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MLF

ML-like type inference +
expressivity of System F second-order polymorphism

Two difficulties:

◮ Type inference for System F is undecidable

◮ System F does not have principal types

Example:

id , λ(x) x : ∀β. β → β

choose , λ(x) λ(y) x : ∀α. α→ α→ α

choose id :

{

(∀β. β → β)→ (∀β. β → β) α = ∀β. β → β

∀γ. (γ → γ)→ (γ → γ) α = γ → γ

No type is more general than the other
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MLF types: going beyond System F

◮ To solve the problem of non-principality:

Flexible quantification

MLF types extend System F types with an instance-bounded
quantification of the form ∀ (α > τ) τ ′:

Both τ and τ ′ can be instantiated inside ∀ (α > τ) τ ′

All occurrences of α in τ ′ must pick the same instance of τ

choose id : ∀ (α > ∀β. β → β) α→ α

⊑ (∀β. β → β)→ (∀β. β → β)

or ⊑ ∀γ. (γ → γ)→ (γ → γ)

5/36



MLF types: going beyond System F

◮ To solve the problem of non-principality:

Flexible quantification

MLF types extend System F types with an instance-bounded
quantification of the form ∀ (α > τ) τ ′:

Both τ and τ ′ can be instantiated inside ∀ (α > τ) τ ′

All occurrences of α in τ ′ must pick the same instance of τ

◮ To permit type inference:

Rigid quantification

Instance-bounded quantification, of the form ∀ (α = τ) τ ′

τ cannot (really) be instantiated inside ∀ (α = τ) τ ′

But ∀ (α = τ) α→ α and ∀ (α = τ) ∀ (α′ = τ) α→ α′

are different as far as type inference is concerned
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MLF as a type system

Extends ML and System F, and combines the benefits of both

Compared to ML

◮ The expressivity of second-order polymorphism is available

◮ All ML programs remain typable unchanged

Compared to System F

◮ MLF has type inference

◮ Programs (given their type annotations) have principal types

Moreover:

◮ in practice, programs require very few type annotations

◮ typable programs are stable under a wide range of program
transformations
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Graphic MLF types

The superposition of:

◮ A term-dag, representing the skeleton of the type

◮ A binding tree, indicating where variables are bound
Two kind of binding edges, for flexible and rigid quantification

→

γ →

α ⊥ ⊥ β

∀ (α > ⊥) ∀ (γ = ∀ (β > ⊥) α→ β) γ → γ
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Graphic MLF types

The superposition of:

◮ A term-dag, representing the skeleton of the type

◮ A binding tree, indicating where variables are bound
Two kind of binding edges, for flexible and rigid quantification

◮ Sharing of nodes is important

→

→

⊥

∀ (α > σid) α→ α

Possible type for λ(x) x

6=

→

→

⊥

→

⊥

∀ (α > σid) ∀ (β > σid) α→ β

Incorrect for λ(x) x
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Instance on graphic MLF types

The instance relation ⊑
◮ Four atomic operations on graphs:
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Instance on graphic MLF types

The instance relation ⊑
◮ Four atomic operations on graphs:

Grafting: replacing a variable by a closed type
(variable substitution)

Merging: fusing two identical subgraphs
(correlates the two corresponding subtypes)

Raising: edge extrusion
(removes the possibility to introduce universal quantification)

Weakening: turns a flexible edge into a rigid one
(forbids further instantiation of the corresponding type)

→

→

⊥

⊑ →

→

⊥
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Graphic constraints

◮ Used to formalize the MLF typing relation, and type inference

◮ Graphic types extended with four new constructs

Unification edges

Force two nodes to be equal

Existential nodes

“Floating” nodes, used only to introduce other constraints

Generalization nodes G

Instantiation edges
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Type generalization

◮ Type generalization is essential in MLF, just as in ML

◮ Gen nodes are used to promote types into type schemes, and to
delimit generalization scopes

G

g

→

⊥ α

g : ∀α. α→ α
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Type generalization

