xMLF, an explicit language for MLF

Who? Boris Yakobowski

Where? CNRS - University Paris 7

When? February 8, 2009

Outline

1 A brief summary of (graphic) MLF

2 A Church-style language for MLF

3 Translating graphic MLF into xMLF

4 Conclusion

Outline

A brief summary of (graphic) MLF

2 A Church-style language for MLF

Translating graphic MLF into xMLF

4 Conclusion

3

$\mathsf{ML}\mathsf{F}$

$\mathsf{ML}\mathsf{F}$

$\label{eq:ml-like type inference + } \mbox{ML-like type inference + } expressivity of System F second-order polymorphism }$

Two difficulties:

- ► Type inference for System F is undecidable
- System F does not have principal types

$\mathsf{ML}\mathsf{F}$

Two difficulties:

- Type inference for System F is undecidable
- System F does not have principal types

Example:

$$\begin{array}{ll} \text{id} & \triangleq & \lambda(x) \, x & : & \forall \beta. \ \beta \to \beta \\ \text{choose} & \triangleq & \lambda(x) \, \lambda(y) \, x & : & \forall \alpha. \ \alpha \to \alpha \to \alpha \\ \text{choose id} : \left\{ \begin{array}{ll} (\forall \beta. \ \beta \to \beta) \to (\forall \beta. \ \beta \to \beta) & \alpha = \forall \beta. \ \beta \to \beta \\ & \forall \gamma. \ (\gamma \to \gamma) \to (\gamma \to \gamma) & \alpha = \gamma \to \gamma \end{array} \right. \right.$$

No type is more general than the other

MLF types: going beyond System F

To solve the problem of non-principality:

Flexible quantification

ML^F types extend System F types with an instance-bounded quantification of the form $\forall (\alpha \ge \tau) \tau'$:

Both τ and τ' can be instantiated inside $\forall (\alpha \ge \tau) \tau'$ All occurrences of α in τ' must pick the same instance of τ

choose id : $\forall (\alpha \ge \forall \beta. \beta \rightarrow \beta) \alpha \rightarrow \alpha$

$$\sqsubseteq \quad (\forall \beta. \ \beta \to \beta) \to (\forall \beta. \ \beta \to \beta)$$

or
$$\sqsubseteq \quad \forall \gamma. \ (\gamma \to \gamma) \to (\gamma \to \gamma)$$

MLF types: going beyond System F

To solve the problem of non-principality:

Flexible quantification

ML^F types extend System F types with an instance-bounded quantification of the form $\forall (\alpha \ge \tau) \tau'$:

Both τ and τ' can be instantiated inside $\forall (\alpha \ge \tau) \tau'$ All occurrences of α in τ' must pick the same instance of τ

To permit type inference:

Rigid quantification

Instance-bounded quantification, of the form $\forall (\alpha = \tau) \tau'$

 τ cannot (really) be instantiated inside $\forall (\alpha = \tau) \tau'$ But $\forall (\alpha = \tau) \alpha \rightarrow \alpha$ and $\forall (\alpha = \tau) \forall (\alpha' = \tau) \alpha \rightarrow \alpha'$ are different as far as type inference is concerned

$\mathsf{ML}\mathsf{F}$ as a type system

Extends ML and System F, and combines the benefits of both

Compared to ML

- The expressivity of second-order polymorphism is available
- All ML programs remain typable unchanged

Compared to System F

- ML^F has type inference
- Programs (given their type annotations) have principal types

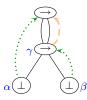
Moreover:

- in practice, programs require very few type annotations
- typable programs are stable under a wide range of program transformations

Graphic ML^F types

The superposition of:

- A term-dag, representing the skeleton of the type
- A binding tree, indicating where variables are bound Two kind of binding edges, for flexible and rigid quantification

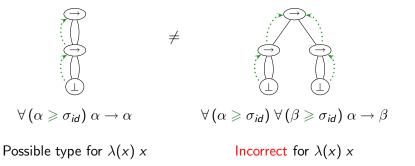


$$\forall (\alpha \geqslant \bot) \forall (\gamma = \forall (\beta \geqslant \bot) \alpha \rightarrow \beta) \gamma \rightarrow \gamma$$

Graphic ML^F types

The superposition of:

- A term-dag, representing the skeleton of the type
 - A binding tree, indicating where variables are bound Two kind of binding edges, for flexible and rigid quantification
- Sharing of nodes is important



Instance on graphic ML^F types

The instance relation \sqsubseteq

Four atomic operations on graphs:

Instance on graphic ML^F types

The instance relation \sqsubseteq

Four atomic operations on graphs:

Grafting: replacing a variable by a closed type (variable substitution)

Instance on graphic ML^F types

The instance relation \sqsubseteq

Four atomic operations on graphs:

- Grafting: replacing a variable by a closed type (variable substitution)
- Merging: fusing two identical subgraphs (correlates the two corresponding subtypes)

Instance on graphic MLF types

The instance relation \sqsubseteq

Four atomic operations on graphs:

