A Church-Style Intermediate Language for MLF

Didier Rémy
INRIA
http://gallium. inria.fr/~remy

Abstract

MLF is a type system that seamlessly mertyHsstyle implicit but
second-class polymorphism with Systérexplicit first-class poly-
morphism. We presentMLF, a Church-style version df1LF with

full type information that can easily be maintained duriegluc-
tion. All parameters of functions are explicitly typed arathotype
abstraction and type instantiation are explicit. Howevgpe in-
stantiation inxMLF is more general than type application in Sys-
temF. We equipxMLF with a small-step reduction semantics that
allows reduction in any context and show that this relatsoroinflu-
ent and type preserving. We also show that both subject tietuc
and progress hold for weak-reduction strategies, inclydal-by-
value with the value-restriction. We exhibit a type pressgven-
coding of MLF into xMLF, which ensures type soundness for the
most general version df¥ILF. We observe thaxMLF is a calculus
of retyping functions at the type level.

Categories and Subject DescriptorsF.3.3 [Logics and Mean-
ings of Programp Studies of Program Constructs—Type struc-
ture; D.3.3 Programming LanguagégslLanguage Constructs and
Features—Polymorphism

General Terms Design, Languages, Theory

Keywords MLF, SystemF, Types, Type Generalization, Type In-
stantiation, Retyping functions, Type Soundness, Binders

Introduction

MLF (CeBotlan and Rémyl 2003, 2007:_Rémy and Yakobdwski
2008) is a type system that seamlessly megiksstyle implicit
but second-class polymorphism with Systénexplicit first-class
polymorphism. This is done by enriching Systéntypes. Indeed,
maybe surprisingly, Systerf is not well-suited for partial type
inference, as illustrated by the following example. Assuim a
function, saychoice, of typeV (o) « — o — « and the identity
functionid, of typeV (8) 8 — 3, have been defined. How can the
applicationchoice toid be typed in Systerh? Should:hoice be ap-
plied to the typé/ (3) 8 — (3 of the identity that is itself kept poly-
morphic? Or should it be applied to the monomorphic type> ~,
with the identity being applied te (where~ is bound in a type
abstraction in front of the application)? Unfortunatelyese alter-
natives have incompatible types, respectivelya) a« — a) —

[Copyright notice will appear here once preprint’ optiaremoved.]

Boris Yakobowski

CNRS - Université Paris Diderot (Paris 7)
http://www.yakobowski.org

(V(a) a — «)andV (v) (y — 7v) — (v — ~7): none is an in-
stance of the other. Hence, in SystEnone is forced to irreversibly
choose between one of the two explicitly typed terms.

However, a type inference system cannot choose between the
two, as this would sacrifice completeness and be somehow arbi
trary. This is whyMLF enriches types with instance-bounded poly-
morphism, which allows to write more expressive types thatdr
outin a single type all typechecking alternatives in sudesas the
example okchoice. Now, the typev (o > 7) o — «, which should
be read & — « wherea is any instance of”, can be assigned
to choice id, and the two previous alternatives can be recovered
posterioriby choosing different instances far

iMLF and eMLF Currently, the languageMLF comes with a
Curry-style versionMLF, where no type information is needed,
and a type-inference versi@MLF, that requires partial type infor-
mation [Le Botlan and Rérfry 2007). HoweveNILF is not quite
in Church’s style, since a large amount of type informatiestill
inferred, and partial type information cannot be easily meined
during reduction. Hence, whileMLF is a good surface language,
it is not a good candidate for use as an internal languagengluri
the compilation process, where some simple program tramsfo
tions, and perhaps some reduction steps, are being pedoirhés
has been a problem for the adoptionMtF in the Haskell com-
munity (Pevton Jongs 2003), as the Haskell compilationnchses
an internal explicitly typed language, especially, but aoly, for
evidence translation due to the use of qualified types (libh8ds).

This is also an obstacle to proving subject reduction, whimés
not hold ineMLF. In a way, this is unavoidable in a language with
non-trivial partial type inference. Indeed, type annatasi cannot
be completely dropped, but must at least be transformedeord r
ganized during reduction. Still, one could expect @tLF may be
equipped with reduction rules for type annotations. This &etu-
ally been considered in the original presentatiorvif, but only
with limited success. The reduction kept track of annotasies
during reduction; this showed, in particular, that no newatation
site needs to be introduced during reduction. Unfortugateé ex-
act form of annotations could not be maintained during rédac
by lack of an appropriate language to describe their contiouta
As a result, it has only been shown that some type derivation c
be rebuilt after the reduction of a well-typed program, bithaut
exhibiting an algorithm to compute them during reduction.

Independently, Rémy and Yakobowski (2008) have introduce
graphic constraints, both to simplify the presentatiorvift and
improve its type inference algorithm. This also lead to apden
slightly more expressive definition ofLF.

xMLF In this paper, we present a Church-style versiorvif,
called xMLF, which contains full type information. In fact, type
checking becomes a simple and local verification processeshy
trast with type inference ieMLF, which is based on unification.

In xMLF, type abstraction, type instantiation, and all parameters

2009/7/15

http://gallium.inria.fr/~remy
http://www.yakobowski.org

of functions are explicit, as in Systef However, type instan-
tiation is more general and more atomic than type applioaitio
SystemF: we use explicit type instantiation expressions, that are
actually proof evidences for the type instance relatioris!ifr.