◮ Type generalization is essential in MLF, just as in ML

◮ Gen nodes are used to promote types into type schemes, and to
delimit generalization scopes

G

g

G

g ′

→

β ⊥

→

⊥ α

g : ∀α. α→ α

g ′ : ∀β. β → α
α is free at the level of g ′
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Instantiation edges

◮ Constrain a node to be an instance of a type scheme

Example:

G

G

g

→

β ⊥

→ n

⊥ α

e

◮ e constrains n to be an instance of g
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Instantiation edges

◮ Constrain a node to be an instance of a type scheme

Example:

G

G

g

→

β ⊥

→ n

⊥ α

e

g : ∀β. β → α
n : α→ α

e is solved (take β = α)

◮ e constrains n to be an instance of g
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Instantiation edges

◮ Constrain a node to be an instance of a type scheme

Example:

G

G

g

→

β ⊥

→ n

⊥ α

e

g : β → α
n : α→ α

e is not solved (β 6= α)

◮ e constrains n to be an instance of g
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Typing constraint for an abstraction

λ(x) a  G

→

⊥

α
a ⊥

β

x

◮ λ(x) a can receive type α→ β, provided

α is the (common) type of all the occurrences of x in a

β is an instance of the type of a.
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Typing constraint for an application

a b  G

a

b

→

⊥

α

⊥

β

◮ a b can receive type β, provided there exists α such that

a→ β is an instance of the type of a

α is an instance of the type of b
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Semantics of constraints

Presolutions

A presolution of a constraint χ is an instance of χ in which all the
instantiation and unification edges are solved.

Presolutions retain the shape of the original constraint

Example: Constraint for λ(x) x

G

→

⊥ G

⊥

⊥

G

→

G

⊥
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An explicit langage for MLF

◮ Study subject reduction in MLF

Type annotations are important inside terms

But how to reduce (e : σ) ?

◮ How to use MLF inside a typed compiler?

MLF types are more expressive than F ones

System F cannot be used as a target langage
(prior work by Leijen, but not completely satisfactory)

Hence the need for a core, Church-style, langage for MLF, xMLF
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From System F to xMLF

xMLF generalizes System F

◮ Types: σ ::= ⊥ | ∀ (α> σ) σ | α | σ → σ

Rigid quantification is only needed for type inference, and is inlined in xMLF

Hence ∀ (α = σ) α→ α becomes σ → σ

17/36



From System F to xMLF

xMLF generalizes System F

◮ Types: σ ::= ⊥ | ∀ (α> σ) σ | α | σ → σ

Rigid quantification is only needed for type inference, and is inlined in xMLF

Hence ∀ (α = σ) α→ α becomes σ → σ

◮ Terms : a ::= x | λ(x : σ) a | a a | let x = a in a

| Λ(α> σ) a | a[ϕ]

◮ Typing rules are the same as in System F, except for type application

TApp
Γ ⊢ a : σ Γ ⊢ ϕ : σ ≤ σ′

Γ ⊢ a[ϕ] : σ′
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Type computations

Instance is explicitely witnessed through the use of type computations

ϕ ::= ε | ϕ;ϕ | ⊲ σ | α ⊳ | ∀ (>ϕ) | ∀ (α>) ϕ | N | O

Inst-Reflex

Γ ⊢ ε : σ ≤ σ

Inst-Trans
Γ ⊢ ϕ1 : σ1 ≤ σ2 Γ ⊢ ϕ2 : σ2 ≤ σ3

Γ ⊢ ϕ1; ϕ2 : σ1 ≤ σ3

Inst-Bot

Γ ⊢ ⊲ σ : ⊥ ≤ σ

Inst-Hyp
α > σ ∈ Γ

Γ ⊢ α ⊳ : σ ≤ α

Inst-Inner
Γ ⊢ ϕ : σ1 ≤ σ2

Γ ⊢ ∀ (>ϕ): ∀ (α > σ1) σ ≤ ∀ (α > σ2) σ

Inst-Outer
Γ, ϕ : α > σ ⊢ ϕ : σ1 ≤ σ2

Γ ⊢ ∀ (α>) ϕ : ∀ (α > σ) σ1 ≤ ∀ (α > σ) σ2

Inst-Quant-Elim

Γ ⊢ N : ∀ (α > σ) σ′ ≤ σ′{α← σ}

Inst-Quant-Intro

α /∈ ftv(σ)

