node s so that they become bound on the corresponding
g instead (in the example above, 〈11〉 is locked). Thus we define the type of a subterm in
an expansion, and create computations that convert the type of a subterm to this type.

Definition 15.3.3 (Type of a subterm in an expansion) Let a′ be a subterm of a, g
the gen node ga′ and s be 〈g1〉. Let χ be the constraint resulting from expanding s in the
context of g at g itself; let sc be the root of the expansion in this constraint. The type of
a′ in an expansion, written Typexp(a′) (or Typexp(ga′)), is the type S′χ(sc). �

Notice that if s is degenerate, the expansion is empty and the root of the expansion is s
itself. In this case, S′χ(sc) returns exactly S′χ(s), which is coherent with the fact that a
degenerate scheme has not other instance than itself.

◮ Example In our example presolution χp, Typ and Typexp coincide for all three gen nodes.
For the gen node gex above, we have Typ(gex) = ∀ (α12 > ⊥) ∀ (α11 > ⊥) α11 → α12 and
Typexp(gex) = ∀ (α11 >⊥) ∀ (α12 >⊥) α11 → α12.

The only possible difference between Typ and Typexp is in the ordering between quanti-
fiers, and they are thus closely related. We can define a computation coercing one into the
other.

Definition 15.3.4 (Quantifiers reordering) Let a′ be a subterm of a, g the gen node
ga′ . Let S1 (resp. S2) be the named nodes bound on g (resp. 〈g1〉), and S0 be S1 ∪S2. Let
nl

1, . . . , n
l
kl

be the nodes of Sl sorted according to <P. The reordering ϕR(a′) (or ϕR(ga′))
for a′ is the computation

O; ∀ (> ⊲S(n0
1)); ∀ (αn0

1
>)

(
...O; ∀ (> ⊲S(n0

k0
)); ∀ (αn0

k0

>)
(
∀ (> αn1

i
⊳); N; ∀ (> αn2

j
⊳); N

))

if Typ(a′) and Typexp(a′) are distinct, or the identity computation otherwise. �

In the non-trivial case, the reordering for a′ introduces fresh quantifications for all the
named nodes that are quantified in Typexp(a′), and abstracts all the quantification present
in Typ(a′) under the proper names. By construction of <P, those quantification start by
the nodes bound on g, and then those bound on 〈g1〉.

254 Translating gMLF into xMLF

◮ Example In our main example, the different reordering are always the identity compu-
tation. For the gen node gex of the example above, we have

ϕR(gex) = O; ∀ (> ⊲⊥); ∀ (α11 >) (O; ∀ (> ⊲⊥); ∀ (α12 >) (∀ (> α12 ⊳); N; ∀ (> α11 ⊳); N))

Lemma 15.3.5 Let a′ be a subterm of a. Let Γ be an environment that binds all the free
type variables of Typ(a′). Then Γ ⊢ ϕR(a′) : Typ(a′) ≤ Typexp(a′). �

Proof: Let g be ga′ , s be 〈g1〉. Let χ be the expansion of s in the context of g, at g in χp.
By definition we have Typexp(a′) = S ′

χ(sc).

If s is degenerate, there is no named node bound on g at all and Γa′

is empty. The
expansion of s is degenerate, and sc is s. Hence the two translations are equal.

If s is not degenerate, by definition of translatable presolutions, it is rigidly bound. Then
the quantifications in front of Typ(a′) are the nodes flexibly bound on g (which thus do
not include s), plus the nodes flexibly bound on s. In χ, the set of nodes bound on sc is
the same by binding reset. Hence we introduce the same quantifications on both sides.

15.3.3 Typing environments

We can now deduce the environment under which a term of a will be typed in the elaboration
of χp.

Definition 15.3.6 (Typing environment) Let a′ be a subterm of a. The typing envi-
ronment Γa′

⋆ for a′ is inductively defined as Γa
⋆ = ∅ if a′ is a, or by case analysis on the

subterm a′′ of a′ that immediately encloses a′ otherwise.

• If a′′ = λ(x) a′: Γa′

⋆ = Γa′′

⋆ , Γa′′

, x : S′χp
(〈g′′a11〉)

• If a′′ = let x = b in a′, for some term b: Γa′

⋆ = Γa′′

⋆ , Γa′′

, x : Typ(b)

• In all the other cases: Γa′

⋆ = Γa′′

⋆ , Γa′′

�

In essence, we concatenate the environments for the gen nodes strictly above the one for
a′. The only two exceptions are for the expressions that bind a term variable. In this case
we also enrich the environment with this binder. In the case of a λ-abstraction, we extract
the type of the argument of the abstraction. For a let, we simply read the scheme of the
let-bound variable.

Property 15.3.7 Typing environments are well-formed xMLF environments. �

Proof: The different type variables have distinct names given our convention, while the
term variables are supposed to be distinct. Hence it suffices to show that there is no free
variable in the bounds. This result is immediate by well-domination and the fact that
bounds in Γa′′

are introduced according to <P (which ensures well-scopedness).

15.3. Translating presolutions into xMLF 255

As a last definition, we introduce a notion of environment for an instantiation edge.
Consider for example a subterm let x = b in b′ of a, and an instantiation edge e resulting
from an occurrence of x in b′. The environment for e is the typing environment for this
occurrence of x.

Definition 15.3.8 (Environment for an edge) Let g d be an instantiation edge e
of χp. Let d′ be the unique node of χ constrained by e in χt, and let g′ be χ̂t(d

′). The

environment for e, written Γe
♯ , is the environment Γg′

⋆ , Γg′

. �

(There is a unique edge corresponding to e in χt: since gen nodes cannot be merged,
instantiation edges cannot be merged either. This ensures the unicity of d′.)

◮ Example In our example, the typing environments for λ(x) λ(y) x, λ(y) x and x are
respectively first ∅, then α〈11〉>⊥, α〈1211〉>⊥, x : α〈11〉 and finally α〈11〉>⊥, α〈1211〉>⊥, x :
α〈11〉, α〈g11〉 >⊥, y : α〈g11〉. The environment for e is α〈11〉 >⊥, α〈1211〉 >⊥.

Property 15.3.9 Given an instantiation edge e, Γe
♯ is a well-formed xMLF environment.�

Proof: Similar to the proof of Property 15.3.7.

15.3.4 Computation contexts

Before proceeding further on, we need to introduce the notion of computation contexts,
which are used to relate graphic nodes and xMLF bounds.

Consider indeed a graphic type τ , and σ its translation in xMLF. Consider also an opera-
tion o that transforms a node n of τ , and suppose that we want to reflect this transformation
in σ. In order to do so, we must find the correct alternation of computations ∀ (> ϕ) and
∀ (α >) ϕ that descends into σ and positions us in front of the type corresponding to n in σ.
Such sequences, which we call computation contexts, are given by the grammar

C ::= {·} | ∀ (> C)| ∀ (α >) C

As evaluation contexts, computation contexts contain a single hole {·}, in which we can
substitute a computation or another context using the syntax C(ϕ) or C(C′).

→

→

⊥

→

⊥ ⊥

Figure 15.3.3 – Using computation contexts

256 Translating gMLF into xMLF

◮ Example Consider the graphic type τ of Figure 15.3.3. This type translates in xMLF as

∀ (α > ∀ (β >⊥) β → β) ∀ (γ > ∀ (δ >⊥) ∀ (ǫ >⊥) δ → ǫ) α→ β

The grafting of a type τ ′ at 〈21〉 in τ can be translated in xMLF as the computation ∀ (α >)
∀ (> ∀ (> ⊲ σ′)), where σ′ is the translation of τ ′. This computation can for example be
decomposed into C(ϕ′), where C and ϕ′ are respectively ∀ (α >) ∀ (> {·}) and ∀ (> ⊲ σ′)

Any operation on a node transitively flexibly bound to the root of a type can be expressed
using a computation context. Conversely, the operations on rigidly bound or inert-locked
nodes cannot. This is unimportant in our case, as witness propagations of translatable
presolutions only transform nodes transitively flexibly bound to the root.

15.3.4.1 Operating on a given node

Consider a type τ and its xMLF translation σ. Let also n be a node of τ transitively flexibly
bound to the root (but different from the root). There exists a unique computation context
C〈ǫ〉→n that can be used to descend in front of the quantification corresponding to n in σ.

◮ Example Consider the type τ of Figure 15.3.3, whose xMLF translation has been given
in the previous section. We have

C〈ǫ〉→〈1〉 = {·} C〈ǫ〉→〈11〉 = ∀ (> {·}) C〈ǫ〉→〈2〉 = ∀ (α >) {·}

C〈ǫ〉→〈21〉 = ∀ (α >) ∀ (> {·}) C〈ǫ〉→〈22〉 = ∀ (α >) ∀ (> ∀ (δ >) {·})

Notice that we descend in front of the quantification, but not on the bound itself. (Other-
wise, we would have C〈ǫ〉→〈1〉 = ∀ (> {·}).) Indeed, if for example we want to weaken 〈1〉,
we must act on the quantification ∀ (α > _) for 〈1〉, not on the bound ∀ (β > ⊥) β → β of
this node.

Interestingly, we can generalize this notation to nodes other than the root. Then we
have for example

Cn→n′′

= Cn→n′

(Cn′→n′′

)

In order not to burden ourselves with α-conversion related issues, we suppose that
computation contexts are built using variables whose names are based on the nodes they
traverse, e.g. αn for a node n.

◮ Example With this convention, we have

C〈ǫ〉→〈22〉 = ∀ (α〈1〉 >) ∀ (> ∀ (α〈21〉 >) {·})

15.3.5 Translating normalized derivations into computations

In this section we consider an instantiation edge e of χp equal to g d. Our ultimate
goal is to build a computation that witnesses χe

p ⊑ χp. In order to do so, we define a more
general translation function that acts on an instance χ of χe

p.

15.3. Translating presolutions into xMLF 257

Translating a sequence of operations:

T χ
r () = ε

T χ
r (o; I) = T χ

r (o); T o(χ)
r (I)

Translating an operation on a rigid node:

T χ
r (Raise(n))

T χ
r (Merge(n, n′))

T χ
r (RaiseMerge(n, n′))





= ε if ⋄
χ(n) = (=)

Translating an operation on the (flexibly bound) root of the expansion:

T χ
r (Graft(τ, r)) = ⊲S(τ)

T χ
r (RaiseMerge(r, n′)) = αn′ ⊳

T χ
r (Weaken(r)) = ε

Translating an operation on a flexible node different from the root:

T χ
r (Graft(τ, n)) = Cr→n(∀ (> ⊲S(τ)))

T χ
r (RaiseMerge(n, n′)) = Cr→n(∀ (> αn′ ⊳); N)

T χ
r (Merge(n, n′)) = Cr→n(∀ (> αn′ ⊳); N)

T χ
r (Weaken(n)) = Cr→n(N)

T χ
r (Raise(n)) = Cr→n′

(O; ∀ (> ⊲Sχ(n)); ∀ (βn >) (Cn′→n(∀ (> βn ⊳); N))))
where n′ = min<P

{n′ ∈ (−−_ χ̂(χ̂(n))) | n <P n′}

Figure 15.3.4 – Translating normalized instance operations

We let r be the root of the expansion of e in χ. Let also I be a normalized instance
derivation that transforms the expansion in χ; we suppose that I does not transform inert-
locked nodes. We are going to build an xMLF computation that mirrors the operations of
I. Thus, if σ is the translation of r in χ, and supposing that our computation is correctly
built, it will be applicable to σ, and the result will be the type of r in I(χ). We write T χ

r (I)
this translation function, with I, χ and r defined as above. The definition of T χ

r is given
in Figure 15.3.4, and is explained below. The function T χ

r is overloaded to act on both a
sequence of operations or a single operation.

Translating a sequence of operations We start by explaining the translation of an entire
instance derivation, which is easier:

• if the derivation is empty, the type of r does not change. We simply return the identity
computation, which is correct by construction.

258 Translating gMLF into xMLF

• if the derivation is not empty, we translate its first operation o into a computation ϕ,
which transforms the type of r in χ into the type of r in o(χ). Then we recursively call
the translation on the remainder of the derivation. However, the context has changed:
the constraint to consider is now o(χ).

Translating a single operation The interesting part is thus the translation of a single
operation. Operations on rigid nodes are easy: since rigid bounds are inlined, the operation
does not change the translation of the expansion in xMLF, and we simply return the identity
computation. (Of course, only raising and merging are possible on rigid nodes.)

Next, we consider an operation on the root r of the expansion, provided this node is
flexibly bound.

• The grafting of a type τ is simply translated as a computation ⊲ σ—after translation
of τ into xMLF. By definition of grafting, τ is closed so we only need to inline rigid
nodes; there will be no free variables in the result. (In particular the translation is
not linked to χ at all.)

• A raising-merging of r with a node n′ of its exterior is the last operation of the
derivation, as no node remains in the expanded part afterwards. Necessarily, the
bound for n′ is in the typing environment, and we abstract the type of r under this
name.

• The weakening of r is the next-to-last operation in the derivation (as weakenings are
delayed), before the merging of r with a rigidly bound node of its exterior. There is
actually nothing to reflect in xMLF, as the type of r itself is not changed—only its
binding flag in the expansion. Hence we simply translate the operation as the identity
computation.

The most involved cases are the operations on a flexibly bound node n which is not r.
Since the derivation does not transform inert-locked nodes, and since (by subcase hypoth-
esis) we are not transforming a rigidly bound node, n is transitively bound to r, and there
exists a computation context Cr→n for the bound of n in σ.

• The grafting of a type τ at n is translated as a computation ⊲S(τ) instantiating the
bound ⊥ of n in χ into S(τ).

• For the merging of n with a node n′, we first abstract the bound of n under the name
of the bound of n′, and then immediately substitute the bound of n. This is correct
w.r.t. scopes: by the hypothesis on the merging operations in propagation witnesses,
we have n′ <P n and n′ is thus quantified before n in Sχ(r).

• The computation for a raising-merging of n with a node n′ of the exterior is the same
as for a merging. This time however, n′ is not quantified in Sχ(r) but in the typing
environment.

• The weakening of n is simply translated as the computation N, inserted at the proper
location in Sχ(r).

15.3. Translating presolutions into xMLF 259

• The most involved case is the one for raising. As a first step, we insert inside Sχ(r)
a fresh quantification for a copy of the type of n. The difficulty consists in finding
where to insert this quantification, as it is important to respect the ordering between
bounds. Notice that n′ exists: the set {n′ ∈ (−−_ χ̂(χ̂(n))) | n <P n′} is not empty,
as it contains at least n̂.

Next we use an outer quantification to abstract the new bound, under a name that
will not create a clash. Then we find the current bound of n, abstract it under the
name of the new quantification, and substitute this modified bound. This effectively
raises n, as it is now quantified one level higher.

◮ Example Since g′ is degenerate in χp, the propagation witness for e′ is the empty
derivation, which thus translates into ε. More interestingly, a propagation witness for
χe

p ⊑ χp and the corresponding translation is given below.

Graphic operation Computation

Graft(σ⊥→⊥, 〈n1〉) ∀ (> ⊲∀ (α >⊥) ∀ (β >⊥) α→ β)
Raise(〈n11〉) O; ∀ (> ⊲⊥); ∀ (β〈n11〉 >) ∀ (> ∀ (> β〈n11〉); N)

RaiseMerge(〈n11〉, 〈1211〉) ∀ (> α〈1211〉 ⊳); N
Weaken(〈n1〉) ∀ (> N)

Weaken(n) ε
Merge(n, 〈12〉) ε

where σ⊥→⊥ is the graphic type corresponding to ∀ (α > ⊥) ∀ (β > ⊥) α → β. We call ϕe

the sequence of all the computations above.

15.3.5.1 Soundness of the translation

We make the same hypothesis as in the previous section regarding I. The correctness of
our translation is stated under Γe

♯ .

Lemma 15.3.10 Suppose that I contains an operation RaiseMerge(n, n′), with n flexibly
bound. Then αn′ ∈ dom(Γe

♯). �

Proof: Let g′ be the gen node on which d is bound in χt, χ′′ be χ̂p(d). By monotony of
instance and the fact that gen nodes are not raised, we have g′ ∗−−_ g′′. In χ, which is an
instance of χp, we have r̂ = g′′: normalized derivations do not allow raising r step by step,
but use an atomic raise-merge operation. By definition, an operation RaiseMerge(n, n′) of I
merges n (which is in Is(r)) with a node n′ bound on a gen node g′′′ such that g′′ ∗−−_ g′′′.
By construction Γe

♯ contains all the nodes flexibly bound on a gen node equal to or above
g′, thus in particular n′. This is the desired result.