In addition to the usuab-reduction, we give a series of reduc-
tion rules for simplifying type instantiations. These mkre con-
fluent when allowed in any context. Moreover, reduction press
typings, and is sufficient to reduce all typable expressiorsvalue
when used in either a call-by-value or call-by-name setflHnis es-
tablishes the soundnesshdt F for a call-by-name semantics for the
first time. NotablyxMLF is a conservative extension of Syst&m

To verify that, as expectecMLF can be used as an inter-
nal language foeMLF, we exhibit a type-preserving type-erasure-
preserving translation fromMLF to xMLF. This translation is based
on typing derivations and thus performed after type infeeen
Technically, it is based on presolutions of type inferenczbfems
in the graphic constraint framework ®LF. An important corol-
lary is the type soundness eMLF—in its most expressiffever-
sion [Rémy and Yakobow$ki 2008). Therefax|LF could also be
used as an internal language for (and ensure the type scesdne
of) HML—another less expressive but simpler surface language for
iMLF that has been recently proposkd (Lélien 2009).

Besides these practical issugb|LF might be interesting in its
own right: type instantiations change the types of terms aysv
that have some similarities, but also important differenagith
retyping functions in the language’—the closure ofF by 7-
expansion. In particular, type instantiations operatéregtat the
level of types and not at the level of terms, hence, by coostm,
they do not carry any computational content.

Outline Perhaps surprisingly, but quite interestingly. the diffi-
culty in defining an internal language fodLF is not reflected in
the internal language itself, which, we believe, remaingée and
easy to understand, but rather in the translation fetyhF to xMLF,
which is complicated by many administrative details. Herwe
presentxMLF first and study its meta-theoretical properties inde-
pendently ofeMLF. More precisely, the paper is organized as fol-
lows. We presenkMLF, its syntax and its static and dynamic se-
mantics ingdl. We study its main properties, including type sound-
ness for different evaluations strategiesgih The elaboration of
eMLF programs intocMLF is addressed i3, We discuss possible
improvements and variations, as well as related and futor&s\at
the end of the papéfl. All proofs are omitted, but can be found in
(Yakobowski 2008, Chapters 14 & 15).

1. The calculus
1.1 Types, instantiations, terms, and typing environments

All the syntactic definitions okMLF can be found in FigurEl1.
We assume given a countable collection of variables ranged o
by lettersa, 3, v, andé. As usual, types include type variables
and arrow types. Other type constructors will be added Jater
straightforwardly, as the arrow constructor receives recéy treat-
ment. Types also include a bottom typethat corresponds to the
SystenF typeVa.a. Finally, a type may also be a form of bounded
quantificationv (« > 7) 7/, calledflexiblequantification, that gen-
eralizes th&/a. T form of SystenF. (We may simply write/ (o) 7/
when the bound is L.) Intuitively, V (o« > 7) 7’ restricts the vari-
able« to range only over instances of The variablex is bound

in 7’ but notinr.

130 far, type-soundness has only been proved for the origislslightly
weaker variant oM LF (Le_Botlahl 2004) and for the shallow, recast version
of MLF (Le Botlan and Rénly 20D7).

a, B,7,0 Type variables
T = Types
| e Type variable
T—T Arrow type
ViezT1)T Flexible quantification
| 4L Bottom type
10} = Instantiations
T Bottom
la Abstract
V(= ¢) Inside
V(az) ¢ Under
& Quantifier elimination
4 Quantifier introduction
¢; ¢ Composition
1 Identity
x,Y, 2 Term variables
a = Terms
| x Variable
Mz:T)a Function
aa Application
AMa=T1)a Type abstraction
ad Type instantiation
| letx=aina Let-binding
r = Environments
%} Empty environment
Ta>zTt Type variable
| Dx:7 Term variable

Figure 1. Grammar of types, instantiations, and terms

In Church-style Syster, type instantiation inside terms is sim-
ply type application, of the form 7. By contrast, type instantiation
a ¢ in xMLF details every intermediate instantiation step, so that it
can be checked locally. Intuitively, thestantiationg transforms a
type 7 into another typer’ that is an instance of. In a way, ¢ is
a witness for the instance relation that holds betweemd7’. It
is therefore easier to understand instantiations alt@getfth their
static semantics, which will be explained in the next sectio

Terms ofxMLF are those of the\-calculus enriched withet
constructs, with two small differences. Type instantiatiop gen-
eralizes Systerft type application. Type abstractions are extended
with an instance boundand writtenA (a>7) a. The type variable
ais bound ina, but not inT. We abbreviaté\(« > 1) a asA(«) a,
which simulates the type abstraction fokw. a of SystemF.

As usual, type environments assign types to program vasabl
However, instead of just listing type variables, as is thseci
SystemF, type variables are also assigned a bound in a binding
of the forma > 7.

As usual, we assume that typing environments do not bindstwic
the same variable. We writéom(T") for the set of all term and
type variables that are bound Ry. All the free type variables
appearing in a type of the environmelitmust be bound earlier
in T". Formally, writing ftv(7) for the set of type variables that
appear free irr, the relationftv(7) C dom(I") must hold to form
environmentd’, o> 7, IV andl’, z : 7, T". All environments in this
paper implicitly verify both well-formedness hypotheses.

We identify types, instantiations, and terms up to the rengm
of bound variables. The capture-avoiding substitution edidable
v inside an expressionby an expressior’ is writtens{v « s'}.