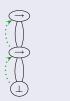
- Grafting: replacing a variable by a closed type (variable substitution)
- Merging: fusing two identical subgraphs (correlates the two corresponding subtypes)
- Raising: edge extrusion (removes the possibility to introduce universal quantification)

Instance on graphic MLF types

The instance relation \sqsubseteq

Four atomic operations on graphs:

- Grafting: replacing a variable by a closed type (variable substitution)
- Merging: fusing two identical subgraphs (correlates the two corresponding subtypes)
- Raising: edge extrusion (removes the possibility to introduce universal quantification)
 - Weakening: turns a flexible edge into a rigid one (forbids further instantiation of the corresponding type)

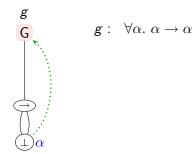


Graphic constraints

- ► Used to formalize the ML^F typing relation, and type inference
- Graphic types extended with four new constructs
 - Unification edges >--- Force two nodes to be equal
 - Existential nodes
 - "Floating" nodes, used only to introduce other constraints
 - Generalization nodes G
 - Instantiation edges -----

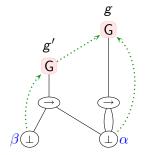
Type generalization

- ► Type generalization is essential in ML^F, just as in ML
- Gen nodes are used to promote types into type schemes, and to delimit generalization scopes



Type generalization

- ► Type generalization is essential in ML^F, just as in ML
- Gen nodes are used to promote types into type schemes, and to delimit generalization scopes

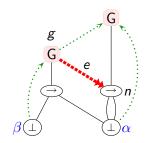


 $\begin{array}{ll} {\it g}: & \forall \alpha. \; \alpha \to \alpha \\ {\it g}': & \forall \beta. \; \beta \to \alpha \\ & \alpha \; {\rm is \; free \; at \; the \; level \; of \; g'} \end{array}$

Instantiation edges

Constrain a node to be an instance of a type scheme

Example:

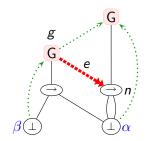


e constrains n to be an instance of g

Instantiation edges

Constrain a node to be an instance of a type scheme

Example:



$$g: \quad \forall \beta. \ \beta \to \alpha$$

$$n: \alpha \to \alpha$$

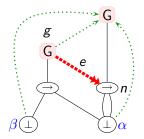
e is solved (take $\beta = \alpha$)

e constrains n to be an instance of g

Instantiation edges

Constrain a node to be an instance of a type scheme

Example:

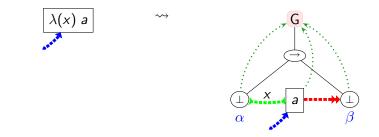


- $g: \quad \beta \to \alpha$
- $n: \alpha \to \alpha$

e is not solved $(\beta \neq \alpha)$

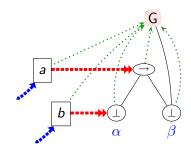
e constrains n to be an instance of g

Typing constraint for an abstraction



λ(x) a can receive type α → β, provided
 α is the (common) type of all the occurrences of x in a
 β is an instance of the type of a.

Typing constraint for an application



a b can receive type β , provided there exists α such that $a \rightarrow \beta$ is an instance of the type of *a* α is an instance of the type of *b*

Г

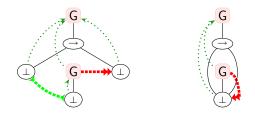
Semantics of constraints

Presolutions

A presolution of a constraint χ is an instance of χ in which all the instantiation and unification edges are solved.

Presolutions retain the shape of the original constraint

Example: Constraint for $\lambda(x) x$



Outline

A brief summary of (graphic) MLF

2 A Church-style language for MLF

Translating graphic MLF into ×MLF

4 Conclusion

1

An explicit langage for MLF

Study subject reduction in MLF

Type annotations are important inside terms But how to reduce $(e : \sigma)$?

 How to use ML^F inside a typed compiler?
 ML^F types are more expressive than F ones
 System F cannot be used as a target langage (prior work by Leijen, but not completely satisfactory)

Hence the need for a core, Church-style, langage for MLF, xMLF

From System F to *x*ML^F

xML^F generalizes System F

Types: $\sigma ::= \bot | \forall (\alpha \ge \sigma) \sigma | \alpha | \sigma \to \sigma$

Rigid quantification is only needed for type inference, and is inlined in xML^F Hence $\forall (\alpha = \sigma) \ \alpha \to \alpha$ becomes $\sigma \to \sigma$ From System F to *x*ML^F

xML^F generalizes System F

Types:
$$\sigma ::= \bot | \forall (\alpha \ge \sigma) \sigma | \alpha | \sigma \to \sigma$$

Rigid quantification is only needed for type inference, and is inlined in xML^F Hence $\forall (\alpha = \sigma) \ \alpha \to \alpha$ becomes $\sigma \to \sigma$

Terms :
$$a ::= x \mid \lambda(x : \sigma) \mid a \mid a \mid a \mid b \mid x = a \text{ in } a \mid \Lambda(\alpha \ge \sigma) \mid a \mid a[\varphi]$$