Lemma 15.3.11 Suppose σ is S′χ(r) and σ′ is S′I(χ)(r). Then Γe
♯ ⊢ T

χ
r (I) : σ ≤ σ′. �

Proof: It suffices to show the result for a single instance operation o, as the result imme-
diately follows by induction for the general case. The cases for an operation on a rigid
bound are immediate, as those bounds are inlined during the translation.

For an operation on the root:

260 Translating gMLF into xMLF

⊲ Case o = Graft(τ, r): necessarily σ is ⊥, as otherwise r could not be grafted. The result
is then immediate.

⊲ Case o = RaiseMerge(n, n′): by Lemma 15.3.10, αn′ is in Γe
♯ . The bounds of n and n′

are syntactically equal, since nodes are always translated according to <P.

⊲ Case o = Weaken(r): the translation of r before and after the weakening is the same,
as r is not a named node.

For an operation on a flexible node different from the root: the computations contexts we
use exist, as by hypothesis I does not transform inert-locked nodes. Notice that for any σ
and σ′, we have (∀ (α > σ) σ′)[∀ (>β ⊳); N] = σ′{α← β}. This ensures the correctness of
the operations Merge(n, n′) and RaiseMerge(n, n′) (using also Lemma 15.3.10 in the second
case). The correctness of the translations for a grafting and a weakening are immediate.

The difficult point is the correctness of an operation Raise(n), as we must ensure that the
free variables of Sχ(n) are in scope at the place where we insert the new bound. Thus
we must justify that for a node n′′ in Fs(n), we have n′′ <P n′. By definition of n′′, we
have n +−−⊸ n′′ and χ̂(n) +−−_ χ̂(n′′). We cannot have χ̂(n) = χ̂(n′′), as n would not be
raisable. Hence n′′ is bound on χ̂(χ̂(n)) or above. If it is bound strictly above the result
holds, as χ̂(n′) = χ̂(χ̂(n)). Otherwise, if both n′ and n′′ are bound on χ̂(χ̂(n)), the result
holds because n <P n′ and n′′ is under n.

As a consequence, the translation of an entire propagation witness is correct.

Definition 15.3.12 (Translation of an instantiation edge) Let e be an instantiation
edge g d of χp. Let I be a propagation witness for χe

p ⊑ χp. We write T (e) the

computation T
χe

p
r (I), where r is the root of the expansion in χe

p. �

Since there can exists more than one propagation witness, this definition it not completely
deterministic. However this only reflects the fact that different computations can be used
to transform one type into another. Thus we simply pick any propagation witness.

Lemma 15.3.13 Let a′ be a subterm of a, e an instantiation edge ga′ d of χp. Let σ
and σ′ be Typexp(a′) and S′χp

(d) respectively. Then Γe
♯ ⊢ T (e) : σ ≤ σ′. �

Proof: Let r be the root of the expansion in χe
p. Let I be the propagation witness used to

obtain T (e). By definition of a propagation witness we have (I(χe
p))(r) = d. By definition

of Typexp, we have σ = S ′
χp

(r). By Lemma 15.2.6, I does not transform inert-locked nodes.
The result holds by the points above and Lemma 15.3.11.

15.3.6 Elaborating a translatable presolution

We are now ready to finish the elaboration of χp. The translation of a into an xMLF term
is defined inductively on the shape of a, and given in Figure 15.3.5. We sometimes need to
name some nodes and instantiation edges of χp, and it is actually simpler to name those
constructs on the corresponding nodes of χt; thus we have reproduced at the bottom of the
figure the basic typing constraint for the four interesting cases.

Let us give some details, assuming that we are translating a subterm a′ of a. If a′ is
a λ-bound variable x, the corresponding type scheme in χp is degenerate. Thus there is

15.3. Translating presolutions into xMLF 261

T(x) =

{
x if x is λ-bound

Λ(Γg) x[ϕR(x); T (e)] if x is let-bound (1)

T(λ(x) a) = Λ(Γg) λ(x : S′χp
(n)) (T(a))[ϕR(a); T (e)] (2)

T(a1 a2) = Λ(Γg) (T(a1))[ϕR(a1); T (e1)] (T(a2))[ϕR(a2); T (e2)] (3)

T(let x = a in b) = Λ(Γg) let x = T(a) in (T(b))[ϕR(b); T (e)] (4)

(1) g G

⊥

e

(2) g G

→

n ⊥ a ⊥e

(3) g G

a1

a2

→

⊥ ⊥

e1

e2

(4) g G

⊥ b

a
x

e

Figure 15.3.5 – Elaboration of a λ-term

no quantification to insert, and no computation either: the elaboration of x is x itself. In
all the other cases the gen node for a′ is a priori not degenerate, and we insert a type
quantification for the root node of the typing constraint for a′ in front of a′. Moreover:

• For a let-bound variable, we instantiate the type of the variable according to the
incoming instantiation edge.

• For an abstraction λ(x) a, we annotate x according to its type in χp, and instantiate
the translation of a in χp according to the instantiation edge linking a and the return
type of the abstraction.

• For an application a1 a2, we simply instantiate the translations of a1 and a2 according
to the corresponding instantiation edges.

• The translation of let x = a in b, with the revised typing constraint for let, is also
quite simple. Both a and b are recursively translated, and b is coerced to the type of
the root scheme.

Importantly, each time we translate an instantiation edge, we also convert the xMLF view
of the type scheme into gMLF vision using a quantifier reordering.

◮ Example The elaboration of χp is

Λ(α〈11〉 >⊥) Λ(α〈1211〉 >⊥) λ(x : α〈11〉) (Λ(α〈g11〉 >⊥) λ(y : α〈g11〉) x[ε; ε])[ε; ϕe]

In both computations, the frontmost identity computations are for the reorderings; since
Typ and Typexp agree on the gen nodes of our example, they are not actually needed.

Of course, our translation respects the shape of terms.

262 Translating gMLF into xMLF

Property 15.3.14 The type-erasure ⌈T(a)⌉ of T(a) is a. �

Proof: Immediate induction on the shape of a.

15.3.7 Correctness of the translation

We can finally prove the correctness of our translation.

Theorem 15.3.15 Let a′ be a subterm of a. Then Γa′

⋆ ⊢ T(a′) : Typ(a′). �

Proof: The proof is by induction on the shape of a. We use the same notations for nodes
and instantiation edges as in Figure 15.3.4. In the following we omit χp when S ′ is called
on it; we also omit « 〈·〉 » around compound nodes. Thus S ′(g1) is S ′

χp
(〈g · 1〉).

⊲ Case a′ = x, with x λ-bound: let g be the gen node corresponding to the λ-abstraction
introducing x in a. By definition of solved typing constraints and unification, we have
〈ga′1〉 = 〈g11〉 in χp (1). In particular, ga′ is degenerate and Typ(a′) is S ′(ga′1) (2).

By definition of typing environments, x is bound in Γa′

⋆ and its bound is S ′(g11). Thus
the result holds by rule Var, (1), (2) and the fact that T(a′) = x.

⊲ Case a′ = x, with x let-bound: then T(a′) = Λ(Γa′

) x[ϕR(x);T (e)]. Let let x = a in b

be the subterm of a introducing x. The edge e is ga 〈ga′1〉. Let Γ′ be Γa′

⋆ , Γa′

.
By Lemma 15.3.13 we have Γ′ ⊢ T (e) : Typexp(a) ≤ S ′(ga′1). By Lemma 15.3.5 and
rule Inst-Trans, Γ′ ⊢ (ϕR(x); T (e)) : Typ(a) ≤ S ′(ga′1). By definition of typing

environment, x is in dom(Γa′

⋆) and its bound to Typ(a). Thus by Var and TApp

we obtain Γ′ ⊢ x[ϕR(x); T (e)] : S ′(ga′1). By applying TAbs repeatedly we obtain

Γa′

⋆ ⊢ Λ(Γa′

) x[ϕR(x);T (e)] : ∀ (Γa′

) S ′(ga′1). This last type is indeed Typ(a′).

⊲ Case a′ = a1 a2: By induction hypothesis, for 1 ≤ i ≤ 2, we have Γai
⋆ ⊢ T(ai) :

Typ(ai) (3). Since a′ = a1 a2, we have Γa1
⋆ = Γa2

⋆ = Γa′

⋆ , Γa′

(4). We call this
environment Γ′. Let n be the arrow node in the typing constraint for a1 a2. By
Lemma 15.3.13, Lemma 15.3.5, rule TApp, rule Inst-Trans, (3) and (4) we have Γ′ ⊢
(T(a1))[ϕR(a1); T (e1)] : S ′(n) and Γ′ ⊢ (T(a2))[ϕR(a2); T (e2)] : S ′(n1) (5). Since χp is
translatable, n is rigidly bound; moreover there is no node bound on it in χp, as there
was no node bound on it in χt. Thus S ′(n) = S ′(n1)→ S ′(n2) (6). By App, (5) and (6),
Γ′ ⊢ (T(a1))[ϕR(a1); T (e1)] (T(a2))[T (ϕR(a2); e2)] : S ′(n2). By repeated applications

of TAbs we obtain Γa′

⋆ ⊢ Λ(Γa′

) (T(a1))[ϕR(a1); T (e1)] (T(a2))[ϕR(a2); T (e2)] : ∀ (Γa′

)
S ′(n2) (7). By definition of the typing constraint for application, we have 〈n2〉 = 〈ga′1〉.

Thus ∀ (Γa′

) S ′(n2) is Typ(a′); together with (7) this is the desired result.

⊲ Case a′ = let x = a in b: by induction hypothesis we have Γa
⋆ ⊢ T(a) : Typ(a) and

Γb
⋆ ⊢ T(b) : Typ(b) (1). Moreover we have Γa

⋆ = Γa′

⋆ , Γa′

and Γb
⋆ = Γa′

⋆ , Γa′

, x : Typ(a)
(2). By Lemmas 15.3.13 and 15.3.5, rules TApp and Inst-Trans, (1) and (2) we have
Γb

⋆ ⊢ (T(b))[ϕR(b);T (e)] : S ′(ga′1). Thus, by Let and (1) we have Γa
⋆ ⊢ let x = T(a) in

(T(b))[ϕR(b); T (e)] : S ′(ga′1). By iterating TAbs, we have Γa′

⋆ ⊢ Λ(Γg) let x = T(a) in

(T(b))[ϕR(b); T (e)] : ∀ (Γa′

) S ′(ga′1). This last type is Typ(a′).

⊲ Case a′ = λ(x) a: by induction hypothesis we have Γa
⋆ ⊢ T(a) : Typ(a) (1). We also

have Γa
⋆ = Γa′

⋆ , Γa′

, x : S ′(ga′11) (2). By Lemma 15.3.13, Lemma 15.3.5, rule TApp,
rule Inst-Trans, (1) and (2) we have Γa

⋆ ⊢ (T(a))[ϕR(a); T (e)] : S ′(ga′12). By Abs we

15.3. Translating presolutions into xMLF 263

obtain Γa′

⋆ , Γa′

⊢ λ(x : S ′(ga′11)) (T(a))[ϕR(a); T (e)] : S ′(ga′11) → S ′(ga′12) (3). By
definition of translatable presolutions, 〈ga′1〉 is rigid. Moreover there is no node bound
on this node in χt, hence in χp. Thus = S ′(ga′1) = S ′(ga′11)→ S ′(ga′12) (4). By apply-

ing TApp to (3), and by (4), we have Γa′

⋆ ⊢ Λ(Γa′

) λ(x : S ′(ga′11)) (T(a))[ϕR(a);T (e)] :

∀ (Γa′

) S ′(ga′1). This last type is Typ(a′), hence the result.

Since the typing environment for a itself is the empty environment, the elaboration of
χp is a valid xMLF term.

Corollary 15.3.16 (Translated terms are typable) ∅ ⊢ T(a) : Typ(a). �

15.3.8 Translating type annotations

Let us consider the term ω equal to λ(x : σid) x x. It desugares into

λ(x) let y = cσid
x in y y

In order to translate this term into xMLF, we need to find a term for the coercion cσid
.

Interestingly, in xMLF we do not need to add coercion functions to the initial environment,
as they are one of the possible typings for the identity function. For example, the coercion
cσid

may be defined as

Λ(γ > σid) λ(z : σid) z[γ] : ∀ (γ > σid) σid → γ

Let us finish our example. We do not show the principal presolution for ω, as the
resulting constraint is quite big. However, up to identity computations, ω elaborates into
the following xMLF term:

Λ(α > σid) λ(x : σid) let y = cσid
[N] x in (y[σid] y)[α]

which has type ∀ (α > σid) σid → α.
Notice that we can reduce the term let y = cσid

[N] x in _ by using reduction under
abstractions, resulting in the term:

Λ(α > σid) λ(x : σid) (x[σid] x)[α]

On the principal presolution of a constraint, this is actually always possible: the type
inference algorithm does not instantiate the type of the coercion (as it not constrained),
and in the typing constraint for cκ v, the (flexibly bound) domain of the arrow is rigidified,
as it is the scheme node for that constraint. Hence the application can be reduced by
β-reduction. Thus coercion functions are introduced for type inference purposes, but can
always be removed in xMLF.

15.3.9 Soundness of gMLF

Putting all the results obtained previously together, we can finally state the soundness of
gMLF.

Theorem 15.3.17 gMLF is sound, for both call-by-value or call-by-name semantics. �

264 Translating gMLF into xMLF

Proof: Let a be a term typable in xMLF, χp one of its presolutions. By Theorem 15.2.11,
there exists a translatable presolution χ′

p of the typing constraint for a. Let a′ be the
elaboration of this presolution in xMLF. Property 15.3.14 ensures that a and a′ have the
same type-erasure. Corollary 15.3.16 ensures that a′ is typable in xMLF. The conclusion
is by Theorems 14.4.5, 14.4.9 and 14.4.14.

Theorem 13.2.4 shows that ay term typable in eMLF is also typable in gMLF. Thus we
have also proven the soundness of this system.

Theorem 15.3.18 eMLF is sound. �

Section 15.5 discusses how to translate eMLF and iMLF presolutions into xMLF, giving an-
other (more direct) proof of the result above.

15.3.10 Obtaining instance derivations

So far, we have only explained how to instrument instance derivations in order to obtain type
computations. The instance derivations themselves are obtained from the (constructive)
proof of Lemma 11.5.3. Another possibility would be to instrument the type inference
algorithm so that it also returns a witness. However, there are some difficulties with this
approach, which we explain below.

A first step would be to instrument the unification algorithm so that it returns an
instance derivation I showing that its result is an instance of its argument. This seemingly
simple part is not immediate. Indeed, Unif computes the structure of the unifier using
first-order unification, but the operations Merge in I must be found by taking into account
the binding tree of the unifier (so as to merge only locally congruent nodes). Moreover,
the unification algorithm is top-down for efficiency reasons, while normalized derivations
are bottom-up, at least for weakenings. Finally, we would need to change Unif so that it
returns an unifier in which inert-locked nodes are weakened. This is also difficult to do top-
down, as the fact that a node is inert depends on the nodes bound on it. Thus generating I
on the fly during unification is not simple, and a post-treatment phase is probable needed.

Instrumenting the type inference algorithm is not immediate either. Indeed, the exterior
of gen nodes can change during inference, which might require changing computations
already built. For example, suppose that at some point we generate a computation for an
operation RaiseMerge(n, n′). Later during inference, n′ might be instantiated, for example
by the grafting of a type τ . Then we need to change the computation for the operation
already built, by adding a grafting on n before the translation of RaiseMerge(n, n′).

The points above show that building the elaborated terms on-the-fly during type in-
ference is tricky. Our approach of translating presolutions is comparatively much simpler.
The only potential downside could be the fact that presolutions can be huge, compared to
the solutions themselves. However the elaboration of a presolutions is at least as big as the
presolution itself: entirely building the presolution during type inference is thus not really
a concern.

15.4. Obtaining simpler elaborated terms 265

15.4 Obtaining simpler elaborated terms

There are many ways to simplify the xMLF terms obtained by translating a presolution,
as the type computations we generate are not especially optimized. This can be useful if
xMLF is used as a core internal language, where smaller terms are likely to lead to better
performances during the compilation process. We present the most obvious solutions (that
can be readily implemented) below. We discuss a more involved approach in §15.4.1 while
§15.4.2 shows that the simplifications rules we have presented in §12.4.1 do not really help
in obtaining smaller xMLF terms.

Removing identity computations: an immediate optimization consists in removing the
computations ε that are sometimes generated during translation.