1.2

Instantiationsp are defined in FigurEl 1. Their typing, described in
Figurel2, araype instancgudgments of the fornt' - ¢ : 7 < 7/,

Instantiations

2009/7/15

INST-UNDER

INsT-BOT Daztk¢:11 <7
F'kr: 1L <7 THV(@2)¢:Vazr)nn<V(a=>T1)7
INST-ABSTR INST-INSIDE

azTtel I'Fo:m <m

FFla:7<a THFV(Z¢) :V(azn)r<V(iazm)T

INST-COMP
INST-INTRO 'c¢1:m<m
a ¢ ftv(r) PEgo:m2 <73
PEw:7<V(azl)T 't ¢1;¢2:11 <13
INST-ELIM INST-ID
r'F&:Vazr) 7 <{a«71} 'kF1l:7<71

Figure 2. Type instance

stating that in environment, the instantiationp transforms the
typer into the typer’.

Thebottominstantiationr expresses that (any) typeis an in-
stance of the bottom type. Tlabstractinstantiation!«, which as-
sumes that the hypothesis> 7 is in the environment, abstracts
the boundr of « as the type variablev. The inside instantia-
tion V (> ¢) applies¢ to the boundr’ of a flexible quantification
V(o' > 7') 7. Conversely, theinderinstantiationv (« >) ¢ ap-
plies ¢ to the typer under the quantification. The type varialie
is bound ing; the environment in the premise of the rulesiT-
UNDER is increased accordingly. Thguantifier introductiorvsfl
introduces a fresh trivial quantification(a. > L). Conversely, the
quantifier eliminationg eliminates the bound of a type of the form
V (a>7) 7' by substitutingr for « in 7. This amounts to definitely
choosing the present boundor «, while the bound before the ap-
plication could be further instantiated by some insideangation.
The compositiong; ¢’ witnesses the transitivity of type instance,
while theidentityinstantiationl witnesses reflexivity.

Example Let Tmin, Temp, @Nd Tang be the types (for example, of
the parametric minimum and comparison functions and the con
junction of boolean formulas) defined as follows:

TminéV(a2J_)a—>a—>o¢

Temp 2 V(> 1) @ — a — bool
A

Tand = bool — bool — bool

Let ¢ be the instantiatiol (> bool); &. Then,- ¢ : Tmin < Tand
andk ¢ : Temp < Tang hold. Letrx be the typ&/ (a> 1) V(8> 1)
a — B3 — a (e.g.of the A-term A(z) A(y) z) and ¢’ be the
instantiatioB V (=) (V (> @); &). Then,¢' : 7x < Tmin.

Type application As above, we often instantiate a quantification
over_L and immediately substitute the result. Moreover, thisgratt
corresponds to the Systemunique instantiation form. Therefore,
we define(r) as syntactic sugar fofv (> 7); &). The instantia-
tions ¢ and¢’ can then be abbreviated ésool) andV (o >) ().
More generally, we writé¢) for the computationV (> ¢); &).

Properties of instantiations Since instantiations make all steps in
the instance relation explicit, their typing is determiius

LEMMA L. fTF¢: 7 <7 andl’ F ¢: 7 < 7o, thenry = 7.

2The choice of'g is only by symmetry with the elimination forng
described next, and has no connection at all with lineaclogi

3 Notice that the occurrence of in the inside instantiation is bound by the
under instantiation.

T(lo) =« lr=r Tl=1
T® =Vazl)T a ¢ fv(r)
7 ($1; ¢2) = (T¢1) 2
VMazn)T1) & =1t {a 71}
(V(az7)7) (V(=¢) =V(=7é)7

(V(@=7)7) (V(a2z)d) =V(=7)(¢)

Figure 3. Type instantiation (on types)

VAR LET
z:T7el I'kFa:7 Lx:7kdad 7
I'kFx:7 Pkletz=aind : 7
ABS ApPp
Tz:7Fa:7 I'Fai:m—mn I'kas:m
TEXz:Ta:T—171 T'tajaz:m
TABS TAPP
Na>tkFa:7 ag¢fvl) Tra:7 Tké:7<7
TFA(ez7)a:V(a=T)T Thag:7

Figure 4. Typing rules forxMLF

The use of” instead ofl” may be surprising. However, does not
contribute to the instance relation, except in the side itmmdof

rule INST-ABSTR. Hence, the type instance relation defines a par-
tial function, calledtype instantiatiofl, that given an instantiation

¢ and a typer, returns (if it exists) the unique type¢ such that

F ¢ : 7 < 7¢. Aninductive definition of this function is given in
Figurel3. Type instantiation is complete for type instance:

LEMMA 2. fTF¢:7 <7/, thent¢ = 7',

However, the fact that ¢ may be defined and equal td does
not imply thatl' - ¢ : 7 < 7’ holds for somel'. Indeed, type
instantiation does not check the premise of rdeT-ABSTR. This

is intentional, as it avoids parametrizing type instaiiabver the
type environment. This means that type instantiation isseoind

in general This is never a problem, however, since we only use
type instantiation originating from well-typed terms fohigh there
always exists some conteRtsuch thaf" - ¢ : 7 < 7.

We say that types andr’ are equivalent il if there exist¢
and¢’ suchthafl' - ¢ : 7 < 7" andI' + ¢’ : 7/ < 7. Although
types ofxMLF are syntacticallythe same as the types oélLF—
the Curry-style version ofLF (Le Botlan and Rénhly 20D7)—they
are richer, because type equivalencexiLF is finer than type
equivalence inMLF, as will be explained in Sectidn3.1.