Typing rules are the same as in System F, except for type application

$$\frac{\text{TAPP}}{\Gamma \vdash \mathbf{a} : \sigma} \quad \frac{\Gamma \vdash \varphi : \sigma \leq \sigma'}{\Gamma \vdash \mathbf{a}[\varphi] : \sigma'}$$

Instance is explicitely witnessed through the use of type computations

INST-REFLEX	INST-TRANS $\Gamma \vdash \varphi_1 : \sigma_1 \leq \sigma_2$	$\Gamma \vdash \varphi_2 : \sigma_2 \le \sigma_3$	Inst-Bot
$\Gamma \vdash \varepsilon : \sigma \leq \sigma$	$\Gamma \vdash \varphi_1; \varphi_2$	$\sigma_2: \sigma_1 \leq \sigma_3$	$\Gamma \vdash \triangleright \sigma : \bot \leq \sigma$
INST-HYP $\alpha \ge \sigma \in$	Inst-In	NNER $\Gamma \vdash \varphi : \sigma_1 \leq \sigma_2$	
$\Gamma \vdash \alpha \triangleleft : \sigma$	$\leq \alpha$ $\Gamma \vdash \forall (z)$	$\geqslant \varphi$): $\forall (\alpha \geqslant \sigma_1) \sigma \leq 1$	$\forall (\alpha \geqslant \sigma_2) \sigma$
I	NST-OUTER $\Gamma, \varphi : \alpha \geqslant \sigma$	$r \vdash \varphi : \sigma_1 \leq \sigma_2$	
Γ	$\vdash \forall (\alpha \geq) \varphi : \forall (\alpha)$	$\geqslant \sigma) \sigma_1 \leq \forall (\alpha \geqslant \sigma)$	σ_2
Inst-Quant	r-Elim	INST-QUAI $\alpha \notin$	NT-INTRO ftv (σ)
$\Gamma \vdash \& : \forall (\alpha$	$\geqslant \sigma) \sigma' \leq \sigma' \{ \alpha \leftarrow f \}$	$\sigma\} \qquad \Gamma \vdash \Re : \sigma \leq$	$\leq orall (lpha \geqslant ot) \sigma$

Instance is explicitely witnessed through the use of type computations

 $\varphi ::= \varepsilon \mid \varphi; \varphi \mid \triangleright \sigma \mid \alpha \triangleleft \mid \forall (\geqslant \varphi) \mid \forall (\alpha \geqslant) \varphi \mid \$ \mid \$$

INST-REFLEX	INST-TRANS $\Gamma \vdash \varphi_1 : \sigma_1 \leq \sigma_2 \qquad \Gamma \vdash \varphi_2 : \sigma_2 \leq \sigma_3$	INST-BOT
$\Gamma \vdash \varepsilon : \sigma \leq \sigma$	$\Gamma \vdash \varphi_1; \varphi_2 : \sigma_1 \leq \sigma_3$	$\Gamma \vdash \triangleright \sigma : \bot \leq \sigma$
$\begin{array}{c} \text{Inst-Hyp} \\ \alpha \geqslant \sigma \in \end{array}$	INST-INNER $\Gamma \vdash \varphi : \sigma_1 \leq \sigma$	
$\Gamma \vdash \alpha \triangleleft : \sigma$	$\leq \alpha$ $\Gamma \vdash \forall (\geq \varphi) : \forall (\alpha \geq \sigma_1) \sigma \leq$	$\leq \forall (\alpha \geq \sigma_2) \sigma$

 $\frac{\Gamma, \varphi : \alpha \ge \sigma \vdash \varphi : \sigma_1 \le \sigma_2}{\Gamma \vdash \forall (\alpha \ge) \varphi : \forall (\alpha \ge \sigma) \sigma_1 \le \forall (\alpha \ge \sigma) \sigma_2}$

INST-QUANT-INTRO $\alpha \notin \mathsf{ftv}(\sigma)$

 $\mathsf{F} \vdash \mathfrak{B} : \sigma \leq \forall \, (\alpha \geqslant \bot) \, \sigma$

Instance is explicitely witnessed through the use of type computations $\varphi ::= \varepsilon \mid \varphi; \varphi \mid \triangleright \sigma \mid \alpha \triangleleft \mid \forall (\geqslant \varphi) \mid \forall (\alpha \geqslant) \varphi \mid \otimes \mid \otimes$

 $\frac{\text{INST-REFLEX}}{\Gamma \vdash \varepsilon : \sigma \le \sigma} \quad \frac{\frac{\text{INST-TRANS}}{\Gamma \vdash \varphi_1 : \sigma_1 \le \sigma_2} \quad \Gamma \vdash \varphi_2 : \sigma_2 \le \sigma_3}{\Gamma \vdash \varphi_1 ; \varphi_2 : \sigma_1 \le \sigma_3} \quad \frac{\text{INST-BOT}}{\Gamma \vdash \triangleright \sigma : \bot \le \sigma_3}$