Optimizing the introduction of fresh bounds the computations for a raising or a re-
ordering introduce fresh bounds using a computation of the form O; ∀ (> ⊲S(n)).
However, if S(n) is ⊥, the second part of the computation is entirely superfluous, and
we can simply insert O.

Optimizing reordering: the computations we generate for reordering quantifications are
simple and fully general, but partially redundant when Typ(a) and Typexp(a′) have
some similarities. For example, in order to convert ∀ (α > σα) ∀ (β > σβ) ∀ (γ > σγ)
∀ (δ > σδ) σ into ∀ (α > σα) ∀ (γ > σγ) ∀ (β > σβ) ∀ (δ > σδ) σ, there is no need to
reintroduce quantifications for α and δ, as is currently done. A simpler computation
is ∀ (α >) ϕβγ , where ϕβγ commutes the bounds of β and γ.

Sharing computation contexts: when translating an entire propagation witness, two
consecutive operations on two nodes n and n′ will result in two computations Cr→n(ϕ)
and Cr→n′

(ϕ′). If n and n′ have a common binder n0, we can write the compositions
of those two computations as Cr→n′′

(Cn0→n(ϕ); Cn0→n′

(ϕ′)). This avoids the intro-
duction of some inner or outer computations, which are shared in Cr→n′′

.

We can improve the efficiency of this optimization by generating particular propaga-
tion witnesses. This is discussed in the next section.

Also, even though we took great care to maintain sharing during gMLF type inference (by
considering ⊑ and not ⊑≈), the sharing on rigid bounds is lost during the translation into
xMLF. Hence the complexity of the translation may not be optimal. A possible solution
may be to use hash-consing. Alternatively, rigid bounds could be reincarnated in xMLF as
type abbreviations, and used to express this sharing internally.

15.4.1 Creating optimized propagation witnesses

The instance relations of gMLF and xMLF are “syntactically” very different. As a conse-
quence, translating one gMLF instance operation after the other can result in unnecessarily
big computations. Instead, it is much more interesting to group some operations together,
and to translate them atomically. We give some examples below.

• a sequence of k raisings on the same node n is currently translated by introducing k
times the bound for n, interleaved with k computations α ⊳. A much simpler solution
is to insert only the final bound, then doing a single abstraction.

266 Translating gMLF into xMLF

• a raising on a node n followed by a weakening of this node can be reversed; i.e. the
weakening is performed first, then the raising. As a consequence, the raising needs
not be translated at all (its effect is lost once the bound of n is inlined). Likewise,
if n is merged with a node n′ before being weakened, it might be simpler to weaken
both n and n′ first, and not to translate the merging.

• a sequence of operation on a node n starting by a grafting, followed by some operations
on the grafted nodes, and ending by an operation Merge(n, n′) or RaiseMerge(n, n′)
can, in xMLF, be entirely replaced by this last operation. This reflects the fact that
xMLF allows using a type σ containing free variables in a computation ⊲ σ, while gMLF

only allows grafting closed types.

Crucially, the efficiency of those optimizations depend on the way the propagation witness
is built, as it needs to group operations on the same nodes together. As we have already
discussed at the beginning of §15.4, it is also interesting to group operations sharing the
same computation context.

15.4.2 Using the simplifications rules on constraints

We have presented in §12.4.1 two simplifications rules for the typing of variables, Var-Let

and Var-Abs. We detail in this section how their use change the elaborated xMLF λ-terms.

15.4.2.1 Let-bound variables

χ G

g1 G

⊥

λ(x) x

g2 G

⊥

→

n

⊥ ⊥

e′1

e′2

e1 e2

χ′ G

λ(x) x →

⊥ ⊥

Figure 15.4.1 – Typing constraint for let y = λ(x) x in y y with and without Var-Let

Let us consider the typing constraint for the term let y = λ(x) x in y y, which is
presented as χ in Figure 15.4.1. Using Var-Let, we obtain instead the constraint χ′. The
interesting part is the typing of the two occurrences of y. In χ, there are two different
opportunities for instantiating each occurrence of y, i.e. one by instantiation edge ei and
e′i. For example, if the term λ(x) x is typed as ∀ (α >⊥) α→ α, we could first instantiate
the gen node g1 with type

∀ (β > ∀ (γ >⊥) γ → γ) β → β

15.5. Translating presolutions of eMLF and iMLF 267

then the node n with type
(int→ int)→ (int→ int)

This would result on a term of the form

let y = Λ(α >⊥) λ(x : α) x in y[∀ (> ⊲ (∀ (γ >⊥) γ → γ))][∀ (> int); N] y[ϕ2][ϕ
′
2]

where ϕ2 and ϕ′
2 are two computations giving to y the type int→ int.

Conversely, things are simpler for χ′, in which each occurrence of y can be instantiated
only once. Notice however that we have the same expressivity in χ′ and χ, as the two type
applications y[ϕi][ϕ

′
i] in χ can simply be recombined as y[ϕi; ϕ

′
i] in χ′. This is in fact exactly

what the proof of correctness of Var-Let (Lemma 12.4.1) shows on graphic constraints:
the possibility to instantiate the type of the let-bound expression twice does not increase
the expressiveness of the constraint.

Nevertheless, we have seen in §15.2.6.1 that trivial type schemes, such as the ones
for let-bound variables, result in identity computation in the elaboration of the principal
presolution of a constraint. More precisely, this is the case as long as the trivial type scheme
does not have a type different from the one of the variable itself (which is possible in non-
principal presolutions). Thus, using Var-Let to simplify the elaborated xMLF term is only
useful on presolutions that do not verify this property.

15.4.2.2 Lambda-bound variables

At least from an elaboration point of view, rule Var-Abs is even less useful. Indeed, in
gMLF, the gen node g for a λ-bound variable is always degenerate: the node 〈g1〉 is unified
with the node corresponding to the domain of the arrow for the abstraction, which is bound
higher in the constraint. Thus, using Var-Abs will only avoid the generation of a trivial
computation ε for the variable, and this computation can trivially be removed anyway.

15.5 Translating presolutions of eMLF and iMLF

From a practical standpoint, there is little interest in translating eMLF or iMLFpresolutions,
as type inference is done in gMLF. However, while eMLF and iMLF are quite different from
gMLF, this is not reflected in the translation of their presolutions: there will be very few
changes compared to the presentation done for gMLF. Moreover, the existence of such a
translation can be used to prove the soundness of eMLF and iMLF.

In this section, we use the same conventions as in §13. In particular, ⊏ ranges over
⊑rmw and ⊏−.

15.5.1 Preliminary results

The instance relations ⊑≈ and ⊑⊏−⊐− of eMLF and iMLF are larger than ⊑. In particular, while
in gMLF the only problematic operations of ⊑ were the ones on inert-locked nodes, in eMLF

and iMLF we can also create flexible nodes by strengthening a rigid ⊏ node. We cannot
reflect this strengthening in xMLF. However this is not a problem: by weakening enough
nodes, we can ensure never needing a strengthening operation.

268 Translating gMLF into xMLF

The definitions below generalize the notions of translatable presolutions and normalized
derivations to eMLF and iMLF. In a second time we show that translatable presolutions lead
to suitable propagation witnesses, and that normalized ones can be translated—exactly as
in gMLF.

Definition 15.5.1 (Translatable eMLF and iMLF presolutions) A presolution χp is
translatable in eMLF (resp. iMLF) if it is translatable according to Definition 15.2.10, and
if all the monomorphic (resp. inert or orange) nodes of χp are rigidly bound. �

Definition 15.5.2 (Normalized instance derivations in eMLF and iMLF) Let χp be
an eMLF (resp. iMLF) presolution, e an instantiation edge of χp. A derivation of χe

p ⊑ χp is
normalized if it is of the form χe

p ⊑ χ′ ⊐ χp with the derivation χe
p ⊑ χ′ normalized as per

Definition 11.5.1, except that it can also contain arbitrary operations of ⊑rmw (resp. ⊏−).�

The idea behind this definition is the following: instance operations inside a derivation
χe

p ⊑ χp are not necessarily restricted to the nodes created by the expansion. Indeed, we
can freely share and unshare the remainder of the constraint, but only along ⊏: any other
instance operation could not possibly be reversed by ⊐.

Using those definitions, we can show that translatable presolutions exist, and are suitable
for translation.

Lemma 15.5.3 Given a translatable eMLF (resp. iMLF) presolution χp, and an instan-
tiation edge e of χp, there exists a normalized instance derivation of χe

p ⊑ χp in which
weakenings are delayed. �

Proof: The decomposition of χe
p ⊑ χp into χe

p ⊑ χ′ ⊐ χp is by Property 13.1.3. Inside
the derivation χe

p ⊑ χ′, the operations involving the nodes of χp (i.e. those that do not
have been created by the expansion) can only be in ⊏. Indeed, ⊏ permissions are stable
by instance, and an operation of ⊑ \ ⊏ cannot be cancelled by ⊐ later in the derivation.
The remainder of the result is proven exactly as Lemma 11.5.3.

Lemma 15.5.4 Consider an ⊏-presolution χ, and n a node of χ flexibly bound on a gen
node g that is not in Is(g). Then Weaken(n)(χ) is an ⊏-presolution. �

Proof: Let χ′ be Weaken(n)(χ). If n has ⊏ permissions, the result is by Lemma 13.1.6. In
the other case, consider an instantiation edge e of χ′. By hypothesis, it is ⊏-solved in χ.
Consider a derivation of χe ⊑⊏⊐ χ. In this derivation, the only operations that can involve
n or a ⊏-node transitively bound to n are of the form Merge(n, n′), with n′ created by the
expansion (1). Indeed

⊲ an operation that is not a merging would alter n (or the node below) in a way that
cannot be cancelled later, as the nodes are not ⊏ by hypothesis;

⊲ a merging Merge(n′, n′′) with n′ +−−_ n (and n′ not ⊏) would mean that n′′ has not
been created by the expansion. Indeed, necessarily n′′ is not ⊏ either (as n′ and n′′

are merged), and the root of the expansion is bound on a gen node; hence non-⊏ nodes
of the expansion can only “communicate” with the exterior of the expansion through a
gen node. Thus, such a merging would involve two nodes not created by the expansion,
and cannot be cancelled either.

15.5. Translating presolutions of eMLF and iMLF 269

By (1) it is easy to rewrite the derivation χe ⊑⊏⊐ χ into a derivation of χ′e ⊑⊏⊐ χ′: we
simply replace all operations Merge(n, n′) by Weaken(n′) ; Merge(n, n′). This shows that
e is solved in χ′, hence that χ′ is a presolution.

Lemma 15.5.5 Given an eMLF (resp. iMLF) presolution of a constraint χ, there exists a
presolution χ′

p inert-equivalent to χp and translatable in eMLF (resp. iMLF). �

Proof: Weakening the ⊏ nodes of χp results in a presolution by Lemma 13.1.6. Notice
that application and abstraction arrow nodes are ⊏, as they were monomorphic in the
typing constraint corresponding to χp, and ⊏ nodes are preserved by ⊑⊏⊐. For all the
other nodes (i.e. those that may not be ⊏), the result is by Lemma 15.5.4.

Lemma 15.5.6 Given a translatable eMLF (resp. iMLF) presolution χp, and an instantia-
tion edge e of χp, let I be a normalized propagation witness for e in which weakenings are
delayed. Then I does not transform inert-locked nodes, and does not transform a rigid node
into a flexible one. �

Proof: The reasoning for inert-locked is exactly the same as for Lemma 15.2.6. For the
creation of flexible nodes: those nodes can be created only by an operation ⊒w on an ⊏

node, which occurs only at the end of a normalized derivation. It can only be followed by
operations of ⊒rmw, which preserve flexible ⊏ nodes. Hence there would be such a node
in χp. Contradiction with the fact that χp is translatable.

15.5.2 Translating an eMLF or iMLF presolution

The elaboration of a translatable presolution is now immediate. The shape of the λ-term
itself is exactly the same. The only difference lies in the translation of the propagation wit-
nesses. But, even there, the differences are minimal: we can simply dismiss the operations
that were not present in gMLF, as they occur on rigid nodes.

Definition 15.5.7 (Translation of an eMLF or iMLF presolution) The translation of
a translatable eMLF or iMLF presolution χp is done as if χp was a gMLF presolution, except
that, in propagations witnesses, the operations in ⊐ or on nodes of χp are translated by the
identity computation. �

Theorem 15.5.8 The systems eMLF and iMLF are sound. �

Proof: Immediate generalization of the results of §15.3, using the results of the previous
section. The operations not translated only involve nodes that are rigidly bound, hence
inlined during the translation into syntactic types. This ensures that our translation
remains correct.

270 Translating gMLF into xMLF

15.6 Translating the syntactic presentations of MLF into xMLF

In this section, iMLF and eMLF refer to the new syntactic presentation of MLF (Le Botlan
and Rémy 2007).

At a cursory glance, it would seem that translating either iMLF or eMLF into xMLF is
immediate, as their presentations are syntactic and very similar. However, this is not the
case, for two unrelated reasons detailed below.

15.6.1 Type equivalence under bounds

Translating the type instance relation of iMLF and eMLF into xMLF is not really difficult
(except for the point developed in §15.6.2), as the rules in all three systems are quite similar.
In fact, those relations are closer than the syntactic and graphic instance relations are, and
we expect the translation to be slightly easier than the one we have presented here. This is
however not the case for the type equivalence relation. Indeed, this relation is much smaller
in xMLF than in (syntactic) eMLF and iMLF—in xMLF, up-to α-conversion, it is exactly the
reflexive relation! In comparison, the relation ⊑rmw of graphic types is simpler to translate.

As an example, types such as ∀ (α>σ) α and σ, or types differing only by the commuta-
tion of two binders, are equivalent in iMLF and eMLF. That is, one type can be freely used
instead of the other in iMLF. By contrast, the transformation of one type into the other
must be explicitly witnessed by a type computation in xMLF. For most equivalence steps,
we can find a witness computation. However, this is not the case for the following rules:

• Inert types, which are roughly all the types generated by the grammar σ ::= α | σ → σ
in the syntactic presentations, can be inlined inside types through the following rule

iEq-Inert
α > σ ∈ Γ σ is inert

Γ ⊢ σ′ ≡ σ′{α← σ}

This rule has no equivalent in xMLF, and is not derivable.

• Type equivalence is congruent under type constructors, as per the following rule

iEq-Con-Arrow
Γ ⊢ σ1 ≡ σ′

1 Γ ⊢ σ2 ≡ σ′
2

Γ ⊢ σ1 → σ1 ≡ σ′
1 → σ′

2

In xMLF, this rule is not derivable either: transforming a type is possible only by chang-
ing bounds or inlining them, and we cannot modify a type under a type constructor
such as an arrow (except by a computation N, but applying such a computation is
almost never reversible).

• In eMLF, type equivalence can be performed under rigid bounds. This is problematic
to deal with if rigid bounds are inlined during the translation, as we may again have
to perform some transformations under type constructors.

Thus we need to show—and actually exhibit an effective translation on derivations—
that, once types are normalized in a certain way, a term typable in iMLF or eMLF is also

15.6. Translating the syntactic presentations of MLF into xMLF 271

typable without using equivalence under rigid bounds or under type constructors, and with-
out using rule iEq-Inert1. In essence, this is similar to considering only translatable pres-
olutions on graphic types; on non-translatable presolutions, we weaken inert-locked nodes,
so as to remove the need to translate an instance operation on them. However, we believe
this normalization result will be more difficult to establish for the syntactic presentations,
since the equivalence relation is larger.

We also expect that some of the other difficulties we encountered when translating
graphic types will show up when translating the syntactic versions of MLF. Leijen (2007)
has presented a translation of MLF into System F, and there are many similarities between his
work and ours. For example, he introduces a notion of canonical instance and abstraction,
which prevents the commutation of some binders. Leijen also normalizes all the types into
their normal syntactic form during the translation, in order to remove spurious occurrences
of type equivalence.

15.6.2 Expressivity of alias bounds

Let us call alias bound a bound of the form ∀ (β > α) σ. Perhaps surprisingly, the types of
xMLF on the one hand, and of either iMLF or eMLF on the other hand, cannot be interpreted
in exactly the same way, as the interpretation of alias bounds in those systems differ.