Γ ⊢ O : σ ≤ ∀ (α > ⊥) σ
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Example: back to choose id

choose , Λ(α > ⊥) λ(x : α) λ(y : α) x : ∀ (α > ⊥) α→ α→ α

id , Λ(β > ⊥) λ(x : β) x : ∀ (β > ⊥) β → β

◮ To make choose id well-typed, we must choose a type into which α
must be instantiated
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Example: back to choose id

choose , Λ(α > ⊥) λ(x : α) λ(y : α) x : ∀ (α > ⊥) α→ α→ α

id , Λ(β > ⊥) λ(x : β) x : ∀ (β > ⊥) β → β

◮ To make choose id well-typed, we must choose a type into which α
must be instantiated

◮ e , Λ(γ > σid) (choose[∀ (> ⊲ γ);N])
︸ ︷︷ ︸

γ→γ→γ

(id[γ ⊳])
︸ ︷︷ ︸

γ

: ∀ (γ > σid) γ → γ

⊢ ⊲ γ : ⊥ ≤ γ
Bot

⊢ ∀ (> ⊲ γ) : ∀ (α > ⊥) α → α → α ≤ ∀ (α > γ) α → α → α
Inner

⊢ N : ∀ (α > γ) α → α → α ≤ γ → γ → γ
Quant-Elim

⊢ ∀ (> ⊲ γ); N : ∀ (α > ⊥) α → α → α ≤ γ → γ → γ
Trans
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Example: back to choose id

choose , Λ(α > ⊥) λ(x : α) λ(y : α) x : ∀ (α > ⊥) α→ α→ α

id , Λ(β > ⊥) λ(x : β) x : ∀ (β > ⊥) β → β

◮ To make choose id well-typed, we must choose a type into which α
must be instantiated

◮ e , Λ(γ > σid) (choose[∀ (> ⊲ γ);N])
︸ ︷︷ ︸

γ→γ→γ

(id[γ ⊳])
︸ ︷︷ ︸

γ

: ∀ (γ > σid) γ → γ

◮ We can recover the other System F types just by instantiation

{
e[N] : σid → σid

e[O;∀ (δ>) (∀ (> ∀ (> ⊲ δ);N);N)] : ∀ (δ > ⊥) (δ → δ)→ (δ → δ)
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Reducing expressions

◮ Usual β-reduction

(λ(x : τ) a1) a2 −→ a1{x ← a2} (β)
let x = a2 in a1 −→ a1{x ← a2} (βLet)
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Reducing expressions

◮ Usual β-reduction

◮ 6 specific rules to reduce type applications

(λ(x : τ) a1) a2 −→ a1{x ← a2} (β)
let x = a2 in a1 −→ a1{x ← a2} (βLet)

a[ε] −→ a Reflex

a[ϕ; ϕ′] −→ a[ϕ][ϕ′] Trans

a[O] −→ Λ(α>⊥) a Quant-Intro

if α /∈ ftv(a)

(Λ(α> τ) a)[∀ (α>) ϕ] −→ Λ(α> τ) (a[ϕ]) Outer

(Λ(α> τ) a)[∀ (>ϕ)] −→ Λ(α> τ [ϕ]) a{α ⊳← ϕ; α ⊳} Inner

(Λ(α > τ) a)[N] −→ a{α⊳← ε}{α← τ} Quant-Elim
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Reducing expressions