INST-HYP	INST-INNER
$\alpha \geqslant \sigma \in \Gamma$	$\Gamma \vdash arphi : \sigma_1 \leq \sigma_2$
$\Gamma \vdash \alpha \triangleleft : \sigma \leq \alpha$	$\Gamma \vdash \forall (\geqslant \varphi) \colon \forall (\alpha \geqslant \sigma_1) \; \sigma \leq \forall (\alpha \geqslant \sigma_2) \; \sigma$

 $\frac{\text{INST-OUTER}}{\Gamma, \varphi : \alpha \ge \sigma \vdash \varphi : \sigma_1 \le \sigma_2} \frac{\Gamma \vdash \forall (\alpha \ge) \varphi : \forall (\alpha \ge \sigma) \sigma_1 \le \forall (\alpha \ge \sigma) \sigma_2}$

INST-QUANT-INTRO $\alpha \notin \mathsf{ftv}(\sigma)$

 $\mathsf{F} \vdash \mathscr{B} : \sigma \leq \forall \, (\alpha \geqslant \bot) \, \sigma$

Instance is explicitely witnessed through the use of type computations

 $\varphi ::= \varepsilon \mid \varphi; \varphi \mid \triangleright \sigma \mid \alpha \triangleleft \mid \forall (\geqslant \varphi) \mid \forall (\alpha \geqslant) \varphi \mid \& \mid \otimes$

$$\frac{\text{INST-REFLEX}}{\Gamma \vdash \varphi : \sigma \leq \sigma} \qquad \frac{\prod_{r \vdash \varphi_{1} : \sigma_{1} \leq \sigma_{2}} \Gamma \vdash \varphi_{2} : \sigma_{2} \leq \sigma_{3}}{\Gamma \vdash \varphi_{1} : \varphi_{2} : \sigma_{1} \leq \sigma_{3}} \qquad \frac{\text{INST-BOT}}{\Gamma \vdash \varphi : \sigma_{1} \leq \sigma_{3}} \qquad \frac{\prod_{r \vdash \varphi : \perp \leq \sigma} \Gamma \vdash \varphi : \perp \leq \sigma}{\Gamma \vdash \varphi : \sigma_{1} \leq \sigma_{2}} \\
\frac{\prod_{r \vdash \varphi : \sigma \leq \alpha} \Gamma \vdash \varphi : \sigma_{1} \leq \sigma_{2}}{\Gamma \vdash \forall (\geqslant \varphi) : \forall (\alpha \geq \sigma_{1}) \sigma \leq \forall (\alpha \geq \sigma_{2}) \sigma} \\
\frac{\prod_{r \vdash \varphi : \alpha \leq \sigma \leq \varphi} \Gamma \vdash \varphi : \sigma_{1} \leq \sigma_{2}}{\prod_{r \vdash \varphi : \sigma_{1} \leq \sigma_{2}} \Gamma \vdash \varphi : \sigma_{1} \leq \sigma_{2}} \\
\frac{\prod_{r \vdash \varphi : \alpha \leq \varphi \in \varphi} \Gamma \vdash \varphi : \sigma_{1} \leq \sigma_{2}}{\prod_{r \vdash \varphi : \sigma_{1} \leq \sigma_{2}} \Gamma \vdash \varphi : \sigma_{1} \leq \sigma_{2}} \\
\frac{\prod_{r \vdash \varphi : \alpha \geq \varphi \vdash \varphi} \Gamma \vdash \varphi : \sigma_{r} \leq \sigma_{r} < \sigma_{r} \leq \sigma_{r} < \sigma_{r} \leq \sigma_{r} < \sigma_{r} \leq \sigma_{r} < \sigma_$$

 $\mathsf{\Gamma} \vdash \forall (\alpha \geq) \varphi : \forall (\alpha \geq \sigma) \sigma_1 \leq \forall (\alpha \geq \sigma) \sigma_2$

 $\frac{\text{INST-QUANT-ELIM}}{\Gamma \vdash \& : \forall (\alpha \ge \sigma) \ \sigma' \le \sigma' \{ \alpha \leftarrow \sigma \}} \qquad \qquad \frac{\text{INST-QUANT-INTRO}}{\Gamma \vdash \& : \sigma \le \forall (\alpha \ge \bot) \ \sigma}$

Instance is explicitly witnessed through the use of type computations $\varphi ::= \varepsilon | \varphi; \varphi | \triangleright \sigma | \alpha \triangleleft | \forall (\geqslant \varphi) | \forall (\alpha \geqslant) \varphi | \& | \aleph$

Example: back to choose id

 \blacktriangleright To make choose id well-typed, we must choose a type into which α must be instantiated