1.3 Typing rules for xMLF

Typing rules are defined in Figufd 4. Compared with System
the novelties are, unsurprisingly, type abstraction ame tystan-
tiation. The typing of a type abstractiok(a > 7) a extends the
typing environment with the type variablebound byr. The typ-
ing of a type instantiatiom ¢ resembles the typing of a coercion,
as it just requires the instantiatiahto transform the type of to
the type of the result. Of course, it has the full power of tieet
application rule of Systerfr. For example, the type instantiation
a (7) has typer’'{a < 7} provided the ternu has typev (a) .
As in SystemF, a well-typed closed term has a unique type—in
fact, a unique typing derivation.

A let-bindinglet x = a1 in a2 cannot entirely be treated as
an abstraction for an immediate applicatioh(z : 1) a2) a1

4There should never be any ambiguity with the operatiaf on expres-
sions; moreover, both operations have strong similarities

2009/7/15

Mz :7) a1) a2 — a1 {x — a2} (8) replacefl by the instantiatiori¢;). For instance, if: is the term
|et:c:a;-|n ai —>a1{m<—a2} ((ﬂllet; A(Oz}T) A(z:a—u;y) /\(y:J_)y(a—>a) (z(|a))
a —a t-1D . . .
a(¢;¢') —a¢(¢) (1-SEQ) then, the type instantiation(V (> ¢)) reduces to:
a’g — Aa=>1)a AMaZztd) Mz :a—a) Ay : L)y (a— a) (z(4;a))
a ¢ ftv(r) (-INTRO) Rule:-ELIM eliminates the type abstraction, replacing all the oc-
(Aa>7)a)& — a{la — 1H{a — 71} (:-ELIM) currences oty insidea by the boundr. All the occurrences ofx
AMaz1)a)(V(a=) 9) — Aa>T1) (ag) (1-UNDER) insider (used to instantiate into) become vacuous and must be
AazT)a)(V(Z¢) — Aa=T9e) replaced by the identity instantiation. For example, regishe term
a{la — ¢;la} (1-INSIDE) a above,a & reducesto\(z : 7 — 7) Ay : L) y (7t — 7) (2 1).
Ela] — E[d'] if a —d (CONTEXT) Notice that type instantiationsT anda (!«) are irreducible.

Examples of reduction Let us reuse the terhoice_id defined in
Figure 5. Reduction rules I3 asA (B > 7a) choice (3) (id (!8)). Remember thatr) stands
for the SystenF type applicationr and expands tdV (> 7); &).
Therefore, the type instantiatiathoice () reduces to the term
because the former does not require a type annotation why Xz : 8) Ay : B) x by t-SEQ, t-INSIDE and.-ELIM . Hence, the
the latter does. This is nothing new, and the same as in System term choice_id reduces by these rules,0BTEXT, and(3) to the
extended with let-bindings. (Notice however that which is the expressiom\ (8 = 7ia) A(y : B) id (18).

type ofa1, is fully determined by:; and could be synthesized by a Below are three specialized versions abfoice_id (remember
typechecker.) thatV (o)) 7 and A(«) a are abbreviations fov (w > 1) 7 and

A(a > 1) a). In this case, all type instantiations are eliminated by
Example Letid stand for the identityA(a > L) Az : o) z reduction (but this not always the case in general).

and gy for the typeV (o > L) a — a. We havet id : 7iq. The
function choice mentioned in the introduction, may be defined as
AB=Z L) Mz : 8) My : B) z. lthastypevV (8> 1) 8 —

choice_id ((int)) : (int — int) — (int — int)
— Ay :int — int) (A(z :int))

B — 3. The application othoice to id, which we refer to below choice_id & i V@)a—a)—= V(o) a—a)
aschoice_id, may be defined ad (8 > n4) choice {3) (id (!3)) —» My :V(a) a — a) (Ala) Mz : a) x)
and has typ&/ (3 > 7ia) B — (. The termchoice_id may also be choice_id (:V (v3) (V(= (71)); &)

given weaker types by type instantiation. For examm@jce_id & SV (=) = (=)

hastypeV (a> 1) a — a) = (V(a > 1) o —) asin System — A Ay 7 —) A=) 2)

F, while choice_id (";V (v =) (V(= (7)); &)) has theML type

VoyzL)(y—=v)—=v—1 1.5 SystenF as a subsystem okMLF

1.4 Reduction SystemF can be seen as a subsetxdiLF, using the following
') o) syntactic restrictions: all quantifications are of the forfr)
The semantics of the calculus is given by a small-step rémluct and L is not a valid type anymore (however, as in System

semantics. We let reduction occur in any context, includinger Y (a) « is); all type abstractions are of the for(a) a; and all

abstractions. That is, the evaluation contexts are alllsihgle type instantiations are of the form(r).

contexts, given by the grammar: The derived typing rule for\(a) a anda (7) are exactly the
E u= []|Eé|Az:7E | Aa>7)E SystemF typing rules for type abstraction and type application.

Hence, typechecking in this restriction 8MLF corresponds to
typechecking in Systerh.