In both (Le Botlan 2004) and (Le Botlan and Rémy 2007), alias bounds can be inlined.
For example, let us call σ0 the type

∀ (α > σ) ∀ (β > α) α→ β

It is equivalent in those two presentations to ∀ (α > σ) α → α. In fact, the set of ground
types into which σ0 can be instantiated into is exactly

{σ′ → σ′ | σ ≤ σ′}

Alternatively, (in iMLF) we can write the type ∀ (α > σ) σ → α. However, the set of its
instances is only

{σ → σ′ | σ ≤ σ′}

In xMLF, the set of instances of σ0 is larger, and at least a superset of

{σ′ → σ′′ | σ ≤ σ′ ≤ σ′′}

as witnessed by the computations ∀ (> ϕ); N; ∀ (> ϕ′); N (where ϕ and ϕ′ verify ⊢ ϕ : σ ≤ σ′

and ⊢ ϕ′ : σ′ ≤ σ′′).
This level of generality can be expressed neither in the syntactic nor in the graphic

presentation of MLF.2 In fact, it seems at first to endanger type soundness. In both
(syntactic) iMLF and eMLF, the identity function can be assigned the type ∀ (α >⊥) α→ α
(which we call as usual σid) as well as the equivalent type

σ1 , ∀ (α >⊥) ∀ (β > α) ∀ (γ > α) β → γ

1At least in the right-to-left direction, as the left-to-right one can be partially simulated by the rule
Inst-Quant-Elim of xMLF.

2In the graphic presentation, one could think to use an instantiation edge from the codomain of the
arrow to the domain. However such an edge would be ill-sorted.

272 Translating gMLF into xMLF

In xMLF, σ1 can be instantiated into σ′ → σ′′, where σ′ and σ′′ are arbitrary instances of
⊥, which is certainly not a sound type for the identity function. Thankfully, the identity
function cannot receive the type σ1 in xMLF. We can explain the differences as follows.

• Proving that σ1 and σid are equivalent in iMLF and eMLF requires the equivalence rule
iEq-Inert. As we mentioned in the previous section, this rule is not present—and
not derivable—in xMLF. Type soundness is safe!

• Conversely, the instance rule Inst-Quant-Elim of xMLF is more general than the
corresponding rule iIns-Subst of iMLF: the latter is restricted to the inlining of
variables that are not exposed, which exactly prevents deriving ⊢ σ1 ≤ ∀ (α > σ)
∀ (β > σ) α→ β (Le Botlan and Rémy 2007).

Thus, by restricting iEq-Inert and extending iIns-Subst, we have reached another point
in the design space for the syntactic presentations of MLF. It is not yet entirely clear if one
presentation is superior to the other.

In summary, special care must be taken when translating syntactic iMLF and eMLF into
xMLF. A simple solution is to entirely inline all inert bounds (which include alias ones).
Another possibility would be to forbid alias bounds entirely. This is the direction followed
by our graphic presentation of MLF, where they cannot be expressed at all. In parallel, a
preliminary version of the HML system (Leijen 2009) also inlined inert bounds. However,
this approach does not seem so natural in the Church-style version of MLF, and it would
have severely complicated the presentation of xMLF. Hence, we chose to stick to the current
system.

Part

IV

Conclusions

273

16
Related works

Abstract

We summarize related works. §16.1 discusses other proposals aiming at performing
type inference in presence of second-order polymorphism. §16.2 summarizes various
efficient approaches for ML type inference, including the use of constraints, and link
them to our MLF type inference algorithm. §16.3 briefly compares xMLF with some
other fully-explicit languages.

16.1 Type inference and second-order polymorphism

MLF in general, and this work in particular, continues a long line of research aimed at
enabling partial type inference in languages with second-order polymorphism. A very thor-
ough comparison between those works and MLF has been given by Le Botlan and Rémy
(2007), and also applies to the version of MLF presented in this document. We summarize
the must relevant works next. A comparison between the various flavours of MLF is given
in Appendix A.

Type containment. We have briefly discussed the system Fη of Mitchell (1988) in §3.4.
Mitchell had noticed that System F might not be well suited for studying type inference, and
proposed to extend the instance relation of System F so as to have more terms with principal
types. While there are some similarities between Fη and MLF, they are only superficial. In
particular, the ability to instantiate a subtype in Fη is entirely driven by the structure of
the type, according to the variance of the arrow constructor, i.e. covariantly on the right
of an arrow, and contravariantly on the left. This is unfortunately not sufficient to obtain
principal types for all terms. Conversely, in MLF, type instantiation is explicitly enabled,
through the use of flexible quantification. However, since MLF does not allow instantiating

275

276 Related works

variables in contravariant positions along ⊒ (unlike Fη), both systems are incomparable.
Still MLF is much better suited to perform type inference.

Type inference based on higher-order unification. Higher-order unification has been used
to explore the practical effectiveness of type inference for System F by Pfenning (1988).
Although known to be undecidable, higher-order unification is often tractable in practice.

In MLF we have chosen the opposite approach: we strictly keep a first-order unification
mechanism and never infer polymorphic types—we just propagate them. Interestingly, one
proposal seems to require annotations exactly where the other can skip them: Pfenning’s
system requires placeholders (without type information) for type abstractions and type
applications, but never needs type information on arguments of functions. Conversely, MLF

requires type information on (some) arguments of functions, but no information for type
abstractions or applications.

Another important difference is the fact that Pfenning’s work extends seamlessly to
systems with higher-order polymorphism (such as Fω), while this question remains to be
studied for MLF.

Decidable fragments of System F. Several authors have studied fragments of System F
for which type inference is decidable, in particular rank-2 polymorphic types (Kfoury and
Wells 1994), called Λ2, and rank-2 intersection types (Jim 1995), called I2. (For n ≥ 3,
type inference in Λn or In is undecidable.) Interestingly, I2 and Λ2 type exactly the same
programs. However, a severe limitations of both systems is that they are not compositional:
because of the rank limitation, one may not abstract over arbitrary values of the language.
As first-class polymorphism is precisely needed to introduce a higher level of abstraction,
we think this is a fundamental limitation.

As presented by Kfoury and Wells (1994), type inference in Λ2 is also quite involved.
Indeed, it requires rewriting programs according to some non-intuitive set of reduction rules
into acyclic semi-unification problems. Hence, no simple specification of well-typedness is
provided to the user, and it is almost impossible to translate back an error during type
inference in terms of the original typing problem. Worse, Λ2 does not have principal types,
and type inference can thus only be performed on full programs. An improved type inference
algorithm for Λ2 has recently been proposed by Lushman (2007). Lushman attempts to
solve the non-modularity inherent to the lack of principal types by using types of F3, the
third-order λ-calculus. Unfortunately, his algorithm is incomplete. Noticeably, I2 has better
properties than Λ2, including principal typings.

Intersection types and System E. Carlier et al. (2004) have proposed a type system,
called System E, that generalizes intersection types with expansion variables. Their goal
is quite different from ours, as they aim at subsuming all previous systems based on inter-
section types. Since systems with intersection types of arbitrary rank can type all strongly
normalizing terms, their type inference algorithm is intrinsically incomplete.

There is at least one connection to be made before their work and ours. While we share
several possible typing derivations for a (sub)term through the use of flexible quantification,
they achieve a somewhat similar same goal via expansion variables. Nevertheless, there
exists deep differences between the two mechanisms, as the two underlying systems are very

16.1. Type inference and second-order polymorphism 277

different: expansion variables introduce intersection types, while flexible quantification is
based on universal (bounded) quantification.

Local type inference. Local type inference (Pierce and Turner 2000) uses typing con-
straints to propagate type information locally—as opposed to the global propagation re-
sulting from unification, as used in ML. More precisely, type information is propagated only
between adjacent nodes in the syntax tree. Another key feature of local type inference is
the fact that type information is propagated in a bidirectional fashion. That is, the type
of an expression can be either inferred or checked. As an example, when an anonymous
function appears as an argument to another function, the expected domain type is used
as the expected type for the anonymous abstraction, allowing the type annotations on its
parameters to be omitted. Local type inference has later been refined into colored local
type inference (Odersky et al. 2001), in which partial type information may be propagated.

Local type inference is quite successful at leaving implicit many (but not all) elimina-
tions of both subtyping and universal polymorphism. However, one drawback is that it is
somewhat fragile, and does not support some simple program transformations. As an ex-
ample, if f x is typable, the application apply f x may be untypable when f is polymorphic.
Moreover, while many type annotations can be removed, a few of them remained necessary
and sometimes in rather unpredictable ways (Hosoya and Pierce 1999). Moreover, local type
inference is not a conservative extension of ML: some valid ML programs are not typable
using only local type inference.

It should be noted that local type inference, colored or not, is natively able to han-
dle subtyping, unlike most other proposal for type inference in presence of second-order
polymorphism. Extending MLF with subtyping remains to be explored.

Boxed first-class polymorphism refers to the encapsulation of first-class polymorphic val-
ues into ML (monomorphic) ones, through the use of injection and projection constructions.
In their most basic version, injections and projections are explicit, even though, in practice,
they can be attached to datatype constructors (Läufer and Odersky 1994; Rémy 1994).
This however requires preliminary type definitions to be made for all polymorphic types
that need to appear inside programs. Moreover, one must explicitly distinguish between
boxed and unboxed values, which may be quite annoying in practice.

As an improvement, Garrigue and Rémy (1999) proposed Poly-ML. In this system, the
projection from polytypes to monotypes only needs a placeholder: the actual type of the
projection needs not be specified. In parallel, the injection of polymorphic values into
monomorphic ones uses one unified construct for all the injections. This alleviates the need
for prior type definitions.

While representing a significant progress, Poly-ML is not entirely satisfactory. First,
the programmer still needs to distinguish between monomorphic and polymorphic values
explicitly. Moreover, the type annotation which is needed when a polymorphic value is
created is utterly redundant: the programmer has to write let v = e : σ, while the compiler
only checks that the type it infers for e is indeed σ.

(Partial) type inference for the predicative fragment of System F. Odersky and Läufer
(1996) have extended boxed polymorphism to implicit predicative instantiation of rank-2
polymorphism, which was later improved to arbitrary-rank types by Peyton Jones et al.

278 Related works

(2007). Technically, this approach mixes local type inference with ML-style, unification-
based type inference. However, the restriction to predicative polymorphism is quite strong,
and does not allow reaching all the expressivity of System F.

In parallel, Rémy (2005) studied a form of stratified type inference for System F, allow-
ing explicit impredicative type-instantiation, and implicit predicative instantiation along
the restriction of the containment relation of Mitchell (1988) to its predicative fragment.
Since the instance relation ⊑ of MLF does not subsume 6Fη, Remy’s system and MLF are
incomparable w.r.t. to their expressivity. However, as noted by Rémy (2005), the frag-
ment of 6Fη not present in ⊑ (which concerns the instantiation of subtypes in contravariant
positions according to >Fη) is not really needed in practice.

16.1.1 More recent proposals

The last few years have seen the introduction of an important number of systems aiming
at extending ML with the expressivity of System F polymorphism. We first briefly present
those systems, then compare them with MLF at the end of this section.

Boxy types have been proposed by Vytiniotis et al. (2006) as an extension to both boxed
polymorphism and local type inference. Types include boxes, and the identity function can
receive either the usual type ∀ (α) α→ α, or the boxed type ∀ (α) α→ α . Boxes essentially
encode the inferred/checked duality of local type inference. That is, a judgment of the form

Γ ⊢ t : bool → int

checks that t has a type of the form something→ int, and infers that something is bool. Seen
in another way, boxy types go one step further than Poly-ML, by removing the projection
from polytypes to monotypes of Poly-ML from the level of expressions, and retaining it only
at the level of types.

Unfortunately, there is an obvious competition between the boxed form and the unboxed
one. The typing rules of the system are presented in an algorithmic fashion, and resolve
the competing cases in favor of one or the other view. The type system has principal types,
but only with respect to this algorithmic specification. Also, as noted by their authors
(Vytiniotis et al. 2008), boxy types often require programs to unbox the content of a box
too early. As a result, many type annotations are required. To avoid them, boxy types
have to be extended with ad-hoc heuristics such as N -ary applications. This complicates
the system, and reduces its predictability.

Rigid MLF is a restriction of MLF that restricts the typechecking of let-bindings to use
only F types (Leijen 2007). By also restricting type annotations to F types, all expressions
can now be typed with MLF types containing only rigid bindings (except for type variables
themselves), i.e. F types.

One of the advantages of Rigid MLF is the fact that a typable term can be elaborated very
easily into System F—in fact, the system was introduced for this very reason. Unfortunately,
Rigid MLF looses principal types in the usual sense. (Technically it recovers them by using
an ad hoc, non logical side condition in typing rules to rule out some otherwise correct
typing derivations.) Moreover, while Rigid MLF uses only F-types, its instance relation is
based on the MLF one, and imports all its complexity.

16.1. Type inference and second-order polymorphism 279

HML Leijen (2009) has identified a quite interesting variant of MLF, called HML. His
system does not use rigid bindings at all, only flexible ones. But, crucially, it still permits
type inference. His proposal, inspired by the syntactic presentation of iMLF (Le Botlan and
Rémy 2007), can be seen as another possible syntactic eMLF.

Of course, dropping rigid quantification has a cost. Indeed, it sometimes becomes nec-
essary to introduce type annotations during reduction. As an example, let us define ω as
λ(x : σid) x x. While (λ(x) λ(y) x y) ω is typable in HML, its reduct λ(y) ω y is not. This
example illustrates the loss of stability by both η-expansion and β-reduction. Nevertheless,
HML remains a very interesting variant of MLF: it preserves principal types and the logical
flavor of typing rules, as well as interesting program transformation such as let-conversion.
Moreover, compared to MLF, the removal of rigid quantification is a real simplification.

HMF is a moderate extension of ML proposed by Leijen (2008), which still possesses
the full expressivity of System F. Its attractiveness stems from its simple type inference
algorithm, which is only a small extension of the ML one, and from its relatively simple
specification. At the heart of HMF is an application rule which performs a form of local
matching, which is used to determine impredicative instantiations. In order to ensure good
properties to the system, this matching procedure imposes certain “minimality” conditions.
In particular, the allowed impredicative instantiations are those that minimize the amount
of polymorphism introduced. In its simplest form, HMF is quite sensitive to the order of
arguments in applications. In order to remove some type annotations, and to make the
system more robust to program transformations, the matching procedure for applications
can be extended to an N -ary application rule.

Unfortunately, without flexible quantification, true principal types are lost. As in Rigid
MLF, they are technically recovered in HMF through non-logical side-conditions added to
the typing rules, which favor ML-style polymorphism. This means that the system is not
stable by, for example, the sharing of common subexpressions through let-bindings.

FPH is another proposal by Vytiniotis et al. (2008), that enriches Systems F types with
boxes. However, the boxes of FPH are quite different from the one used in boxy types,
as they are used in boxy types to keep track of impredicative instantiations. Boxes are
removed when types are compared with user-supplied type annotations, or during the typing
of applications. Conversely, they are prevented from entering the typing environment: let-
bound expressions must have box-free types. Thus the system privileges ML types for those
expressions, while the richer typings available in System F can be obtained through the use
of type annotations.

The specification of FPH is quite simple, and leads to the following rule for the placement
of type annotations: they are only needed on let-bindings and λ-abstractions with second-
order types. Interestingly, type inference in FPH uses MLF types, and represents boxes by
flexible quantification. However, this is entirely hidden from the programmer, which only
“sees” the high-level specification. (Unfortunately, it is not clear that type error messages
encountered during inference can be explained using only boxed types.)

Finally, while FPH has a modular type inference algorithm, in the sense that typecheck-
ing of let-bound expressions can be done without looking at the various uses of the bound
expression, it does not enjoy principal types. Indeed, even though flexible quantification
is used for type inference, this is only done internally: flexible types cannot appear in the

280 Related works

result of type inference. We think that the lack of principal types is a severe limitation in
practice (although the ad-hoc form of principal types found in FPH and Rigid MLF is not
really satisfactory either). Moreover, this implies that FPH does not enjoy many of the
modularity properties of MLF, as explained below.

Interestingly, in spite of their limitations when compared with MLF, FPH and HML show
that rigid quantification is not strictly needed to perform MLF-style type inference. Rigid
bindings however allow for better (more expressive) type inference, and for more robustness
to program transformations.

A comparison between all these systems Let us conclude this section by a comparison
between MLF and the five systems presented above. None of those systems is superior to
all the others on all points, and we compare them according to five criterion we believe are
important in practice.

Simplicity of the specification

The specification of MLF is complex. While mastering the system in its entirety is not
needed to use it (for example the programmer does not really need to know about the
similarity relation, or even the abstraction relation), MLF remains significantly more
complex than e.g. ML. Moreover, the form of bounded quantification used inside MLF

types is unusual. Using our syntactic sugar bounded quantification is often inlined.
Nevertheless, it appears sometimes. We believe that the programmer needs to be
aware of its existence to fully use the power of MLF, and to really understand the
system.