Example: back to choose id

To make choose id well-typed, we must choose a type into which α must be instantiated

$$e \triangleq \Lambda(\gamma \ge \sigma_{id}) \underbrace{(\operatorname{choose}[\forall (\ge \rhd \gamma); \&])}_{\gamma \to \gamma \to \gamma} \underbrace{(\operatorname{id}[\gamma \triangleleft])}_{\gamma} : \forall (\gamma \ge \sigma_{id}) \gamma \to \gamma$$

$$\frac{}{\vdash \rhd \gamma : \bot \le \gamma} \operatorname{Bor}_{\vdash \forall (\ge \rhd \gamma) : \forall (\alpha \ge \bot) \alpha \to \alpha \to \alpha \le \forall (\alpha \ge \gamma) \alpha \to \alpha \to \alpha} \operatorname{INNER}_{\vdash \& : \forall (\alpha \ge \gamma) \alpha \to \alpha \to \alpha \le \gamma \to \gamma \to \gamma} \operatorname{Quant-Elim}_{\vdash \forall (\ge \rhd \gamma); \& : \forall (\alpha \ge \bot) \alpha \to \alpha \to \alpha \le \gamma \to \gamma \to \gamma} \operatorname{Trans}_{\vdash \forall (\ge \rhd \gamma); \& : \forall (\alpha \ge \bot) \alpha \to \alpha \to \alpha \le \gamma \to \gamma \to \gamma}$$

Example: back to choose id

To make choose id well-typed, we must choose a type into which α must be instantiated

$$e \triangleq \Lambda(\gamma \ge \sigma_{id}) \underbrace{(\mathsf{choose}[\forall (\ge \rhd \gamma); \&])}_{\gamma \to \gamma \to \gamma} \underbrace{(\mathsf{id}[\gamma \lhd])}_{\gamma} : \forall (\gamma \ge \sigma_{id}) \gamma \to \gamma$$

We can recover the other System F types just by instantiation

$$\begin{cases} e[\&] &: \sigma_{id} \to \sigma_{id} \\ e[\boxtimes; \forall (\delta \ge) (\forall (\ge \forall (\ge \triangleright \delta); \&); \&)] : \forall (\delta \ge \bot) (\delta \to \delta) \to (\delta \to \delta) \end{cases}$$

Reducing expressions

 \blacktriangleright Usual β -reduction

Reducing expressions

- \blacktriangleright Usual β -reduction
- 6 specific rules to reduce type applications

$$\begin{array}{cccc} (\lambda(x:\tau) a_1) a_2 & \longrightarrow & a_1\{x \leftarrow a_2\} & (\beta) \\ | \text{let } x = a_2 \text{ in } a_1 & \longrightarrow & a_1\{x \leftarrow a_2\} & (\beta) \\ & a[\varepsilon] & \longrightarrow & a_1\{x \leftarrow a_2\} & (\beta) \\ & & a[\varepsilon] & \longrightarrow & a_1\{x \leftarrow a_2\} & (\beta) \\ & & & \alpha[\varepsilon] & & & \alpha[\varphi][\varphi'] & & & & & \\ & & a[\varphi;\varphi'] & \longrightarrow & a[\varphi][\varphi'] & & & & & & & \\ & & a[\forall] & \longrightarrow & \Lambda(\alpha \ge \bot) a & & & & & & & \\ & & & a[\forall] & \longrightarrow & \Lambda(\alpha \ge \bot) a & & & & & & & \\ & & & & \alpha[\forall] & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & &$$

Reducing expressions

- \blacktriangleright Usual β -reduction
- 6 specific rules to reduce type applications
 - Context rule $\begin{array}{cccc} E & ::= & \{\cdot\} & \mid & E[\varphi] & \mid & \lambda(x : \tau) & E & \mid & \Lambda(\alpha \ge \tau) & E \\ & \mid & E & a & \mid & a & E & \mid & \text{let } x = E & \text{in } a & \mid & \text{let } x = a & \text{in } E \end{array}$

$$\begin{array}{cccc} a[\varepsilon] & \longrightarrow & a & \text{Reflex} \\ a[\varphi; \varphi'] & \longrightarrow & a[\varphi][\varphi'] & & \text{Trans} \\ a[\heartsuit] & \longrightarrow & \Lambda(\alpha \geqslant \bot) a & & \text{Quant-Intro} \\ & & \text{if } \alpha \notin \text{ftv}(a) \end{array}$$

$$\begin{array}{ccc} (\Lambda(\alpha \ge \tau) \ \mathbf{a})[\forall \ (\alpha \ge) \ \varphi] & \longrightarrow & \Lambda(\alpha \ge \tau) \ (\mathbf{a}[\varphi]) & \text{OUTER} \\ (\Lambda(\alpha \ge \tau) \ \mathbf{a})[\forall \ (\ge \varphi)] & \longrightarrow & \Lambda(\alpha \ge \tau[\varphi]) \ \mathbf{a}\{\alpha \triangleleft \leftarrow \varphi; \alpha \triangleleft\} & \text{INNER} \\ & (\Lambda(\alpha \ge \tau) \ \mathbf{a})[\&] & \longrightarrow & \mathbf{a}\{\alpha \triangleleft \leftarrow \varepsilon\}\{\alpha \leftarrow \tau\} & \text{QUANT-ELIM} \end{array}$$

$$E\{a\} \longrightarrow E\{a'\}$$
 Context
if $a \longrightarrow a'$

Rules INNER and $\operatorname{QUANT-ELIM}$

$$\begin{array}{ccc} (\Lambda(\alpha \ge \tau) \ \mathbf{a}) [\forall \ (\ge \varphi)] & \longrightarrow & \Lambda(\alpha \ge \tau[\varphi]) \ \mathbf{a} \ ? \\ (\Lambda(\alpha \ge \tau) \ \mathbf{a}) [\&] & \longrightarrow & \mathbf{a} \{\alpha \leftarrow \tau\} \ ? \end{array}$$