The reduction rules are described in Figllle 5. As usual,cbasi Moreover, the reduction in this restriction also corregpmito
reduction steps contaifi-reduction, with the two variant§3) and reduction in Systent. Indeed, a reducible type application is
(Biet). Other basic reduction rules, related to the reduction péty necessarily of the fornfA(«) a) (r) and can always be reduced
instantiations and calledsteps, are described below. The one-step to a{« « 7} as follows:

| Ea|aFE |letz=Fina | letx=ainE

reduction is closed under the context rule. We write 3 and—,)

for the two subrelations of— that contains only ENTEXT and (Af@) a) (7) Aa>L)a)(V(Z7)&) (1)
(-steps or-step, respectively. Finally, the reduction is the reflexiv — Aaz1)a)(V(=>7)) (&) 2
and transitive closure—- of the one-step reduction relation. — (AMa > L17) a{la—7;la}) (&) (3)
Reduction of type instantiation Type instantiation redexes are all = (Mla>7)0a)(&))
of the forma ¢. The first three rules do not constrain the formuof — a{la — 1Ha « 7} (5)
The identity type instantiation is just dropped (RuléD). A type = a{a 1} (6)

instantiation composition is replaced by the successivespond-

ing type instantiations (Rule-SEQ). Rule t-INTRO introduces a
new type abstraction in front af; we assume that the bound vari-
able« is fresh ina. The other three rules require the type instan-
tiation to be applied to a type abstractidifoe > 7) a. Rule -
UNDER propagates the type instantiation under the bound, inside . .
the bodya. By contrast, Rule-INSIDE propagates the type instan- 2. Properties of reduction

tiation ¢ inside the bound, replacing by 7 ¢. However, as the The reduction has been defined so that the type erasure of a re-
bound ofa has changed, the domain of the type instantiatlaris duction sequence ikMLF is a reduction sequence in the untyped
no morer, butt ¢. Hence, in order to maintain well-typedness, all
the occurrences of the instantiatibnin « must be simultaneously ~ 5Here, the instantiatioh is seen as atomic.

Step (1) is by definition; step (2) is bySEQ; step (3) is by
t-INSIDE, step (5) is by.-ELIM and steps (4) and (6) by type
instantiation and by assumption ads a term of Systenfr, thus
in which!a: does not appear.

4 2009/7/15

A-calculusi(Barendregt 1984). Formally, the type erasure tefrm
a of xMLF is the untyped\-term [a] defined inductively by

[let z = a1 in az] =let z = [a1] in [a2]
1 [A(z: 7) a] = A(z) [a]
[a1 az] = [a1] [a2] [A(a27)a] = [a]

It is immediate to verify that two terms related byeduction have
the same type erasure. Moreovey if-reduces ta’, then the type
erasure ofz 3-reduces to the type erasure @fin one step in the
untypedX-calculus.

2.1 Subject reduction

In this section, we show that reductiomadfILF, which can occur in
any context, preserves typings. As usual, this relies orkemiag
and substitution lemmas, which hold for both instance apihty
judgments.

LEMMA 3 (Weakening)Assume thal, I, I'" is well-formed.
If 0,7 F¢:m <1 thenl, IV T" F ¢ : 71 < 72.
If 0,1 +a:7, thenl, IV, T Fa: 1.

LEMMA 4 (Term substitution)Assume thaf I o’ : 7’ holds.
fh,z: 7, I"Fo¢:m <mthenl\IVF ¢: 1 < 1o.
If Dyz:7,I"Fa:7, then[, T' Fa{z «—ad'}: 7

The next lemma, which expresses that we can substitute maes
bound inside judgments, ensures the correctness of Riblem .

LEMMA 5 (Bound substitution). Lety andf be respectively the
substitutions{a «— 7} and {la — L1}{a « 7}.
flha>7nT'F¢:m <methenD,TVoF ¢0 : 110 < T2,
fla>7T"Fa:7 thenl,Ip F ad : 7.

Finally, the following lemma ensures that an instance baardbe
instantiated, proving in turn the correctness of the ruleiSIDE.

LEMMA 6 (Narrowing).Assume thaf' - ¢ : 7 < 7’ holds. Let)
be{la — ¢;'la}.

fl,a>7rT"F¢' 7 <mthenl,a =7 IVF ¢'0: 17 < 7.
fl,a>7T"Fa:7"thenT,a > 7" T"Fab: 1"

Subject reduction is an easy consequence of all thesesesult

THEOREM1 (Subject reduction)lf I' - @ : 7 anda — o’ then,
ka7

2.2 Confluence
As expected, reduction is confluent.

THEOREM2. The relation—g is confluent. The relations—,
and — are confluent on the terms well-typed in some context.

This result is proved using the standard technique of pered-
ductions |(Barendregt 1984). Thidsreduction and-reduction are
independent; this allows for instance to perfasmeductions under
A-abstractions as far as possible while keeping a weak di@tua
strategy for3-reduction.

The restriction to well-typed terms for the confluence (of
reduction is due to two things. First, the rulelNSIDE is not
applicable to ill-typed terms in which ¢ cannot be computed
(for example(A(a > int) a) &). Second;r ¢ can sometimes be
computed, even though - ¢ : 7 < 7' never holds (for example
if ¢ is!la and T is not the bound ofy in T"). Hence, type errors
may be either revealed or silently reduced and perhapsredited,
depending on the reduction path. As an example, consideetire

(Ala 2V (7)) (A(B = int) 2) (V (= 1a)))) (Y (> &)

It is ill-typed in any context, becaude: coerces a term of type
¥ () ~ into one of typea, but !« is here indirectly applied to a
term of typeint. If we reduce the outermost type instantiation first,

we are stuck with\ (o> L) ((A(B=int) z) (V (> &;!ev))), which
is irreducible since the type instantiatiorn (&; !«) is undefined.