In comparison, FPH and Rigid MLF are much easier to present: they use the more
familiar System F types, and their instance relations and typing rules are relatively
simple. In fact, they have been designed from the ground-up to have a simple speci-
fication. Still, we believe that the large gap between the specification of FPH and its
type inference algorithm will make very hard the generation of good error messages,
as it will be difficult to explain them in terms of the high-level specification.

HML is also simpler than MLF, thanks to the removal of rigid quantification. It however
remains more complicated than FPH or Rigid MLF.

Conversely, Rigid MLF is actually (slightly) more complicated than MLF. Indeed, its
typing rules are those of MLF, except the one for the let construct which requires the
principal MLF type of the bound expression to be extruded into a System F type.

Finally, the full specification of boxy types is also quite involved, as it needs many
extensions to avoid the introduction of too many type annotations. The typing rules
also have a strongly algorithmic flavor. One advantage over MLF (w.r.t. simplicity) is
the fact that boxy types are essentially F types.

Type annotations needed to reach all of System F

The various systems differ by the amount of type annotations required to make a Sys-
tem F program typable. Leaving aside boxy types temporarily, MLF requires the least

16.1. Type inference and second-order polymorphism 281

type annotations. In fact, it only needs type annotations on arguments of abstraction
that are used polymorphically.1

Next probably comes HML: compared to MLF, the removal of rigid quantification
means that all abstractions using arguments with a second-order type must be anno-
tated. This was not the case in MLF, where λ(x) f x is typable as soon as f itself is
typable. HML does however not require annotations elsewhere.

FPH requires annotations on abstractions with second-order types, and on let-bindings
with a second-order type. This specification is however conservative, and some of
those annotations might be redundant. Rigid MLF requires annotations on the same
locations.

In comparison, HMF requires significantly more type annotations than the systems
above. In fact, when translating a System F term into an HMF one, annotations are
potentially required on the arguments and on the body of abstractions, and on the
argument of applications.

Because of their algorithmic specification, it is difficult to compare boxy types with
MLF precisely. As they privilege propagation of type information from the function
type to the argument type, they can type examples where MLF would require an
annotation. Conversely, there are many examples that MLF can type and that boxy
types cannot. We believe that besides the few biases of the algorithmic propagation,
boxy types require significantly more annotations than MLF.

Expressivity of the system with type annotations

An interesting point of comparison is to consider the set of terms typable in each
system, using as much type annotations as needed. Through the use of flexible quan-
tification, MLF is actually (significantly) more expressive than System F. For example,
the following MLF program is not typable in System F, as it is not possible to give a
correct type annotation for l

λ(l : ∀ (α > σid) α list) (map (λ(x : σid) (x 1, x ′c′)) l, (λ(x) x + 1) :: l)

Indeed, the first component of the pair requires l to have type σid list, while the
second one forces it to have int list. As a consequence, the systems that have exactly
the expressivity of System F (which we believe is the case of all the systems above but
MLF and HML) are strictly less expressive than MLF.

Interestingly, even though it uses MLF-style bounded quantification, HML is also less
expressive than MLF. This time however, this is because HML is based on the shallow
version of MLF, which is strictly less expressive than the full one. HML is however
more expressive than the four other systems.

Complexity of the implementation

Type inference is significantly more complex to implement for MLF than for ML, mainly
because of the increased complexity in the type unification algorithm (though graphs

1This is different from saying that the argument is used with two different types. Consider indeed the
expression λ(x : σid)

(
λ(y : ∀ (α) unit → α → α) (y ()) (y ())

) (
λ() x

)
; while x is only used once, the

expression is not typable without the annotation on x.

282 Related works

somewhat reduce this complexity gap). Some of the systems discussed above incor-
porate MLF, either in their specification (Rigid MLF and HML), or in the specification
of their inference algorithm (FPH). For those systems, type inference is as involved as
in MLF.2

Type inference for boxy types is also quite involved, and it is not clear it is really
simpler than type inference in MLF, especially if graphs are used. However, since boxy
types are essentially F types (up to boxes), replacing ML types by boxy ones inside an
existing implementation is likely to be less invasive than replacing them by MLF types.

Finally, compared to all the other systems, type inference in HMF is significantly
simpler. This is unsurprising, as it was one of the design goals of this system.

Resilience to program transformation

MLF is remarkably robust to small program transformations. In particular, programs
are stable by η-expansion, η-reduction of unannotated abstractions, let-contraction,
and β-contraction (with possibly an annotation on the argument of the abstraction
which is introduced). Moreover, application can be redefined: if f x is typable, so is
apply f x and revapply x f , where apply and revapply are respectively λ(f) λ(x) f x
and λ(x) λ(f) f x.

None of the systems discussed at the beginning of this section support all the trans-
formations above. Except for boxy types, we believe that they are all stable by the
redefinition of application through the use of apply. However, this is not the case
for revapply. Indeed, this term can receive two incompatible types in System F,
∀α. ∀β. α→ (α→ β)→ β or ∀α. α→ ∀β. (α→ β)→ β. Thus the systems that are
based on F types must privilege one form or the other (making the system not stable
by the use of revapply), or use some form of local matching for applications. Unfor-
tunately, in this second case, the system is in general not stable by let-contraction: if
f x is typable, it is not always the case that let g = revapply x in g f is.

let-contraction is actually a very good example, as it requires “true” principal types to
hold. Thus we believe that this transformation is only valid in MLF and HML, since all
the other systems sometimes require type annotations on let-bound variables that have
second-order types. Similarly, we believe that η-expansion preserves typability only
in MLF. Indeed, when the function which is η-expanded has a polymorphic argument,
it requires an annotation in all the systems but MLF. This is in particular the case in
HML, where the lack of rigid quantification makes the annotation necessary.

Finally, we also believe that β-contraction is only possible in MLF. Indeed, it also
requires “true” principal types. But it does not hold in HML, as this system is stratified:
even though an expression can have a type σ, it is not always possible to write a
function of type σ → σ′.

The comparison above highlights the strengths of MLF: its expressiveness, the low amount of
type annotations needed to type all of System F, and its remarkable robustness to program
transformations. In fact, we believe that the only real drawback of the system is its complex

2In particular, much of the complexity in MLF unification lies in maintaining proper scopes (through
adequate raisings) for the bounded quantification used by MLF types. Thus, the removal in HML of rigid
quantification should not result in a major simplification of the type inference algorithm.

16.2. Type inference for MLF 283

specification—the only other issue, namely the complexity of the type inference algorithm,
is shared by essentially all the other systems.

Moreover, we strongly believe that flexible quantification is a key ingredient to perform
type inference in presence of second-order polymorphism while retaining good theoretical
properties (as shown by the discussion above). Thus it seems difficult to significantly reduce
the complexity of the specification below the one of HML.

16.2 Type inference for MLF

16.2.1 Efficient type inference for ML

Efficient type inference algorithms for ML have many similarities with our graphic type
inference algorithm. Of course, they all use a graph-based unification algorithm and reduce
type schemes in an inner-outer fashion. They also use a notion of ranks (or frames) to
keep track of generalization levels and perform generalization more efficiently (Rémy 1992;
McAllester 2003; Pottier and Rémy 2005; Kuan and MacQueen 2007). Merging two multi-
equations in (Rémy 1992) requires them to have the same rank, hence lowering their rank to
the smallest of the two beforehand. Similarly, merging two nodes in graphic types requires
them to have the same bound, hence raising them to their lowest common binder. Raising
binding edges has also strong similarities with Rule S-Let-All of (Pottier and Rémy 2005).

16.2.2 Type inference using typing constraints

To the best of our knowledge Henglein has first expressed type inference as the satisfaction
of type-inference constraints, which led him to semi-unification problems (Henglein 1993).
Hence, the obvious similarity between our constraints and his. However, his constraints
are interpreted over first-order types while ours are interpreted over graphic types, that
are second-order. Our constraints are therefore more expressive. His constraints avoid the
explicit representation of gen nodes, and instead read types as type schemes according to the
context. We cannot make this simplification in MLF, because MLF types are second-order,
and expansion is more complicated in MLF than in ML.

Typing constraints for ML have been explored in detail (Pottier and Rémy 2005). There
are many similarities between this work and ours. Typing constraints are introduced first,
independently of the underlying language; then a set of sound and complete transformations
on typing constraints are introduced; the type inference algorithm is finally obtained by im-
posing a strategy on applications of constraint transformations. Moreover, some important
steps of both frameworks can be put in correspondence (solving unification constraints, ex-
pansion of type-schemes, etc.). Our constraints are however more concise, for two reasons.
Firstly, the graphic representation of types is more canonical; for instance, we need no rule
for the commutation of adjacent binders. Secondly, the underlying binding structure of
graphic types is reused for describing the binding constructs of graphic constraints. Hence,
the representation of constraints requires fewer extension to the representation of types, as
the latter is already richer.

Semi-unification As shown by Henglein (Henglein 1993), type inference for ML reduces
to semi-unification problems that are trivially acyclic by construction—in the absence of

284 Related works

polymorphic recursion. Hence, we could possibly see our constraints as encoding a form of
acyclic graphic-type semi-unification problems.

16.3 Explicit languages

Extending MLF with qualified types Leijen and Löh (2005) have studied the extension of
MLF with qualified types and, as a subcase, the translation of MLF without qualified types
into System F. However, since System F types cannot capture the full richness of MLF types,
an MLF term of type ∀ (α ⋄ σ′) σ has to be elaborated into a function of type

∀ (α) (σ′
⋆ → α)→ σ⋆

when σ′ is not ⊥. In the type above, σ⋆ is a runtime representation of σ, and the first
argument of the function is a runtime coercion. The translation to System F has been
improved by Leijen (2007). In this last work, rigid bindings are inlined and do not give rise
to coercion functions.

Regarding the translation into an explicitly-typed language, the most important dif-
ference between those works and ours (in the context of xMLF) lies in the fact that their
coercions are at the level of terms, while our instantiations are at the level of types. In
particular, although coercion functions should not change the semantics, this has not been
proved so far. In our settings the type-erasure semantics comes for free by construction.
The incidence of coercion functions in a call-by-value language with side effects is also un-
clear. We have not yet explored the use of xMLF to accommodate qualified types, but expect
no real difficulty in doing so. In fact, we believe the use of xMLF type instantiations will
permit a cleaner separation between evidence functions and type instantiations resulting
from impredicative instantiations.

While Leijen (2007) and we translate MLF partially annotated terms to quite different
languages—System F and xMLF respectively, our translation shares some ideas with his.
For example, Leijen normalizes the MLF typing derivations, so as to prevent unwanted com-
mutation of binders which would create ill-typed terms. This is similar to what we did
when translating presolutions, where we order the nodes of the presolutions according to
<P. Likewise, Leijen normalizes all the types to their syntactic normal forms during the
translation, to avoid translating some spurious (and useless) instances; this is reminiscent
of our normalization of presolutions into translatable ones. Interestingly, although we iden-
tified the same issues when defining the translation, we chose quite different approaches to
solve them.

Extending Church-style System F Sulzmann et al. (2007) have extended System F with
type equality coercions, to accommodate some of the advanced features of the type system of
the GHC compiler, in particular generalized algebraic datatypes (Xi et al. 2003; Jones et al.
2006). Type equality coercions are used to express that two types are (locally) equal, and to
explicitly coerce one type into the other. The coercions are made explicit through witnesses
that have some similarities with the computations we introduced in xMLF. System FC has
also been designed to be a compiler intermediate language, which is one of the objectives
we have pursued with xMLF.

17

Conclusion

17.1 Our work in the context of MLF

The metatheory of MLF We have given a formal meaning to the graphs informally used
in the original presentation of MLF (Le Botlan 2004). Our definition of the instance relation
in terms of graphic types is both simpler and more intuitive than the syntactic based
presentations. Moreover, we entirely sidestep some artifacts of the syntactic definitions,
such as the rule Eq-Var of the equivalence relation, or the protected type abstraction
relation of (Le Botlan and Rémy 2007).

We have found the graphic approach to be quite suitable to modifications; in fact,
we have refined the instance relation several times during the course of this work. Our
understanding of the design space is also much improved.

The system presented is this document is the full version of MLF and is, to this date,
more general than all the other versions. Compared to the original presentation (Le Botlan
and Rémy 2003), our better understanding of the design space has allowed us to significantly
extend the instance relation. Compared to the «recast» presentation of MLF (Le Botlan
and Rémy 2007), the instance relations coincide: the improvements to the instance relation
we have found on graphic types have been transferred back to the syntactic presentation.
However, this is only the case on the set of types common to both systems, and our types
are strictly more general than the ones of that version. In particular, the recast version
is stratified, and abstraction is not possible over all values: if σ is a valid type, it is not
necessarily the case that σ → σ′ is. No such restriction exists in our system.

Graphic constraints The graphic constraints we have presented are simpler than the syn-
tactic ones that have been developed for ML; in particular they sidestep tedious issues such
as α-renaming or commutations of binders. They are also simpler because the operation of
extruding polymorphism, which is needed in ML constraints, is already present in graphic
types as the raising operation. Hence MLF constraints need fewer new constructs compared
to ML constraints, as MLF types are already richer than ML ones.

285

286 Conclusion

We have obtained a new, fully graphical presentation of MLF, where both the specifi-
cation and the type inference algorithm are done graphically. This presentation highlights
the very strong ties between ML and MLF. Our constraint-based approach also offers more
freedom than a simple type inference algorithm, particularly in the resolution strategies.

We have also formally established the complexity bound for MLF type inference. Our
results are very similar to the ones obtained for ML. In particular, under reasonable as-
sumptions, we have shown that type inference for MLF has linear-time complexity.

Displaying MLFtypes MLF types generalize the types of System F, and the form of bounded
quantification they feature can be a little intimidating to the user. We have proposed a
simple form of syntactic sugar which, we believe, is quite efficient. In our experience the
principal type of most terms can be displayed as a System F type.

An internal language for MLF We have introduced a fully Church-style version of MLF,
suitable for use as an internal language in a typed compilation chain. This completes the
Curry-style iMLFand the type-inference version eMLF (that requires partial type annotations
but does not tell how to track them during reduction). Interestingly, xMLF is quite simple.
It is also a strict extension of System F, and could be used as a drop-in replacement for an
internal language based on that system.

We have also described a translation of well-typed eMLF programs into well-typed xMLF

ones, that moreover preserves the type erasure of terms. This ensures in particular the type
soundness of eMLF, with either call-by-value or call-by-name semantics. This is the first
time MLF has been proven sound for call-by-name.

17.2 Applications beyond MLF

Our work has some applications that go beyond MLF, which we discuss below.

Graphic types Our representation of types using graphs can be used for other type systems
than MLF. In fact, we have already discussed in §3 how System F types could be represented.
Since MLFuses bounded quantification, our work extends to systems that have the same type
of syntactic construction, such as F≤ (Cardelli et al. 1994). Second-order types have a notion
of well-scopedness whether they use bounded quantification or not. Our characterization of
correct types as well-dominated graphs (Definition 4.3.3) should a priori be the same in all
forms of graphic types.

A “low-level” instance relation Our decomposition of the instance modulo similarity re-
lation ⊑≈ into an oriented relation ⊑ and a reversible relation ⊒rmw has many advantages.
The relation ⊑ is quite simpler than ⊑≈ (in particular it is noetherian), making proofs more
lightweight. Moreover, it brings theory and implementation closer. Indeed, we have studied
and implemented a type inference algorithm for gMLF, and formally shown that it is not
more general than an eMLF one. This contrasts with the informal approach usually followed
for ML or its variants: the system studied is «eML» (i.e. a syntactic representation of types,
which works up to similarity), but the implementation uses term-graphs for efficiency rea-

17.3. Perspectives 287

sons (hence is done for «gML»). Our approach shows that a fully-formal development is
possible.

A framework for type inference It is easy to extend our constraints framework beyond
ML and MLF types. Provided unification on the types of the system under consideration
is principal, it suffices to define an appropriate expansion operation, and to verify that
eager propagation preserves presolutions (Lemma 11.4.2). Good candidates for this are the
systems FPH (Vytiniotis et al. 2008) and HML (Leijen 2009), which are both partially based
on MLF.

17.3 Perspectives

There are several ways to extend our work, which we did not explore by lack of time. We
comment on some of them below.

Beyond second-order types By simplifying MLF and increasing our understanding of it,
the graphic presentation permits exploring further extensions of MLF with richer type struc-
tures, which can be already be found in some ML-like languages. This includes generalized
algebraic datatypes (Xi et al. 2003; Jones et al. 2006; Pottier and Régis-Gianas 2006), re-
cursive, higher-order or primitive existential types (Läufer and Odersky 1994), subtyping
etc.