This is incorrect: after the reduction, the computations $\alpha \triangleleft$ inside *a* make incorrect assumptions on the bound of α

Rules INNER and QUANT-ELIM

$$\begin{array}{rcl} (\Lambda(\alpha \ge \tau) \ \mathbf{a}) [\forall (\ge \varphi)] & \longrightarrow & \Lambda(\alpha \ge \tau[\varphi]) \ \mathbf{a} \{ \alpha \triangleleft \leftarrow \varphi; \alpha \triangleleft \} \\ (\Lambda(\alpha \ge \tau) \ \mathbf{a}) [\&] & \longrightarrow & \mathbf{a} \{ \alpha \triangleleft \leftarrow \varepsilon \} \{ \alpha \leftarrow \tau \} \end{array}$$

This is incorrect: after the reduction, the computations $\alpha \triangleleft$ inside *a* make incorrect assumptions on the bound of α

We change those computations:

For INNER, $\alpha \triangleleft$ assumed that the bound of α was τ , while it is $\tau[\varphi]$ For QUANT-ELIM, α is now τ , the computations $\alpha \triangleleft$ are vacuous

Example of reductions

► choose id:

$$\begin{array}{l} \Lambda(\gamma \geq \sigma_{id}) \left((\Lambda(\alpha \geq \bot) \ \lambda(x:\alpha) \ \lambda(y:\alpha) \ x) [\forall (\geq \triangleright \gamma); \&] \right) \left(\mathsf{id}[\gamma \triangleleft] \right) \\ \longrightarrow \quad \Lambda(\gamma \geq \sigma_{id}) \left((\Lambda(\alpha \geq \gamma) \ \lambda(x:\alpha) \ \lambda(y:\alpha) \ x) [\&] \right) \left(\mathsf{id}[\gamma \triangleleft] \right) \\ \longrightarrow \quad \Lambda(\gamma \geq \sigma_{id}) \left(\lambda(x:\gamma) \ \lambda(y:\gamma) \ x) \right) \left(\mathsf{id}[\gamma \triangleleft] \right) \\ \longrightarrow \quad \Lambda(\gamma \geq \sigma_{id}) \ \lambda(y:\gamma) \left(\mathsf{id}[\gamma \triangleleft] \right) \end{array}$$

► (choose id)[&]:

$$(\Lambda(\gamma \ge \sigma_{id}) \ \lambda(y : \gamma) \ (id[\gamma \triangleleft]))[\&] \ \lambda(x : \sigma_{id}) \ (id[\epsilon])$$

$$\longrightarrow \lambda(x:\sigma_{id})$$
 id

Example of reductions

choose id:

$$\begin{array}{l} \Lambda(\gamma \geq \sigma_{id}) \left((\Lambda(\alpha \geq \bot) \ \lambda(x:\alpha) \ \lambda(y:\alpha) \ x) [\forall (\geq \triangleright \gamma); \&] \right) \left(\mathsf{id}[\gamma \triangleleft] \right) \\ \longrightarrow \quad \Lambda(\gamma \geq \sigma_{id}) \left((\Lambda(\alpha \geq \gamma) \ \lambda(x:\alpha) \ \lambda(y:\alpha) \ x) [\&] \right) \left(\mathsf{id}[\gamma \triangleleft] \right) \\ \longrightarrow \quad \Lambda(\gamma \geq \sigma_{id}) \left(\lambda(x:\gamma) \ \lambda(y:\gamma) \ x) \right) \left(\mathsf{id}[\gamma \triangleleft] \right) \\ \longrightarrow \quad \Lambda(\gamma \geq \sigma_{id}) \ \lambda(y:\gamma) \left(\mathsf{id}[\gamma \triangleleft] \right) \end{array}$$

► (choose id)[&]:

$$\begin{array}{l} (\Lambda(\gamma \geqslant \sigma_{id}) \ \lambda(y : \gamma) \ (\mathrm{id}[\gamma \triangleleft]))[\&] \\ \longrightarrow \ \lambda(x : \sigma_{id}) \ (\mathrm{id}[\epsilon]) \\ \longrightarrow \ \lambda(x : \sigma_{id}) \ \mathrm{id} \end{array}$$

System F like type application $[\tau] \triangleq [\forall (\ge \tau); \&]$

$$(\Lambda(\alpha) a)[\tau] = (\Lambda(\alpha \ge \bot) a)[\forall (\ge \tau); \&]$$
$$\longrightarrow (\Lambda(\alpha \ge \tau) a)[\&]$$
$$\longrightarrow a\{\alpha \leftarrow \tau\}$$