Conversely, if we reduce the innermost type instantiaticst,fi
the faulty type instantiation disappears and we obtain &t
(Al =V (7) v) A(B > @) z) V(= &)), which further reduces
to the normal formA (e > L) A(B >) =.

The fact that ill-typed terms may not be confluent is not new: f
instance, this is already the case witeduction in Systenf. We
believe this is not a serious issue. In practice, this meaatstype-
checking should be performed before any program simpliboat
which is usually the case anyway.

2.3 Strong normalization

We conjecture, but have not checked, that all reduction esecps
are finite inxMLF.

2.4 Accommodating weak reduction strategies and constants

In order to show that the calculus may also be used as the €are o
programming language, we now introduce constants andaisstr
the semantics to a weak evaluation strategy. We will show tha
subject reduction and progress hold for the main two forms of
weak-reduction strategies, namely call-by-value andloglhame.

We let the letterc range over constants. Each constant comes
with its arity |c|. The dynamic semantics of constants must be pro-
vided by primitive reduction rules, calleftrules. However, these
are usually of a certain form. To characterizeules (and values),
we partition constants intoonstructorsandprimitives ranged over
by lettersC' and f, respectively. The difference between the two
lies in their semantics: primitives (such ag are reduced when
fully applied, while constructors (such asns) are irreducible and
typically eliminated when passed as argument to primitives

In order to classify constructed values, we assume giver-a co
lection of type constructors, together with their aritie$x|. We
extend types with constructed types(ri,... 7). We write@
for a sequence of variables,...«a; andV (@) 7 for the type
V(a1) ...V (ax) 7. The static semantics of constants is given by
an initial typing environment’y that assigns to every constana
type r of the formV (@) 1 — ... 7, — 70, Wherery is a con-
structed type whenever the constari$ a constructor.

We distinguish a subset of terms, called values and written
Values are term abstractions, type abstractions, full etigaap-
plications of constructors, or partial applications ofpitives. We
use an auxiliary lettew to characterize the arguments of functions,
which differ for call-by-value and call-by-name strategién val-
ues, an application of a constantan involve a series of type in-
stantiations, but only evaluated ones and before all otigemaents.
Moreover, where is a primitive the application may only be partial.
Evaluated instantiation® may be quantifier eliminations or either
inside or under (general) instantiations. In particular,anda (!a)
arenevervalues. The grammar for values and evaluated instantia-
tions is as follows:

v = AMz:T)a
| AMa:T)a
| CO1...0, w1...wn n < |C|
| f@lekwlwn n<|f|

0 V(Z¢) [V(e2)¢ | &

Finally, we assume thabt-rules are of the formf 6;...
Or w1 ... w5 — a (thatis,é-rules may only reduce fully ap-
plied primitives).

In addition to this general setting, we make further assionpt
to relate the static and dynamic semantics of constants.

SUBJECT REDUCTION J§-reduction preserves typings. That is, for
any typing context” such thaf" - a : 7 anda —; d’, the
judgmentl’ - a’ : 7 holds.

2009/7/15

PROGRESS Well-typed, full applications of primitives can be re-
duced. That is, for any term of the form f 6, . Ok
wi ... wy Verifying To = a : 7, there exists a term’ such
thata — a’.

Call-by-value reduction We now specialize the previous frame-
work to a call-by-value semantics. In this case, argumeiappli-
cations in values are themselves restricted to vaiuesy is taken
equal tov. Rules(3) and(:) are limited to the substitution of val-
ues, that is, to reductions of the forth(z : 7) a) v — a{z —
v} andlet z = v in a — a{x < v}. Rules:-1D, .-CompP and
t-INTRO are also restricted so that they only apply to valweg.¢

is textually replaced by in each of these rules). Finally, we restrict
rule CONTEXT to call-by-value contexts, which are of the form

E, =[] | Eva | vEy, | Ev¢ | letz=E,ina

We write —, the resulting reduction relation. It follows from
the above restrictions that the reduction is determinisicreover,
sinced-reduction is supposed to preserve typings, it is immediate
by Theorentll that—-, also preserves typings.

Crucially, progress holds for call-by-value. In combiwativith
subject-reduction, this ensures that the evaluation of-typkd
terms “cannot go wrong”.

THEOREM3. If I'g I a : 7, then eitherm is a value or there exists
a’ such thatn —, a’.

Call-by-value reduction and the value restrictionThe value-
restriction (Wright and Felleisen 1994) is the most staddaay
to add side effects in a call-by-value language. It is thuysartant
to verify that it can be transposediiLF.

Typically, thevalue restrictionamounts to restricting type gen-
eralization to non-expansive expressions, which contaileast
value-forms,i.e. values and term variables, as well as their type-
instantiations. Hence, we obtain the following (revisechngmar
for expansive expressiomnsand for non-expansive expressians

b = u | bb|letx=uinbd

u = z | AMz:1)b | AMla:T)u | ug
| 91...9ku1...un n§|C’|
| f91...t9ku1...un 7L<|f|

As usual, we restrict let-bound expressions to be non-estpan
since they implicitly contain a type generalization. Netithat,
although type instantiations are restricted to non-expensex-
pressions, this is not a limitatio:¢ can always be written as
(A(z : 7) x ¢) b, wherer is the type ofa, and similarly for appli-
cations of constants to expansive expressions.

THEOREM4. Expansive and non-expansive expressions are closed
by call-by-value reduction.