The combination of recursive types and second-order polymorphism alone is already
tricky (Gauthier and Pottier 2004), and we expect the addition of recursive types to MLF to
be challenging. Allowing cyclic term-graphs in our types should be possible (even though
we did not try to do so). The main difficulties likely lie in the treatment of recursion in the
binding structure.

Probably harder, but also quite useful, would be to extend the mechanism of MLF to
higher-order types. The interaction of β-reduction at the level of types with a first-order
type inference à la MLF seems non-trivial. A possible solution would be to make all higher-
order quantifications fully explicit.

The encoding of existential types into universal types behaves rather well in MLF: the
unpacking of existential types does not require type information but only the position of
unpackings. It is thus tempting to believe that using primitive existential types instead of
encodings would remove the need for unpacking positions as well. Unfortunately, this seems
to be against the natural flow of type inference in MLF.

Strong normalization We expect terms typable in MLF to be strongly normalizing; however
this is currently only known for the shallow restriction of MLF. A possible approach would
be to prove this result first for xMLF. However, since type computations ⊲ σ or α ⊳ block
reduction, such a result would only be preliminary. Alternatively, we could extend the
semantics of MLF types introduced by Le Botlan and Rémy (2007) for shallow types, and
invoke the fact that System F is strongly normalizing.

Improving xMLF An obvious application of xMLF would be to implement qualified types
(Jones 1994)—the demand for an internal language for MLF was first made by some of the

288 Conclusion

implementers of Haskell. This question remains to be investigated.
The translation of eMLF presolutions into xMLF terms is also involved. Creating the

type computations coercing a type scheme into one of its instances on the fly during type
inferences raises some difficulties. Moreover, the type computations we currently generate
are complex, because of the differences between the instance relation ≤ of xMLF and ⊑ of
gMLF. Generating better computations is be possible, but the difficulty consists in doing
so with a good complexity.

Also, while graphical type inference has been designed to keep maximal sharing of types
during inference (so as to have good practical complexity) our elaboration implementation
reads back dags as trees and undoes all the sharing carefully maintained during inference.
A poor man’s solution to overcome this would be to use hash-consing. Alternatively, a
graphic presentation of xMLF could be devised.

Expressivity of the MLF variants It was somewhat of a surprise to realize that xMLF types
are actually more expressive than iMLF ones, because of a different interpretation of alias
bounds (§15.6.2). While the interpretation of xMLF seems quite natural in an explicitly
typed context, and is in fact similar to the interpretation of subtype bounds in F≤, the
interpretation of alias bounds in iMLF also seemed the obvious choice in the context of type
inference. We have left for future work the exploration of the additional power brought by
the xMLF interpretation, as well as the question of whether this additional power could be
returned back to eMLF while retaining type inference.

Interestingly, this is linked to one possible improvement of our constraints framework.
We cannot currently add an instantiation edge between two arbitrary type nodes, for various
technical reasons. Lifting this restriction would allow accessing the expressivity currently
only available in xMLF.

Part

V

Appendix

289

A

The flavours of MLF

A.1 The MLF cube

Except for xMLF, presented in §14 in this document, the versions of MLF that have been
proposed so far are essentially Curry-style: terms are either entirely unannotated, or con-
tain partial type annotations. All those systems share strong similarities. More generally,
partially Curry-style MLF-based systems can be defined along three entirely orthogonal axis:

eMLF/iMLF: the systems called eMLF form (by convention) the explicit versions of MLF:
they require partial type annotations, but type inference is possible. Conversely, iMLF

is the implicit presentation of MLF, in which type annotations are unnecessary; as a
counterpart, type inference is undecidable. iMLF and eMLF differ by their instance
relation, the one of iMLF being more general than the one of eMLF. In this document,
we also introduce gMLF, whose instance relation is even more restricted than the one
of eMLF (but eMLF and gMLF have similar expressivity).

Full/Shallow: full MLF systems use the entire set of MLF types. Conversely, in shallow
systems, types are stratified. More precisely, non-trivial flexible quantification cannot
appear under rigid bounds. The shallow variants are slightly simpler to present, but
have some drawbacks. In particular, polymorphism is second-order, but not first-class:
given a term of type σ, it is not always possible to write a function of type σ → σ′,
because of the stratification in types.

Syntactic/graphic: the graphic version of MLF is at the heart of this document. The
syntactic and graphic versions of MLF are quite different, but only in the way they are
presented—at the core they describe the same systems, which are defined by the two
points above.

On top of this, we can add two less important directions:

Original/improved instance relation: the original instance relation of MLF was less
general than the one presented in this document or in (Le Botlan and Rémy 2007).

291

292 The flavours of MLF

Types with or without rigid quantification: when considering iMLF, the presentation
can either include rigid quantification or inline rigid bounds. As for the choice between
the syntactic or the graphic presentations, this is mainly a matter of style. However,
inlining rigid edges usually results in a simpler presentation.

A.2 Existing variants

Not all the possible combinations above have been studied—there would be little point in
doing so anyway. We describe below the existing variants.

The original presentation (Le Botlan 2004; Le Botlan and Rémy 2003)

This presentation is entirely syntactic, and introduced MLF. The instance relation
is the original (weaker) one. Both eMLF and iMLF, in full and shallow versions, are
described; iMLF is presented with rigid binders.

The «recast» presentation (Le Botlan and Rémy 2007)

This is an improved syntactic presentation of MLF, in which types are given a semantics
in terms of sets of System F types. Both iMLF (with inlined rigid quantification)
and eMLF are described, but only in their shallow versions—extending the semantics
proposed in this document to non-shallow types remains to be done.

HML (Leijen 2009)

This is an alternative version of eMLF, slightly less general than the one of the «recast»
presentation. As a counterpart to this loss of expressivity (HML requires more type
annotations than MLF), HML does not use rigid quantification at all, which simplifies
the presentation of the system. The types of HML are shallow.

The graphic presentation (this work)

This work describes both eMLF and iMLF with the new (improved) instance relation,
and using graphs. Both systems use «full» types; hence this document presents the
most expressive version of MLF to date.1 iMLF is presented with rigid bounds; present-
ing graphic constraints with unbound nodes raises some challenges, hence our choice
to leave rigid edges.

1In fact, no syntactic presentation corresponding to our work currently exists.

B

Syntactic MLF relations

The equivalence, abstraction and instance relations of the original syntactic presentation of
MLF are presented in Figures B.1, B.2 B.3 respectively. Figure B.4 presents two important
derived rules. We use the original notations of MLF for the various relations.

Eq-Refl

(Q) σ ≡ σ

Eq-Trans

(Q) σ1 ≡ σ2 (Q) σ2 ≡ σ3

(Q) σ1 ≡ σ3

Eq-Comm

α1 /∈ ftv(σ2) α2 /∈ ftv(σ1)

(Q) ∀ (α1⋄1σ1) ∀ (α2⋄2 σ2) σ ≡ ∀ (α2⋄2σ2) ∀ (α1⋄1σ1) σ

Eq-Context-R

(Q, α ⋄ σ) σ1 ≡ σ2

(Q) ∀ (α ⋄ σ) σ1 ≡ ∀ (α ⋄ σ) σ2

Eq-Context-L

(Q) σ1 ≡ σ2

(Q) ∀ (α ⋄ σ1) σ ≡ ∀ (α ⋄ σ2) σ

Eq-Free

α /∈ ftv(σ1)

(Q) ∀ (α ⋄ σ) σ1 ≡ σ1

Eq-Var

(Q) ∀ (α ⋄ σ) α ≡ σ

Eq-Mono

α ⋄ σ0 ∈ Q (Q) σ0 ≡ σ0

(Q) σ ≡ σ[σ0/α]

Figure B.1 – Type Equivalence

293

294 Syntactic MLF relations

A-Equiv

(Q) σ1 ≡ σ2

(Q) σ1 ⊏− σ2

A-Hyp
α1 = σ1 ∈ Q

(Q) σ1 ⊏− α1

A-Trans
(Q) σ1 ⊏− σ2 (Q) σ2 ⊏− σ3

(Q) σ1 ⊏− σ3

A-Context-R
(Q, α ⋄ σ) σ1 ⊏− σ2

(Q) ∀ (α ⋄ σ) σ1 ⊏− ∀ (α ⋄ σ) σ2

A-Context-L
(Q) σ1 ⊏− σ2

(Q) ∀ (α = σ1) σ ⊏− ∀ (α = σ2) σ

Figure B.2 – Type Abstraction

I-Abstract
(Q) σ1 ⊏− σ2

(Q) σ1 ⊑ σ2

I-Hyp
α1 > σ1 ∈ Q

(Q) σ1 ⊑ α1

I-Trans
(Q) σ1 ⊑ σ2 (Q) σ2 ⊑ σ3

(Q) σ1 ⊑ σ3

I-Context-R
(Q, α ⋄ σ) σ1 ⊑ σ2

(Q) ∀ (α ⋄ σ) σ1 ⊑ ∀ (α ⋄ σ) σ2

I-Context-L
(Q) σ1 ⊑ σ2

(Q) ∀ (α > σ1) σ ⊑ ∀ (α > σ2) σ

I-Bot

(Q) ⊥ ⊑ σ
I-Rigid

(Q) ∀ (α > σ1) σ ⊑ ∀ (α = σ1) σ

Figure B.3 – Type Instance

A-Up
α′ /∈ ftv(σ0)

(Q) ∀ (α = ∀ (α′ = σ′) σ) σ0 ⊏− ∀ (α′ = σ′) ∀ (α = σ) σ0

I-Up
α2 /∈ ftv(σ)

(Q) ∀ (α > ∀ (α′ ⋄ σ′) σ) σ0 ⊑ ∀ (α′ ⋄ σ′) ∀ (α > σ) σ0

Figure B.4 – Derived rules

Bibliography

Brian Aydemir, Arthur Charguéraud, Benjamin C. Pierce, Randy Pollack

and Stephanie Weirich. Engineering formal metatheory. In POPL’08: Proceedings
of the 35th annual ACM SIGPLAN-SIGACT symposium on Principles of Programming
Languages, pages 3–15. ACM, New York, NY, USA, 2008a. ISBN 978-1-59593-689-9.
doi: 10.1145/1328438.1328443.

Brian Aydemir, Stephanie Weirich and Steve Zdancewic. Abstracting syntax,
2008b. Draft available from http://www.cis.upenn.edu/~baydemir/.

Henk P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-Holland,
revised edition, 1984. ISBN 0-444-86748-1.

Luca Cardelli, Simone Martini, John C. Mitchell and Andre Scedrov. An
extension of system F with subtyping. Information and Computation, 109(1-2):4–56,
1994. ISSN 0890-5401. doi: 10.1006/inco.1994.1013.

Sébastien Carlier, Jeff Polakow, J.B. Wells and Assaf J. Kfoury. System E:
Expansion variables for flexible typing with linear and non-linear types and intersection
types. In David A. Schmidt, editor, Prooceedings of the 13th European Symposium
on Programming., volume 2986 of Lecture Notes in Computer Science, pages 294–309.
Springer, 2004. ISBN 978-3-540-21313-0. doi: 10.1007/b96702.
http://www.macs.hw.ac.uk/~sebc/SystemE-short.pdf

Richard Cole and Ramesh Hariharan. Dynamic LCA queries on trees. SIAM Journal
on Computing, 34(4):894–923, 2005. ISSN 0097-5397. doi: 10.1137/S0097539700370539.

The Coq development team. The Coq proof assistant reference manual, version 8.1.
February 2007.
http://coq.inria.fr/doc/

Luis Damas and Robin Milner. Principal type-schemes for functional programs. In
Proceedings of the Ninth ACM Conference on Principles of Programming Langages, pages
207–212. 1982. doi: 10.1145/582153.582176.

295

http://dx.doi.org/10.1145/1328438.1328443
http://www.cis.upenn.edu/~baydemir/
http://dx.doi.org/10.1006/inco.1994.1013
http://dx.doi.org/10.1007/b96702
http://www.macs.hw.ac.uk/~sebc/SystemE-short.pdf
http://dx.doi.org/10.1137/S0097539700370539
http://coq.inria.fr/doc/
http://dx.doi.org/10.1145/582153.582176

296 Bibliography

Jacques Garrigue and Didier Rémy. Extending ML with semi-explicit higher-order
polymorphism. Journal of Functional Programming, 155:134–169, 1999. A preliminary
version appeared in TACS’97.
ftp://ftp.inria.fr/INRIA/Projects/cristal/Didier.Remy/iandc.ps.gz

Nadji Gauthier and François Pottier. Numbering matters: First-order canonical
forms for second-order recursive types. In Proceedings of the 2004 ACM SIGPLAN In-
ternational Conference on Functional Programming (ICFP’04), pages 150–161. September
2004. doi: 10.1145/1016850.1016872.
http://cristal.inria.fr/~fpottier/publis/gauthier-fpottier-icfp04.pdf

Jean-Yves Girard. Interprétation fonctionnelle et élimination des coupures de l’arith-
métique d’ordre supérieur. Thèse d’état, University of Paris VII, 1972.

Fritz Henglein. Type inference with polymorphic recursion. ACM Transactions on
Programming Languages and Systems, 15(2):253–289, 1993.

Haruo Hosoya and Benjamin C. Pierce. How good is local type inference? Technical
Report MS-CIS-99-17, University of Pennsylvania, June 1999.
http://repository.upenn.edu/cis_reports/180/

Gérard Huet. Résolution d’équations dans les langages d’ordre 1, 2, . . . , ω. Thèse de
doctorat d’état, Université Paris 7, 1976.

ICFP’08. Proceedings of the 13th ACM SIGPLAN International Conference on Functional
Programming (ICFP’08), Victoria, British Columbia, Canada. ACM Press, September
2008.

Trevor Jim. Rank-2 type systems and recursive definitions. Technical Report MIT-
LCS-TM-531, Massachusetts Institute of Technology, Laboratory for Computer Science,
November 1995.
http://www.research.att.com/~trevor/papers/ranktwo.ps.gz

Mark P. Jones. A theory of qualified types. Sci. Comput. Program., 22(3):231–256, 1994.
doi: 10.1007/3-540-55253-7_17.

Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich and Geoffrey

Washburn. Simple unification-based type inference for GADTs. In ICFP’06: Pro-
ceedings of the eleventh ACM SIGPLAN International Conference on Functional Pro-
gramming, pages 50–61. ACM, New York, NY, USA, 2006. ISBN 1-59593-309-3. doi:

10.1145/1159803.1159811.
http://research.microsoft.com/~simonpj/papers/gadt/gadt-rigid-contexts.pdf

Paris C. Kanellakis, Harry G. Mairson and John C. Mitchell. Unification and
ML type reconstruction. In J.-L. Lassez and G. D. Plotkin, editors, Computational
Logic: Essays in Honor of Alan Robinson, pages 444–478. MIT Press, 1991.
http://www.cs.brandeis.edu/~mairson/Papers/KMM.ps.gz

A. J. Kfoury and J. B. Wells. A direct algorithm for type inference in the rank-2
fragment of the second-order λ-calculus. In Proceedings of the ACM Conference on Lisp
and functional programming, pages 196–207. June 1994. doi: 10.1145/182590.182456.

ftp://ftp.inria.fr/INRIA/Projects/cristal/Didier.Remy/iandc.ps.gz
http://dx.doi.org/10.1145/1016850.1016872
http://cristal.inria.fr/~fpottier/publis/gauthier-fpottier-icfp04.pdf
http://repository.upenn.edu/cis_reports/180/
http://www.research.att.com/~trevor/papers/ranktwo.ps.gz
http://dx.doi.org/10.1007/3-540-55253-7_17
http://dx.doi.org/10.1145/1159803.1159811
http://research.microsoft.com/~simonpj/papers/gadt/gadt-rigid-contexts.pdf
http://www.cs.brandeis.edu/~mairson/Papers/KMM.ps.gz
http://dx.doi.org/10.1145/182590.182456

Bibliography 297

George Kuan and David MacQueen. Efficient type inference using ranked type vari-
ables. In ML’07: Proceedings of the 2007 workshop on ML, pages 3–14. ACM, New York,
NY, USA, 2007. ISBN 978-1-59593-676-9. doi: 10.1145/1292535.1292538.