◮ Usual β-reduction

◮ 6 specific rules to reduce type applications

◮ Context rule
E ::= {·} | E [ϕ] | λ(x : τ ) E | Λ(α> τ ) E

| E a | a E | let x = E in a | let x = a in E

(λ(x : τ) a1) a2 −→ a1{x ← a2} (β)
let x = a2 in a1 −→ a1{x ← a2} (βLet)

a[ε] −→ a Reflex

a[ϕ; ϕ′] −→ a[ϕ][ϕ′] Trans

a[O] −→ Λ(α>⊥) a Quant-Intro

if α /∈ ftv(a)

(Λ(α> τ) a)[∀ (α>) ϕ] −→ Λ(α> τ) (a[ϕ]) Outer

(Λ(α> τ) a)[∀ (>ϕ)] −→ Λ(α> τ [ϕ]) a{α ⊳← ϕ; α ⊳} Inner

(Λ(α > τ) a)[N] −→ a{α⊳← ε}{α← τ} Quant-Elim

E{a} −→ E{a′} Context

if a −→ a′
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Rules Inner and Quant-Elim

◮

(Λ(α> τ) a)[∀ (>ϕ)] −→ Λ(α> τ [ϕ]) a ?

(Λ(α> τ) a)[N] −→ a{α← τ} ?

This is incorrect: after the reduction, the computations α ⊳ inside a

make incorrect assumptions on the bound of α
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Rules Inner and Quant-Elim

◮

(Λ(α> τ) a)[∀ (>ϕ)] −→ Λ(α> τ [ϕ]) a{α ⊳← ϕ;α ⊳}

(Λ(α> τ) a)[N] −→ a{α ⊳← ε}{α← τ}

This is incorrect: after the reduction, the computations α ⊳ inside a

make incorrect assumptions on the bound of α

◮ We change those computations:

For Inner, α ⊳ assumed that the bound of α was τ , while it is τ [ϕ]
For Quant-Elim, α is now τ , the computations α ⊳ are vacuous
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Example of reductions

◮ choose id:

Λ(γ > σid ) ((Λ(α > ⊥) λ(x : α) λ(y : α) x)[∀ (> ⊲ γ); N]) (id[γ ⊳])
−→ Λ(γ > σid ) ((Λ(α > γ) λ(x : α) λ(y : α) x)[N]) (id[γ ⊳])
−→ Λ(γ > σid ) (λ(x : γ) λ(y : γ) x)) (id[γ ⊳])
−→ Λ(γ > σid ) λ(y : γ) (id[γ ⊳])

◮ (choose id)[N]:

(Λ(γ > σid ) λ(y : γ) (id[γ ⊳]))[N]
−→ λ(x : σid ) (id[ǫ])
−→ λ(x : σid ) id
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Example of reductions

◮ choose id:

Λ(γ > σid ) ((Λ(α > ⊥) λ(x : α) λ(y : α) x)[∀ (> ⊲ γ); N]) (id[γ ⊳])
−→ Λ(γ > σid ) ((Λ(α > γ) λ(x : α) λ(y : α) x)[N]) (id[γ ⊳])
−→ Λ(γ > σid ) (λ(x : γ) λ(y : γ) x)) (id[γ ⊳])
−→ Λ(γ > σid ) λ(y : γ) (id[γ ⊳])

◮ (choose id)[N]:

(Λ(γ > σid ) λ(y : γ) (id[γ ⊳]))[N]
−→ λ(x : σid ) (id[ǫ])
−→ λ(x : σid ) id

◮ System F like type application [τ ] , [∀ (> ⊲ τ); N]

(Λ(α) a)[τ ] = (Λ(α>⊥) a)[∀ (> ⊲ τ); N]

−→ (Λ(α> τ) a)[N]

−→ a{α← τ}

⇒ Exactly as in System F
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Confluence of strong reduction

◮ Strong reduction is confluent

proven by the usual method of parallel reductions
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Confluence of strong reduction

◮ Strong reduction is confluent

proven by the usual method of parallel reductions

◮ But only on well-typed terms:

e ,
(
Λ(α > ∀ (γ) γ)