COROLLARY 1. Subject reduction holds with the value restriction.

It is then routine work to extend the semantics with a globaides
to model side effects and verify type soundness for thisresita.

Call-by-name reduction

For call-by-name reduction semantics, we can actuallye@mse the
set of values, which may now contain applications of cortstém
arbitrary expressions; that is, we takdor w. The (-reduction is
restricted as for call-by-value. However, evaluation estg are
now of the grammatical form&,, ::= [-] | En a | En ¢. We
write —~, the resulting reduction relation. As for call-by-value, it
is deterministic by definition and it preserves typings. lHynalso
always progress.

THEOREMS. If I'g F a : 7, then eitherm is a value or there exists
a’ such thatn —,, a’.

Figure 6. Types, constraints, and expansion

3. Elaboration of graphical eMLF into xMLF

In this section, we study the translation of the graphicasiem of
eMLF (Rémy and Yakobowdki 200B; Yakobow5ki 2D08) intd LF.
The graphical version oéMLF is more general than the syntactic
versions, and better suited for type inference; hence ooicehA
full presentation of graphicaMLF is however out of the scope of
this paper; we only remind the essential points in this secti

3.1 An overview of graphicaleMLF

Graphic types Types of graphicabMLF are graphs, designated
with lettero, composed of the superposition of a term-dag, repre-
senting the structure of the type, and of a binding tree eingatthe
binding information.

Term-dags are just dag representations of usual treeylpest
where at least all occurrences of the same variable mustdrech
and inner nodes representing identical subtypes may alsbdred.
We write o (n) for the constructor at node. Variables are anony-
mous, and represented by the pseudo-construttoferm-dag
edges are writtem o> m, wheres is an integer that ranges be-
tweenl and the arity ofo(n); we also use the notatiofni) to
designaten, the root node being simply notédl. In the drawings,
edges are drawn with plain lines, oriented downwards. Weeléa
implicit, as outgoing edges are always drawn from left tdtig

The binding tree is an upside-down tree with an edge®~ m
leaving from each node different from the root, and going to some
nodem (upper in the term-dag) at whiehis bound. Binding edges
may be either flexible or rigid, which is represented by latgpthe
edge with a flag> that is eithe> or =, respectively. (On drawings,
these flags are represented by dotted or dashed lines, tiesfyer

Example Consider the graphic typeo of Figure[®. The nodes
(11) and(22) are variables (hamesandg are here to help reading
the figure, but they are not part of the graphic type). Patrend12
lead to the same node, which can therefore be cdlléd or (12)
indifferently. The edgé22) N (2) is a flexible binding edge (the
rightmost lowermost one), whild) == () is a rigid binding edge
(the leftmost uppermost one) ant) o2 (12) is a structure edge.
Binding edges express polymorphism. Typically, a rigid edg
means that polymorphism is required, as for example the tfpe
an argument that is used polymorphically. By contrast, atilex
edge means that polymorphism is available (as with flexibkng
tification in xMLF) but not required. For exampley, is the type
of a function whose argument must be at least as polymorghic a
V() & — «, and whose result has typ&(3) 8 — 3, or any in-
stance of it. In other words, if is a function of typero, the result
of an application off can be used in place of the successor function
of typeint — int, but f cannot be passed the successor function as
argument.
Rigid bounds arise from type annotations: in the absence of
type annotations (and types with rigid bounds in the typingi-e

2009/7/15

ronment), polymorphism is offered, but is never requested, the
principal types of expressions only use flexible bounds.

For the purpose of defining type instance, we distinguish fou
kinds of nodes. Nodes on which no variable is transitivelyilfily
bound are calledhert, as they neither hold nor control polymor-
phism. All other nodes hold or control polymorphism and des<¢
sified as follows. Nodes whose binding path is flexible up &rtiot
are callednstantiable they can be freely instantiated as described

next (inxMLF these nodes would correspond to parts of types that

could be transformed by a suitable instantiation expregsiodes
whose binding edge is rigid are callegstricted they can only be
transformed in a restricted way ()sMLF these nodes would cor-
respond to polymorphic types occurring under some arrove)typ

Nodes whose binding edge is flexible but whose binding path up

to the root contains a rigid edge are calledked they cannot be
transformed in any way (iRMLF these nodes would correspond to
polymorphic types occurring in the bound of quantifiers teetves
under some arrow type and not instantiation can transfoemjh

Type instance Theinstancerelation on graphic types, written,
is defined as the composition of four atomic operations:tiogf
merging, raising and weakening. Grafting and merging age
usual instance transformations on first-order term-dagisdannot
change the binding tree. Conversely, weakening and raisig
change the binding tree. Weakening transforms a flexible @ug
a rigid one. Raising lets one binding edge slide over anather
Moreover, grafting is disallowed on restricted nodes arel fthur
operations are disallowed on locked nodes.

Example (continued) In o1, the nodg2) is inert, (111) is locked,
(21) is instantiable and1) is restricted. The graphic type. is
an instance o, obtained by raising the nodé1), grafting then
weakening(22), and finally merging11) and(21).

Type constraints Type constraints generalize graphic types by
adding new forms of edges, called constraint edges. Thesbea
eitherunification edges----« or instantiation edges--. Instantia-
tion edges are oriented. They relate special nodes, usegtesent
type schemes and calléinodes, to regular nodes. An example of
a constrainty® is shown on the right-hand side of Figlide 6.

The instance on type constraints is exactly as on graphéstyp
constraint edges are just preserved.