Konstantin Läufer and Martin Odersky. Polymorphic type inference and abstract
data types. ACM Transactions on Programming Languages and Systems, 16(5):1411–
1430, September 1994. doi: 10.1145/186025.186031.
http://doi.acm.org/10.1145/186025.186031

Didier Le Botlan. MLF : An extension of ML with second-order polymorphism and
implicit instantiation. Ph.D. thesis, École Polytechnique, June 2004. English version.
http://wwwdgeinew.insa-toulouse.fr/~lebotlan/

Didier Le Botlan and Didier Rémy. MLF: Raising ML to the power of System-F.
In Proceedings of the Eighth ACM SIGPLAN International Conference on Functional
Programming, pages 27–38. August 2003. doi: 10.1145/944705.944709.
http://gallium.inria.fr/~remy/work/mlf/icfp.pdf

Didier Le Botlan and Didier Rémy. Recasting MLF. Research Report 6228, INRIA,
Rocquencourt, BP 105, 78 153 Le Chesnay Cedex, France, June 2007.
https://hal.inria.fr/inria-00156628

Daan Leijen. A type directed translation of MLF to System F. In In Proceedings of
the 2007 International Conference on Functional Programming (ICFP’07), ACM Press,
October 2007. doi: 10.1145/1291220.1291169.
http://research.microsoft.com/users/daan/download/papers/mlftof.pdf

Daan Leijen. HMF: Simple type inference for first-class polymorphism. In (ICFP’08). doi:

10.1145/1411203.1411245. Extended version available as Microsoft Research technical
report MSR-TR-2007-118, Sep 2007.

Daan Leijen. Flexible types: robust type inference for first-class polymorphism. In
Proceedings of the 36th ACM Symposium on Principles of Programming Languages
(POPL’09), Savannah, Georgia, USA, January 2009. To appear.

Daan Leijen and Andres Löh. Qualified types for MLF. In ICFP’05: Proceedings of
the tenth ACM SIGPLAN International Conference on Functional Programming, pages
144–155. ACM Press, New York, NY, USA, September 2005. ISBN 1-59593-064-7. doi:

10.1145/1090189.1086385.
http://murl.microsoft.com/users/daan/download/papers/qmlf.pdf

Xavier Leroy, Damien Doligez, Jacques Garrigue, Didier Rémy and Jérôme

Vouillon. The Objective Caml system, documentation and user’s manual - release 3.10.
Technical report, INRIA, May 2007. Documentation distributed with the Objective Caml
system.
http://caml.inria.fr/ocaml/htmlman/

Bradley Lushman. Direct and Expressive Type Inference for the Rank 2 Fragment of
System F. Ph.D. thesis, University of Waterloo, 2007.
http://uwspace.uwaterloo.ca/handle/10012/3267

http://dx.doi.org/10.1145/1292535.1292538
http://dx.doi.org/10.1145/186025.186031
http://doi.acm.org/10.1145/186025.186031
http://wwwdgeinew.insa-toulouse.fr/~lebotlan/
http://dx.doi.org/10.1145/944705.944709
http://gallium.inria.fr/~remy/work/mlf/icfp.pdf
https://hal.inria.fr/inria-00156628
http://dx.doi.org/10.1145/1291220.1291169
http://research.microsoft.com/users/daan/download/papers/mlftof.pdf
http://dx.doi.org/10.1145/1411203.1411245
http://dx.doi.org/10.1145/1090189.1086385
http://murl.microsoft.com/users/daan/download/papers/qmlf.pdf
http://caml.inria.fr/ocaml/htmlman/
http://uwspace.uwaterloo.ca/handle/10012/3267

298 Bibliography

Alberto Martelli and Ugo Montanari. An efficient unification algorithm. ACM
Transactions on Programming Languages and Systems, 4(2):258–282, 1982.

David McAllester. A logical algorithm for ML type inference. In Rewriting Techniques
and Applications, 14th International Conference (RTA 2003), volume 2706 of Lecture
Notes in Computer Science, pages 436–451. Springer-Verlag, Valencia, Spain, June 2003.
http://www.springerlink.com/content/auehenre84tcp3gb/

R. Milner. A theory of type polymorphism in programming. Journal of Computer and
System Sciences, 17:348–375, December 1978.
http://www.diku.dk/undervisning/2006-2007/2006-2007_b2_246/milner78theory.pdf

John C. Mitchell. Polymorphic type inference and containment. Information and Com-
putation, 2/3(76):211–249, 1988. doi: 10.1016/0890-5401(88)90009-0.

Martin Odersky and Konstantin Läufer. Putting type annotations to work. In
Proceedings of the 23rd ACM Conference on Principles of Programming Languages, pages
54–67. January 1996. doi: 10.1145/237721.237729.
http://lamp.epfl.ch/~odersky/papers/popl96.ps.gz

Martin Odersky, Christoph Zenger and Matthias Zenger. Colored local type in-
ference. ACM SIGPLAN Notices, 36(3):41–53, March 2001. doi: 10.1145/373243.360207.
http://lamp.epfl.ch/papers/clti-colored.ps.gz

Michael S. Paterson and Mark N. Wegman. Linear unification. Journal of Computer
and System, 16(2):158–167, 1978.

Simon Peyton Jones. Haskell 98 Language and Libraries: The Revised Report. Cambridge
University Press, May 2003. ISBN 0521826144.
http://www.haskell.org/onlinereport/

Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich and Mark

Shields. Practical type inference for arbitrary-rank types. Journal of Functional Pro-
gramming, 17(1):1–82, 2007. ISSN 0956-7968. doi: 10.1017/S0956796806006034.

Frank Pfenning. Partial polymorphic type inference and higher-order unification. In
Proceedings of the ACM Conference on Lisp and Functional Programming, pages 153–
163. ACM Press, July 1988. doi: 10.1145/62678.62697.

Benjamin C. Pierce. Types and Programming Languages. The MIT Press, Massachusetts
Institute of Technology Cambridge, Massachusetts 02142, 2002. ISBN 0-262-16209-1.
http://www.cis.upenn.edu/~bcpierce/tapl/

Benjamin C. Pierce and David N. Turner. Local type inference. ACM Trans. Program.
Lang. Syst., 22(1):1–44, 2000. doi: 10.1145/345099.345100.
http://www.cis.upenn.edu/~bcpierce/papers/lti-toplas.pdf

François Pottier and Didier Rémy. The essence of ML type inference. In Ben-

jamin C. Pierce, editor, Advanced Topics in Types and Programming Languages, chap-
ter 10, pages 389–489. MIT Press, 2005.
http://cristal.inria.fr/attapl/

http://www.springerlink.com/content/auehenre84tcp3gb/
http://www.diku.dk/undervisning/2006-2007/2006-2007_b2_246/milner78theory.pdf
http://dx.doi.org/10.1016/0890-5401(88)90009-0
http://dx.doi.org/10.1145/237721.237729
http://lamp.epfl.ch/~odersky/papers/popl96.ps.gz
http://dx.doi.org/10.1145/373243.360207
http://lamp.epfl.ch/papers/clti-colored.ps.gz
http://www.haskell.org/onlinereport/
http://dx.doi.org/10.1017/S0956796806006034
http://dx.doi.org/10.1145/62678.62697
http://www.cis.upenn.edu/~bcpierce/tapl/
http://dx.doi.org/10.1145/345099.345100
http://www.cis.upenn.edu/~bcpierce/papers/lti-toplas.pdf
http://cristal.inria.fr/attapl/

Bibliography 299

François Pottier. Types et contraintes. Mémoire d’habilitation à diriger des recherches,
Université Paris 7, December 2004.
http://cristal.inria.fr/~fpottier/publis/fpottier-hdr.pdf

François Pottier and Yann Régis-Gianas. Stratified type inference for generalized
algebraic data types. In Proceedings of the 33rd ACM Symposium on Principles of Pro-
gramming Languages (POPL’06), pages 232–244. Charleston, South Carolina, January
2006. doi: 10.1145/1111037.1111058.

Didier Rémy. Extending ML type system with a sorted equational theory. Research Report
1766, Institut National de Recherche en Informatique et Automatisme, Rocquencourt, BP
105, 78 153 Le Chesnay Cedex, France, 1992.
ftp://ftp.inria.fr/INRIA/Projects/cristal/Didier.Remy/eq-theory-on-types.ps.gz

Didier Rémy. Programming objects with ML-ART: An extension to ML with abstract
and record types. In Masami Hagiya and John C. Mitchell, editors, Theoretical
Aspects of Computer Software, volume 789 of Lecture Notes in Computer Science, pages
321–346. Springer-Verlag, April 1994.
ftp://ftp.inria.fr/INRIA/Projects/cristal/Didier.Remy/tacs94.ps.gz

Didier Rémy. Simple, partial type-inference for System F based on type-containment.
In Proceedings of the tenth International Conference on Functional Programming, pages
130–143. Tallinn, Estonia, September 2005. doi: 10.1145/1090189.1086383.
http://gallium.inria.fr/~remy/work/fml/fml-icfp.pdf

Didier Rémy and Boris Yakobowski. A graphical presentation of MLF types with
a linear-time unification algorithm. In Proceedings of the 2007 ACM SIGPLAN In-
ternational Workshop on Types in Languages Design and Implementation (TLDI’07),
pages 27–38. ACM Press, Nice, France, January 2007. ISBN 1-59593-393-X. doi:

10.1145/1190315.1190321.
http://www.yakobowski.org/tldi07.html

Didier Rémy and Boris Yakobowski. From ML to MLF: Graphic type constraints
with efficient type inference. In Proceedings of the 13th ACM SIGPLAN International
Conference on Functional Programming (ICFP’08), Victoria, British Columbia, Canada,
pages 63–74. ACM Press, September 2008. doi: 10.1145/1411203.1411216.
http://www.yakobowski.org/icfp08.html

John C. Reynolds. Towards a theory of type structure. In Proc. Colloque sur la Pro-
grammation, pages 408–425. Springer-Verlag LNCS 19, New York, 1974.
http://www.springerlink.com/index/p5801737k78207p7.pdf

Martin Sulzmann, Manuel M. T. Chakravarty, Simon L. Peyton Jones and

Kevin Donnelly. System F with type equality coercions. In Proceedings of TLDI’07:
2007 ACM SIGPLAN International Workshop on Types in Languages Design and Imple-
mentation, Nice, France, January 16, 2007, pages 53–66. ACM, 2007. ISBN 1-59593-393-
X. doi: 10.1145/1190315.1190324.

Christian Urban. Nominal techniques in Isabelle/HOL. Journal of Automated Reasoning,
40(4):327–356, 2008. ISSN 0168-7433. doi: 10.1007/s10817-008-9097-2.

http://cristal.inria.fr/~fpottier/publis/fpottier-hdr.pdf
http://dx.doi.org/10.1145/1111037.1111058
ftp://ftp.inria.fr/INRIA/Projects/cristal/Didier.Remy/eq-theory-on-types.ps.gz
ftp://ftp.inria.fr/INRIA/Projects/cristal/Didier.Remy/tacs94.ps.gz
http://dx.doi.org/10.1145/1090189.1086383
http://gallium.inria.fr/~remy/work/fml/fml-icfp.pdf
http://dx.doi.org/10.1145/1190315.1190321
http://www.yakobowski.org/tldi07.html
http://dx.doi.org/10.1145/1411203.1411216
http://www.yakobowski.org/icfp08.html
http://www.springerlink.com/index/p5801737k78207p7.pdf
http://dx.doi.org/10.1145/1190315.1190324
http://dx.doi.org/10.1007/s10817-008-9097-2

300 Bibliography

Dimitrios Vytiniotis, Stephanie Weirich and Simon Peyton Jones. FPH: First-
class Polymorphism for Haskell. In (ICFP’08). doi: 10.1145/1411203.1411246.
http://www.seas.upenn.edu/~sweirich/papers/icfp08.pdf

Dimitrios Vytiniotis, Stephanie Weirich and Simon Peyton Jones. Boxy types:
inference for higher-rank types and impredicativity. In ICFP’06: Proceedings of
the Eleventh ACM SIGPLAN International Conference on Functional Programming,
pages 251–262. ACM Press, New York, NY, USA, 2006. ISBN 1-59593-309-3. doi:

10.1145/1160074.1159838.
http://www.cis.upenn.edu/~dimitriv/boxy/boxy.pdf

Joe B. Wells. Typability and type checking in the second-order λ-calculus are equivalent
and undecidable. In Proceedings of the Ninth Annual IEEE Symposium on Logic in
Computer Science (LICS), pages 176–185. 1994.

Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness.
Information and Computation, 1994. doi: 10.1006/inco.1994.1093.
http://www.cs.rice.edu/CS/PLT/Publications/Scheme/ic94-wf.ps.gz

Hongwei Xi, Chiyan Chen and Gang Chen. Guarded recursive datatype constructors.
SIGPLAN Not., 38(1):224–235, 2003. ISSN 0362-1340. doi: 10.1145/640128.604150.

Boris Yakobowski. Le caractère ‘ à la rescousse - factorisation et réutilisation de code
grâce aux variants polymorphes. In JFLA 2008 - Dix-neuvièmes Journées Francophones
des Langages Applicatifs, pages 63–77. INRIA, Étretat, January 2008. ISBN 2-7261-1295-
11.
http://www.yakobowski.org/jfla08.html

http://dx.doi.org/10.1145/1411203.1411246
http://www.seas.upenn.edu/~sweirich/papers/icfp08.pdf
http://dx.doi.org/10.1145/1160074.1159838
http://www.cis.upenn.edu/~dimitriv/boxy/boxy.pdf
http://dx.doi.org/10.1006/inco.1994.1093
http://www.cs.rice.edu/CS/PLT/Publications/Scheme/ic94-wf.ps.gz
http://dx.doi.org/10.1145/640128.604150
http://www.yakobowski.org/jfla08.html

Index of definitions

Symbols

⊏−⊐− . 62
⊏−, ⊏−M , ⊏−R, ⊏−W . 62
≺U . 103
C . 255
Cn→n′

. 256
κ . 182
⊙ .2
ϕ .212
ε, ⊲ σ, α ⊳, ∀ (> ϕ), ∀ (α >) ϕ, N, O, ϕ; ϕ

212
−̂≫−⊸ . 43
−̂⊸ . 43

. .133
−−⊸, −−_ . 41
−−≫−→ . 2

. .144

. 109, 130
≡G . 21
⋄τ (n) . 55
τ [n1 = n2] . 47
g[n1 = n2] . 23
Γ . 211
τ [τ ′/n] . 45
τ [τ ′/⊥] . 77
g̃, ġ .20
⋄ . 9
⊑ . 52, 60
t⊑, c⊑ . 138
⊑⊏−⊐− . 52, 62
⊑F . 29
⊑F . 35

6F .6
ML⊑ . 143
⊑G, ⊑M , ⊑R, ⊑W . 60
⊑rmw, ⊑m, ⊑r, ⊑w 61
⊑|τ . 70
⊑≈ . 61
⊑≈

F . 29
⊑≈

F . 35
6T . 18
⊑G . 21
⊑MW♮ . 74
⊑R♮ . 72
; . 2

, ⊣⊢ . 154
⊏⊐MLF. .195
〈π〉, 〈n〉 .20
⋄
< . 59
<P . 244
Pτ (n) . 56
≺⊑, ≺rmw, ≺⊏−, ≺≈, ≺⊏−⊐−66
π, Π, ǫ . 17
· .17
/ . 18, 20, 46
χe . 151
τ ↑ n . 48
−→, −→Λ, −→β . 216
−→n . 227
−→v .224
−→δ . 223