(
(Λ(β > int) x)[∀ (>α ⊳)]

))
[∀ (>N)]

Ill-typed because the computation α ⊳ is applied to int, while α is supposed
to be ∀ (γ) γ

e −→
(
Λ(α> ∀ (γ) γ) Λ(β > α) x

)
[∀ (>N)]

−→ Λ(α>⊥) Λ(β > α) x

(Reducing the innermost type application first, then the outermost)

e −→ Λ(α>⊥)
(
(Λ(β > int) x)[∀ (>N; α ⊳)]

)

(Reducing the outermost type application first)
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Correctness

◮ Subject reduction, under any context (including under λ and Λ)

◮ Progress for call-by-value, with or without the value restriction,
and for call-by-name

First time that MLF is proven sound for call-by-name
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Correctness

◮ Subject reduction, under any context (including under λ and Λ)

◮ Progress for call-by-value, with or without the value restriction,
and for call-by-name

First time that MLF is proven sound for call-by-name

◮ Mechanized proof?

almost completed on a previous version of the system, in which
ε, ⊲ τ and α ⊳ were merged; but need for renaming lemmas

ϕ ::= α ⊳ | ... not very practical with the locally nameless approach

Operation ϕ{α ⊳← . . .} non standard

Boring !
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Alias bounds

◮ In the syntactic presentations of MLF, λ(x) x can receive the type

τ , ∀ (α > ⊥) ∀ (β > α) β → α

which is equivalent to ∀ (α > ⊥) α→ α

◮ In xMLF, τ ≤ τ ′′ → τ ′, for any τ ′ and τ ′′ such that ⊢ ϕ : τ ′ ≤ τ ′′

(as witnessed by ∀ (> ⊲ τ); N; ∀ (>ϕ); N)
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Alias bounds

◮ In the syntactic presentations of MLF, λ(x) x can receive the type

τ , ∀ (α > ⊥) ∀ (β > α) β → α

which is equivalent to ∀ (α > ⊥) α→ α

◮ In xMLF, τ ≤ τ ′′ → τ ′, for any τ ′ and τ ′′ such that ⊢ ϕ : τ ′ ≤ τ ′′

(as witnessed by ∀ (> ⊲ τ); N; ∀ (>ϕ); N)

Those types are in general incorrect for the identity!

◮ Thankfully, λ(x) x cannot receive type τ in xMLF.

◮ Still, xMLF types are (strictly) more expressive than the usual
syntactic MLF types
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From presolutions to xMLF terms

◮ MLF presolutions can be algorithmically translated into xMLF terms
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From presolutions to xMLF terms

◮ MLF presolutions can be algorithmically translated into xMLF terms

Nodes flexibly bound on gen nodes are translated into xMLF

type abstractions

The fact that an instantiation edge is solved is translated into a
type computation

◮ A bit of care is needed during the translation:

presolutions must be slightly normalized
order between quantifiers is important in xMLF

some differences between the instance relations of MLF and xMLF
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From presolutions to xMLF terms: example

G

→

α ⊥

G

→

β ⊥

→

→

⊥

e

A presolution for K , λ(x) λ(y) x

Here, K : ∀ (α) α→ σid → α
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From presolutions to xMLF terms: example

G

→

α ⊥

G

→

β ⊥

→

→

⊥

e

A presolution for K , λ(x) λ(y) x

Here, K : ∀ (α) α→ σid → α

Λ(α) λ(x : α) (Λ(β) λ(y : β) x)
︸ ︷︷ ︸

∀ (β) β→α
︸ ︷︷ ︸

σid→α
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From presolutions to xMLF terms: example

G

→

α ⊥

G

→

β ⊥

→

→

⊥

e

A presolution for K , λ(x) λ(y) x

Here, K : ∀ (α) α→ σid → α

Λ(α) λ(x : α) (Λ(β) λ(y : β) x)
︸ ︷︷ ︸

∀ (β) β→α

T (e)
︷ ︸︸ ︷

[∀ (> ⊲σid);N]