 \Rightarrow Exactly as in System F

Confluence of strong reduction

Strong reduction is confluent

proven by the usual method of parallel reductions

Confluence of strong reduction

Strong reduction is confluent

proven by the usual method of parallel reductions

But only on well-typed terms:

 $e \triangleq (\Lambda(\alpha \geqslant \forall (\gamma) \gamma) ((\Lambda(\beta \geqslant \operatorname{int}) x)[\forall (\geqslant \alpha \triangleleft)]) [\forall (\geqslant \&)]$

Ill-typed because the computation $\alpha \triangleleft$ is applied to int, while α is supposed to be $\forall\,(\gamma)\;\gamma$

$$e \longrightarrow (\Lambda(\alpha \ge \forall (\gamma) \gamma) \Lambda(\beta \ge \alpha) x) [\forall (\ge \&)] \\ \longrightarrow \Lambda(\alpha \ge \bot) \Lambda(\beta \ge \alpha) x$$

(Reducing the innermost type application first, then the outermost)

$$e \longrightarrow \Lambda(\alpha \ge \bot) ((\Lambda(\beta \ge \operatorname{int}) x)[\forall (\ge \&; \alpha \triangleleft)])$$

(Reducing the outermost type application first)

Correctness

- Subject reduction, under any context (including under λ and Λ)
- Progress for call-by-value, with or without the value restriction, and for call-by-name

First time that ML^F is proven sound for call-by-name

Correctness

- Subject reduction, under any context (including under λ and Λ)
- Progress for call-by-value, with or without the value restriction, and for call-by-name

First time that ML^F is proven sound for call-by-name

Mechanized proof?

almost completed on a previous version of the system, in which ε, ▷ τ and α ⊲ were merged; but need for renaming lemmas
 φ ::= α ⊲ | ... not very practical with the locally nameless approach
 Operation φ{α ⊲ ← ...} non standard
 Boring !

Alias bounds

In the syntactic presentations of ML^F, $\lambda(x) x$ can receive the type

$$\tau \triangleq \forall (\alpha \ge \bot) \forall (\beta \ge \alpha) \beta \to \alpha$$

which is equivalent to $\forall (\alpha \ge \bot) \alpha \rightarrow \alpha$

In xML^F, $\tau \leq \tau'' \rightarrow \tau'$, for any τ' and τ'' such that $\vdash \varphi : \tau' \leq \tau''$ (as witnessed by $\forall (\geq \triangleright \tau); \&; \forall (\geq \varphi); \&)$

Alias bounds

In the syntactic presentations of ML^F, $\lambda(x) x$ can receive the type

$$\tau \triangleq \forall (\alpha \ge \bot) \forall (\beta \ge \alpha) \beta \to \alpha$$

which is equivalent to $\forall (\alpha \ge \bot) \ \alpha \rightarrow \alpha$

In xML^F, $\tau \leq \tau'' \rightarrow \tau'$, for any τ' and τ'' such that $\vdash \varphi : \tau' \leq \tau''$ (as witnessed by $\forall (\geq \triangleright \tau); \&; \forall (\geq \varphi); \&)$

Those types are in general incorrect for the identity!

- ► Thankfully, $\lambda(x) x$ cannot receive type τ in xMLF.
- Still, xMLF types are (strictly) more expressive than the usual syntactic MLF types

Outline

A brief summary of (graphic) MLF

2 A Church-style language for MLF

3 Translating graphic MLF into xMLF

4 Conclusion

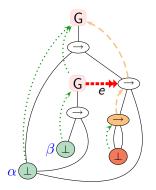
From presolutions to xMLF terms

► ML^F presolutions can be algorithmically translated into xML^F terms

From presolutions to xML^{F} terms

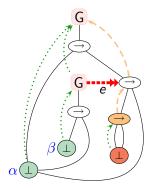
- ML^F presolutions can be algorithmically translated into xML^F terms
 - Nodes flexibly bound on gen nodes are translated into xMLF type abstractions
 - The fact that an instantiation edge is solved is translated into a type computation
- A bit of care is needed during the translation:
 presolutions must be slightly normalized
 order between quantifiers is important in xMLF
 some differences between the instance relations of MLF and xMLF

From presolutions to xMLF terms: example

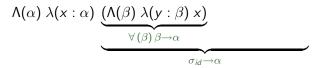


A presolution for $K \triangleq \lambda(x) \lambda(y) x$ Here, $K : \forall (\alpha) \alpha \rightarrow \sigma_{id} \rightarrow \alpha$

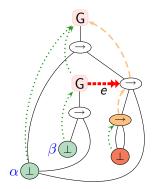
From presolutions to xMLF terms: example



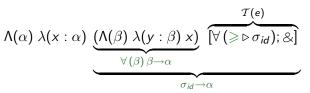
A presolution for $K \triangleq \lambda(x) \lambda(y) x$ Here, $K : \forall (\alpha) \alpha \rightarrow \sigma_{id} \rightarrow \alpha$