//
−→ . 227
χ ↾ N . 139
σ . 210

301

302 Index of definitions

≈ . 61
≈F . 29
≈F . 35
≈G . 21
τ . 43
τ̆ , τ̂ , ⋄

τ . 41
τ̇ , τ̃ . 41
χ . 134
⇓ (τ) . 52
T χ

r (I) . 257
T χ

r (e) . 260
T(a) .261
△(τ) .76
≤ . 213

A

abstraction . 62
in syntactic MLF 294

acyclic constraints 174
admissibility ancestors 91
admissible

problems . 91
generalized 110

unification edges 135
alias bounds . 271
anonymous term-graphs 23
arity . 3

B

big-step
merging-weakening 74
raising . 72

binder . 41
binding

edges . 25, 41
existential . 136

flags . 41
reset . 149
tree . 41

binding-congruent nodes 46
bottom node. .23
bottom-up

merging-weakening 74
raising . 72

C

call-by-name reduction (in xMLF) 227
call-by-value reduction (in xMLF) 223
canonical instance derivation.78
cκ . 182
closed

nodes . 46
subconstraints 179

coercion functions 182
complexity

of constraints solving 177, 178
of ML type inference 191
of MLF type inference

exact bound 192
in practice . 191

of unification.108
computation contexts 255
concr(χ) . 140
concretization . 139
confluence

of reduction in xMLF. 227
of the instance relations 86

congruent
nodes . 23
relation . 19

consistent relation . 19
constants (in xMLF) 222
constraint interior 142
constructor type . 77
constructors (in xMLF).222
correctness

of SolveConstraint 176
of unification .98
of unification in constraints 164

cproj(χ) . 139

D

dags.see directed acyclic graphs
degenerate type schemes 149
delayed weakenings 169
dependency relation (for gen nodes) .174
derived nodes. .196
directed acyclic graphs 2
domination . 2

for −̂⊸ . 43

Index of definitions 303

E

eager propagation 167
eMLF . 155, 200
entailment

of constraints 154
of presolutions 155

environments (in xMLF) 211
equivalence

in syntactic MLF 293
of constraints 154
of term-graphs 21

evaluation contexts in xMLF 216
for call-by-name 227
for call-by-value224

existential
(binding) edges 136
elimination . 160
nodes . 135

Exists-Elim . 160
expansion . 148
expression nodes. .144
expressions . 3

in xMLF. .211

F

first-order terms . 18
flag path . 55
flag reset . 149
flexible quantification 8
frontier unification edges . . see expansion
Fs(n) . 142
fusion

on graphic types 47
on term-graphs.23

G

Gρ . 119
g . 20
Gen nodes see gen nodes
gen nodes . 131
generalization . 131
generalized admissibility 110
generalized unification problem 109
gMLF. 155
G .131

Graft(τ ′′, n) . 57
grafting

in ML . 143
in System F . 27
in System F . 32
on graphic types.45, 57
on term-graphs.24

graphic
(MLF) types . 43
constraints . 134

graphs . 2
green nodes

in graphic types 52
in System F . 26

I

Ic(n) . 142
iMLF. .155, 202
implementation . 192
inert nodes

in graphic types 54
in System F34, 35

inert-equivalent presolutions 240
inert-locked nodes 239
initial typing environment 184
inner quantification 142
instance

in ML . 143
in syntactic MLF 294
in System F 6, 29
in System F . 35
in xMLF. 211
on first-order terms 18
on graphic constraints.138
on graphic types.56, 60
on term-graphs.21

instance modulo abstraction 62
instance modulo similarity

in System F . 29
in System F . 35
on graphic types 61

instantiation edges 133
Inst-Copy .179
Inst-Elim-Mono 165
Inst-Expand . 178
interior . 142

304 Index of definitions

intrinsically polymorphic nodes 54
Is(n) .142

L

LCA . 93
leftmost-lowermost order 244
locally congruent nodes

in System F . 28
on graphic types 47

lowering . 196

M

maximally instantiated type 88
meaning of constraints154
Merge(n1, n2) . 58
merging

in System F . 27
in System F . 33
on graphic types 58
on term-graphs.24

minimal grafting .77
mixed paths . 43
ML constraints . 142
ML-Extrude . 188
MLF cube . 291
monomorphic nodes 55
multi-raising . 49

N

n . 20
node unifier . 89
nodes .20
normalized instance derivations

in eMLF and iMLF. 268
in gMLF. .168

O

orange nodes . 53
order

on binding flags 59
on permissions 65
on unifiers . 103

ordered instance derivations 72

P

parallel reduction (in xMLF) 227
partial types. .118
partially grafted nodes 93
paths . 17
permissions . 55
polymorphic type constructors 53
preservation of presolutions 155
presolutions . 152
pre-types . 41
primitives (in xMLF) 222
progress (in xMLF)222
projection

on first-order terms 18
on graphic constraints.139
on graphic types 46

propagation . 151
eagerly. .167
witnesses . 239

optimized. .265
purely existential nodes135

Q

quantifiers reordering (xMLF translation)

253

R

raisable nodes . 48
Raise(n) . 59
raising

big-step . 72
bottom-up . 72
in syntactic MLF 294
in System F . 32
on graphic types.48, 59

Rebind . 94
rebind . 95
recursively-solved gen node 176
red nodes

in graphic types 53
in System F . 26

reduction rules of xMLF.216
regular type constructors 53
restricted instance . 70
restricted syntactic types 118

Index of definitions 305

restriction of a constraint 139
reversible instance

in System F . 29
in System F . 35
on graphic types 61
on term-graphs 21, 24

rigid quantification . 8
root of an expansion 148
rooted graphs .2

S

Sτ .117
s . 132
SI

τ .124
semantics of shallow types 36
shallow types . 36
similarity

in ML . 143
in System F . 27
on graphic types 61
on term-graphs.21

small-step instance
on term-graphs.24

solutions (of constraints) 153
SolveConstraint . 176
solved

instantiation edges 152
stability . 170

unification edges 151
soundness

of eMLF. 263, 269
of gMLF . 263
of iMLF . 269
of xMLF. .219

splitting . 195
standard graphs . 21
structural

frontier . 142
interior . 142

structure edges . 41
structure-definedness 70
subject reduction (in xMLF) 219
substitution

on first-order terms 18
syntactic sugar . 120

algorithm . 124

inlining monomorphic nodes 125
System F . 31
System F (graphic) 26

T

t . 18
term-graphs . 20
terms (first-order) . 18
translatable presolutions

of eMLF and iMLF. 268
of gMLF . 249

translating
a presolution

of eMLF or iMLF 269
of gMLF . 261

an instantiation edge 260
expressions into constraints 145
graphic types to syntactic types . 116
normalized instance operations . 257,

269
syntactic types to graphic types . 118

typability in unannotated MLFand ML181
type

annotations . 181
computations 211, 213
errors . 193
instantiation (in xMLF)211
nodes . 134
of a subterm . 252
of a subterm in an expansion. . . .253
schemes . 131, 132
unifier . 89

Type nodes see type, nodes
types

ML type schemes 3
first-order . 3
graphic . 43
of graphic System F 26
of graphic System F 31
of System F . 3
syntactic MLF types 9

typing constraints 145
typing rules of xMLF.214

U

Unif . 93

306 Index of definitions

unification
admissible problems 91
algorithm . 93
complexity . 108
edges . 109, 130
generalized problem. 109
modulo . 107
node unification 89
on first-order terms 18
on graphic constraints.163
on term-graphs.22
principality 22, 89, 105
type unification 89

V

value restriction (in xMLF) 225
values (in xMLF) . 222
Var-Abs . 185
Var-Let . 185
virtual edges . 139

W

Weaken(n) .59
weakening

delayed . 169
in System F . 32
on graphic types 59

weakly consistent relation.19
well-domination . 43
well-formedness

of constraints 134
of graphic types 42

widening . 76
witness

for propagation 239
of a solution . 153

X

xMLF. 209

Résumé

MLF est un système de types combinant le polymorphisme implicite de seconde
classe de ML avec le polymorphisme de première classe mais explicite du Système F.
Nous proposons une représentation des types de MLF qui superpose un graphe acy-
clique orienté du premier ordre (encodant la structure du type avec partage) et un
arbre inversé (encodant la structure de lieurs du type). Cela permet une définition
simple et directe de l’instance sur les types, qui se décompose en une instance sur la
structure du type, des opérations simples sur l’arbre de lieurs, et un contrôle accep-
tant ou rejetant ces opérations. En utilisant cette représentation, nous présentons un
algorithme d’unification sur les types de MLF ayant une complexité linéaire.

Nous étendons ensuite les types graphiques en un système de contraintes graphiques
permettant l’inférence de types à la fois pour ML et MLF. Nous proposons quelques
transformations préservant la sémantique de ces contraintes, et donnons une stratégie
pour utiliser ces transformations afin de résoudre les contraintes de typage. Nous mon-
trons que l’algorithme résultant a une complexité optimale pour l’inférence de types
dans MLF, et que, comme pour ML, cette complexité est linéaire sous des hypothèses
raisonnables.

Enfin, nous présentons une version à la Church de MLF, appelée xMLF, dans laquelle
tous les paramètres de fonctions, toutes les abstractions de type et toutes les instan-
tiations de types sont explicites. Nous donnons des règles de réduction pour réduire les
instantiations de types. Le système obtenu est confluent lorsque la réduction forte est
autorisée, et vérifie la propriété de réduction du sujet. Nous montrons aussi le lemme
de progression pour des stratégies faibles de réduction, dont l’appel par nom et l’appel
par valeur en restreignant ou non le polymorphisme aux valeurs. Nous proposons un
encodage de MLF dans xMLF qui préserve les types, ce qui assure la sureté de MLF.

Abstract

MLF is a type system that seamlessly merges ML-style implicit but second-class
polymorphism with System-F explicit first-class polymorphism. We propose a dag
representation of MLF types that superimposes a first-order term-dag, encoding the
underlying term structure (with sharing), and a binding tree encoding the binding
structure. This permits a simple and direct definition of type instance, that combines
type instance on term-dags, simple operations on the binding tree, and a control that
allows or rejects potential instances. Using this representation, we build a linear-time
unification algorithm for MLF types.

We then extend graphic types into a system of graphic constraints that can be
used to perform type inference in both ML or MLF. We give a few semantic preserving
transformations on constraints, and propose a strategy for applying those transforma-
tions to solve typing constraints. We show that the resulting algorithm has optimal
complexity for MLF type inference, and that, as for ML, this complexity is linear under
reasonable assumptions.

We finally present a church-style version xMLF of MLF, in which all parameters of
functions, all type abstractions, and all type instantiations are explicit. We give a set
of reduction rules for simplifying type instantiations. The resulting system is confluent
when strong reduction is allowed, and enjoys the subject reduction property. We also
show progress for weak-reduction strategies, including call-by-name and call-by-value,
with or without the value restriction. We exhibit a type-preserving encoding of MLF

into xMLF, ensuring the type soundness of MLF.

	Remerciements
	Contents
	Notations and conventions
	Conventions
	Mathematical notations
	Relations
	Graphs
	Directed acyclic graph
	Domination

	Types
	Expressions

	Introduction
	Types in functional languages
	Type inference and System SF
	MLF
	MLF
	Enriching the types of System SF
	Syntactic MLF types

	Improving MLF
	Outline of this document
	Part I: graphic types and type instance
	Part II: type inference with graphic constraints
	Part III: an explicit language for MLF
	Part IV: conclusions

	Published works

	A graphical presentation of MLF types and type instance
	Representing first- and second-order types by graphs
	First-order terms
	Definition of first-order terms
	Instance and unification on first-order terms

	Term-graphs
	Definition
	Instance on term-graphs
	Unification on term-graphs
	Anonymous variables

	Representing second-order types
	Binding edges
	Anonymous variables
	Instantiation on graphic System SF types

	Adding flexible quantification to second-order graphic types
	Beyond system F
	Type instance in System FlexF
	An informal semantics for the types of System FlexF

	MLF graphic types
	Representing MLF graphic types
	From syntactic to graphic

	Pre-types
	Why binding all nodes

	Well-formedness of graphic types
	Well-formed pre-types
	Invariants induced by well-formedness

	Operators for building and transforming types
	Grafting
	Projection
	Fusion
	Raising

	Instance on MLF graphic types
	Why rigid quantification?
	Shaping the instance relation
	Green MLF nodes
	Red MLF nodes
	Nodes with a rigid edge
	Inert and monomorphic nodes

	Formal definition of the instance relations
	Permissions
	Atomic instance operations
	The instance relation
	Instance modulo similarity
	Instance modulo abstraction

	Instance and permissions
	Change in permissions
	Ordering permissions
	Evolution of permissions through instance

	Properties of the instance relations
	Reasoning on restricted instance
	Ordering the instance operations
	Big-step instance subrelations
	Big-step raising
	Big-step merging and weakening

	Grafting atomic types
	Widening
	Constructor type

	Canonical derivations
	Performing an instance operation early
	Reorganizing the instance modulo relations
	Confluence of the instance relations
	Reorganizing the instance modulo relations

	Unification
	MLF unification problem
	Admissible problems
	Unification algorithm
	Two intermediate graphs

	Correctness of the algorithm
	Properties of the unifier
	Soundness of Unif
	Relating admissibility and the binding trees of unifiers
	Completeness of Unif
	Principality of Unif
	Unification modulo similarity

	Complexity
	Generalized unification problems
	Generalized admissibility
	Generalized unification algorithm

	Unification in restrictions of MLF

	Relating the syntactic and graphic presentations of MLF types
	An informal comparison of the syntactic and graphic instance relations
	Syntactic and graphic instance
	Syntactic equivalence and graphic similarity
	Comparison with the original syntactic relations

	Translating graphic types to and from syntactic types
	From graphic to syntactic types
	From syntactic to graphic types

	A simple syntactic sugar to display types
	Inlining bounds
	Algorithm
	Inlining monomorphic nodes

	Graphic constraints
	Graphic constraints
	An informal presentation of graphic constraints
	Our approach
	Graphic ML type inference without generalization
	(Graphic) type schemes and generalization
	Type instantiation

	Graphic constraints as an extension of graphic types
	A formal definition of constraints
	Properties of constraints
	Instance on graphic constraints
	Transforming constraints
	From graphic constraints to graphic types
	Interiors

	MLF and ML constraints
	Typing constraints

	Semantics of constraints
	Expanding a type scheme
	Degenerate type schemes
	Flag and binding reset

	An example
	Solved constraint edges
	Solutions and presolutions of constraints
	Presolutions and explicitly typed terms

	Meaning of constraints
	Preserving presolutions
	The different flavours of MLF

	Relating the meaning of ML and MLF constraints

	Reasoning on constraints
	Removing unconstrained existential nodes
	Raising and existential nodes

	Solving unification edges
	Unification in ML constraints

	Removing degenerate instantiation edges
	Eager propagation
	Normalized expansion solving
	Stability of solved instantiation edges

	Type inference in MLF
	Solving acyclic constraints
	Acyclic constraints
	Solving an instantiation edge
	Solving an acyclic constraint

	Simplifying acyclic constraints
	Removing solved instantiation edges
	Solving closed subconstraints
	Splitting gen nodes

	Typability in annotated and unannotated MLF
	Unannotated terms
	Type annotations

	Simplifying typing constraints
	Simplifying the typing of variables
	Simplifying ML typing constraints
	Using the simplifications rules

	Analyzing the complexity of type inference
	Practical complexity bound for MLF type inference
	Practical complexity bound for ML type inference in our system
	Exact complexity bound for MLF type inference

	Implementation

	Constraints up to similarity or abstraction
	Constraints and inverse instance
	Inverse instance operations
	Properties of the modulo systems
	Shape of presolutions
	Stability of presolutions

	Constraints up to similarity
	Constraints up to abstraction
	Typability in iMLF
	Properties of iMLF presolutions
	Reasoning in Implicit MLF
	Expressivity of iMLF

	An explicit language for MLF
	xMLF, a Church-style language for MLF
	Why another explicit language for MLF?
	Types and typing rules of xMLF
	Types, terms, and environments
	Type instance
	Typing rules for Fsup

	Reduction in xMLF
	Type reduction rules
	Reducing only type applications
	System F as a subsystem of xMLF

	Type soundness
	Preservation of typings
	Progress with call-by-value and call-by-name semantics

	Confluence of reduction
	A formal proof of xMLF ?

	Translating gMLF into xMLF
	An introductory example
	Our approach
	Example

	Translatable presolutions
	Pitfalls of the translation
	Identifying which operations to translate
	Removing operations on inert-locked nodes
	Ordering the nodes
	Adding xMLF type abstractions
	Scopes in a let construct
	Translatable presolutions
	Using xMLF as an internal language

	Translating presolutions into xMLF
	Obtaining syntactic types
	Types and environments of subterms
	Typing environments
	Computation contexts
	Translating normalized derivations into computations
	Elaborating a translatable presolution
	Correctness of the translation
	Translating type annotations
	Soundness of gMLF
	Obtaining instance derivations

	Obtaining simpler elaborated terms
	Creating optimized propagation witnesses
	Using the simplifications rules on constraints

	Translating presolutions of eMLF and iMLF
	Preliminary results
	Translating an eMLF or iMLF presolution

	Translating the syntactic presentations of MLF into xMLF
	Type equivalence under bounds
	Expressivity of alias bounds

	Conclusions
	Related works
	Type inference and second-order polymorphism
	More recent proposals

	Type inference for MLF
	Efficient type inference for ML
	Type inference using typing constraints

	Explicit languages

	Conclusion
	Our work in the context of MLF
	Applications beyond MLF
	Perspectives

	Appendix
	The flavours of MLF
	The MLF cube
	Existing variants

	Syntactic MLF relations
	Bibliography
	Index of definitions
	Abstract