︸ ︷︷ ︸

σid→α

28/36



Gen nodes and xMLF terms

◮ Example: id id

G

G

→

⊥

→

→

⊥

G

G

→

⊥

→

→

⊥

id[∀ (α) α→ α] id Λ(α) (id[α→ α]) (id[α])

◮ Nodes bound on the successor of a gen node represent
second-order polymorphism kept local

◮ Nodes bound on a gen node are monomorphic, but re-generalized
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Elaborating λ-terms

J x K =

{

x if x is λ-bound

/)(g) (x [T (e)]) if x is let-bound (1)

Jλ(x) a K = /)(g) λ(x : Typ(n)) (J a K[T (e)]) (2)

J a1 a2 K = /)(g) (J a1 K[T (e1)]) (J a2 K[T (e2)]) (3)

J let x = a in b K = /)(g) let x = J a K in (J b K[T (e)]) (4)

(1)

g G

⊥

e

(2)

g G

→

n ⊥ a ⊥
e

(3)

g G

a1

a2

→

⊥ ⊥

e1

e2

(4)

g G

⊥ b

a

x

e
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Computing /)(g)

◮ We add a type quantification for all the nodes flexibly bound on g

But in which order? G

→

⊥ ⊥

∀ (α) ∀ (β) α→ β
or

∀ (β) ∀ (α) α→ β

We follow a lowermost-leftmost order
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Computing /)(g)

◮ We add a type quantification for all the nodes flexibly bound on g

But in which order? G

→

⊥ ⊥

∀ (α) ∀ (β) α→ β
or

∀ (β) ∀ (α) α→ β

We follow a lowermost-leftmost order

◮ Not sufficient: while G

→

⊥ ⊥

has type ∀ (β) ∀ (α) α→ β,

a fresh instance of g has type ∀ (α) ∀ (β) α→ β according to
a leftmost order

◮ We sometimes need to insert reordering computations
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Computing T (e)

◮ One translation for each of the four instance operations

Plus one new atomic operation RaiseMerge which is translated as α ⊳

◮ Not very difficult (except for raising), but verbose, as the graphic and
xMLF instance relations are very different
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Computing T (e)

◮ One translation for each of the four instance operations

Plus one new atomic operation RaiseMerge which is translated as α ⊳

◮ Not very difficult (except for raising), but verbose, as the graphic and
xMLF instance relations are very different

◮ Some operations cannot be translated at all:

→

→

→

⊥

⊑ →

→

→

⊥

In xMLF, (∀ (α>⊥ → ⊥) α→ α)→ (∀ (α >⊥ → ⊥) α→ α) 6≤
((⊥ → ⊥)→ (⊥ → ⊥))→ ((⊥ → ⊥)→ (⊥ → ⊥))

⇒ Not all presolutions can be translated
32/36



Correcteness of the translation

◮ Any presolution can be transformed into a translatable one

This can be done in a modular way
The translation preserves types modulo inert nodes

◮ Translatable presolutions are translated into well-typed xMLF terns

This ensures the type soundness of our type inference framework

◮ The translation can trivially be adapted to the modulo versions of MLF

(which also ensures their soundness)
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Conclusion

xMLF is an internal language for MLF with all the
good metatheoretical properties

Perspectives:

◮ Understand the differences in expressivity between the instance
relations of MLF and xMLF

◮ Efficient generation of elaborated terms from presolutions
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Coercions

◮ Annotated terms are not primitive, but syntactic sugar

(a : τ) , cτ a

λ(x : τ) a , λ(x) let x = (x : τ) in a

◮ Coercion functions

Primitives of the typing environment

cτ : →

τ τ

The domain of the arrow is frozen

The codomain can be freely instantiated

◮ in xMLF: cτ , Λ(α > τ) λ(x : τ) x [α ⊳]
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