From presolutions to xMLF terms: example

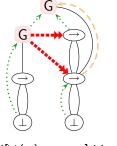


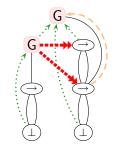
A presolution for $K \triangleq \lambda(x) \lambda(y) x$ Here, $K : \forall (\alpha) \alpha \rightarrow \sigma_{id} \rightarrow \alpha$



Gen nodes and *x*ML^F terms

Example: id id





 $\mathsf{id}[\forall (\alpha) \ \alpha \to \alpha] \mathsf{id} \qquad \land (\alpha) (\mathsf{id}[\alpha \to \alpha]) (\mathsf{id}[\alpha])$

- Nodes bound on the successor of a gen node represent second-order polymorphism kept local
- Nodes bound on a gen node are monomorphic, but re-generalized

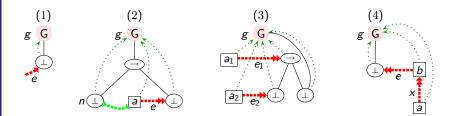
Elaborating λ -terms

$$\llbracket x \rrbracket = \begin{cases} x & \text{if } x \text{ is } \lambda \text{-bound} \\ \bigwedge(g) (x[\mathcal{T}(e)]) & \text{if } x \text{ is let-bound} \end{cases}$$
(1)

$$\llbracket \lambda(x) a \rrbracket = \bigwedge (g) \lambda(x : \operatorname{Typ}(n)) (\llbracket a \rrbracket [\mathcal{T}(e)])$$
 (2)

$$\llbracket a_1 a_2 \rrbracket = \bigwedge (g) (\llbracket a_1 \rrbracket [\mathcal{T}(e_1)]) (\llbracket a_2 \rrbracket [\mathcal{T}(e_2)])$$
(3)

$$\llbracket \operatorname{let} x = a \text{ in } b \rrbracket = \bigwedge(g) \operatorname{let} x = \llbracket a \rrbracket \text{ in } (\llbracket b \rrbracket[\mathcal{T}(e)])$$
(4)



Computing $\bigwedge(g)$

- We add a type quantification for all the nodes flexibly bound on g
 - But in which order?

 $\forall (\alpha) \forall (\beta) \alpha \to \beta$ or $\forall (\beta) \forall (\alpha) \alpha \to \beta$

We follow a lowermost-leftmost order

Computing $\bigwedge(g)$

- We add a type quantification for all the nodes flexibly bound on g
 - But in which order?

 $\forall (\alpha) \forall (\beta) \alpha \to \beta$ or $\forall (\beta) \forall (\alpha) \alpha \to \beta$

- We follow a lowermost-leftmost order
- - a fresh instance of g has type $\forall (\alpha) \forall (\beta) \alpha \rightarrow \beta$ according to a leftmost order
 - We sometimes need to insert reordering computations

Computing $\mathcal{T}(e)$

- One translation for each of the four instance operations
 Plus one new atomic operation RaiseMerge which is translated as α
- Not very difficult (except for raising), but verbose, as the graphic and xML^F instance relations are very different

Computing $\mathcal{T}(e)$

- ► One translation for each of the four instance operations Plus one new atomic operation RaiseMerge which is translated as α
- Not very difficult (except for raising), but verbose, as the graphic and xML^F instance relations are very different
 - Some operations cannot be translated at all:

 $\begin{array}{l} \mathsf{In} \; \mathsf{xMLF}, \; (\forall \; (\alpha \geqslant \bot \to \bot) \; \alpha \to \alpha) \to (\forall \; (\alpha \geqslant \bot \to \bot) \; \alpha \to \alpha) \; \not\leq \\ \; ((\bot \to \bot) \to (\bot \to \bot)) \to ((\bot \to \bot) \to (\bot \to \bot)) \end{array}$

\Rightarrow Not all presolutions can be translated

Correcteness of the translation

- Any presolution can be transformed into a translatable one
 - This can be done in a modular way
 The translation preserves types modulo inert nodes
- Translatable presolutions are translated into well-typed xMLF terms

This ensures the type soundness of our type inference framework

► The translation can trivially be adapted to the modulo versions of MLF (which also ensures their soundness)

Outline

A brief summary of (graphic) MLF

2 A Church-style language for MLF

Translating graphic MLF into xMLF

4 Conclusion

Conclusion

xMLF is an internal language for MLF with all the good metatheoretical properties

Perspectives:

- Understand the differences in expressivity between the instance relations of MLF and xMLF
- **Efficient** generation of elaborated terms from presolutions

Coercions

Annotated terms are not primitive, but syntactic sugar

$$(a: au) \triangleq c_{ au} a$$

$$\lambda(x: au) a \triangleq \lambda(x) \text{ let } x = (x: au) \text{ in } a$$

Coercion functions

Primitives of the typing environment

$$c_{\tau}$$
:

- The codomain can be freely instantiated
- ► in xMLF: $c_{\tau} \triangleq \Lambda(\alpha \ge \tau) \lambda(x : \tau) x[\alpha \triangleleft]$