A type constraint is solved when all of its constraint edges a
solved. A unification edge is solved when it relates a nodésadfi
(thus, a unification edge forces the nodes it relates to bgedgr
An instantiation edge of the formg «===3 n of a constrainty
is solved when, informallyp. is an instance of the type scheme
represented by, or formally, when the expansion efin x is an
instance ofy, as described below.

A solved instance of a constraint is callegi@solution It still
contains all the nodes of the original constraint, many ofcivh
may have become irrelevant for describing the resultinge tyf
solution of a constraint is, roughly, a presolution in whisich
nodes have been removed. We need not define solutions fgrmall
since the translation uses presolutions directly.

Expansion Consider an instantiation edgalefined agj ====» n

in a constrainty. We define arexpansioroperation that enforces
the constraint represented by The expansion oé in x, written
x¢, is the constrainty extended with both a copy of the type
scheme represented kyand a unification edge betweenand
the root of the copy. The copy is bound at the same node. as
Technically, we define thénterior of g, written Z(g) as all the
nodes transitively bound tg. The expansion operation copies all
the nodes structurally strictly under and in the interior ofg.
Intuitively, those nodes are generic at the levelgofConversely,
the nodes undey that are not in the interior qf are not generic at

Figure 8. Typing constraints foi(z) A(y) =.

the level ofg and are not copied by the expansion (but are instead
shared with the originall.

By construction, an instantiation edgeés solved if and only if
X is an instance of®. We callinstantiation witnessn instance
derivation ofx® C x for a solved instantiation edge

Example Let us consider the expansigfi of Figurel®. The origi-
nal constrainjc can be obtained fromg® by removing the rightmost
highlighted nodes, as well as the resulting dangling edbles.in-
terior of g is composed of the nodes in the leftmost box. Hence the
copied nodes arégl) and (g11), but not {g12), which is not in
Z(g). The root of the expansiom is the copy of(¢g1). It is bound
to the binder ofr and connected ta by the unification edge.

In this example,y is an instance of®, as witnessed by the
following operations: graftV (o) V(8) o — [under (m1l);
raise(m11) twice, and merge it witfn11); weaken(m1) andm,;
finally, mergen andm. Hence, the edge (andy itself) is solved.

From A-terms to typing constraints Terms ofeMLF are the par-
tially annotated\-terms generated by the following grammar

b=z |Ax)b|AMz:o)b|bb|letz=binb]| (b:0)

Source terms are translated into type constraints in a ceitipoal
manner. Every occurrence of a subexpresdias associated to a
distinct G-node in the constraint, which we label wiblfor read-
ability; however it should be understood that differenturcences
of equal subexpressiorisare mapped to different nodes. We let
y and z stand forA-bound and let-bound variables, respectively.
Constraint generation is described on the bottom of Fifilifer7
the expressions described by the left-hand sides of thditgsat
the top of the figure. The unification edgg in (1) is linked to its
corresponding variable nodegenerated in (3) by the translation of
the abstraction binding. The instantiation edge, in (2) is com-
ing from theG-node labeled; generated in (5) by the translation
of thelet expression binding.

The constructions\(z : o) b and(b : o) are actually syntactic
sugar, forA(z) let © = ko, z in b andk, b respectively, where
Ko IS @ coercion function. Both constructs are desugared béfiar
translation into constraints.

Example The typing constrainy for the termA(z) A(y) z is
described on the left-hand side of Figlife 8. One of its pre&mis

Xp IS drawn on the middle (We have dropped the mapping of
expressions td-node for conciseness, and labeled some binding
edges that will appear in theviLF translation.) Notice that this is
not the most general presolution, as the arrow nodes boufd at
nodes have been made rigid, but an equivalent rigid presaluis
explained in§33, that is ready for translation intd1LF.

6Readers familiar with[(Rémy and Yakobow§ki 2008) may reoticslight
change in terminology, as in this work we use the term “exjparisnstead
of “propagation”, and we solve frontier unification edgestioa fly.

2009/7/15

[y] =9 y [2] =2 Alg) 2 (®(ez))
[b162] = A(g) [b1](®(e1)) ([b2] (P (e2)))
(1) (2
an o3
Uy ez‘

[Aw) 6] = Alg) My : S®)) [6] (2(e))

[let z=b1inba] = Al(g)let z=[b1]in [b2] (®(e2))

Figure 7. Constraint generation and translation of presolutions

While type inference is out of the scope of this work—
see [((Remy and Yakobowski 2008), we may however eaigck
thatx, is indeed a presolutiome. that both instantiation edges are
solved. Consider for example the edgeWe must verify thaty,
is an instance of the expansiggj drawn on the right-hand side,
that is, exhibit a sequence of atomic instance operaticatstins-
forms y;, into x,. Here, the obvious solution is just to merge the
two nodes related by the unification edge.

3.2 An overview of the translation toxMLF

The translation of aeMLF termb to xMLF is based on a presolution
x of the typing constraint fob. Typing constraints have principal
presolutions. However, any presolution—not merely theggal
one, which is the one returned by type inference—can beltatats
Since presolutions are instances of the original congiraird type
instance preserves botk-nodes and instantiation edges, we can
refer to the original nodes and edges in Fiddre 7 when defithiag
translation. The translation is inductively defined on thecure
of terms, reading auxiliary information on the correspamgnodes
in the presolution to build the type of function parametdype
abstractions, and type instantiations. There are two kgrgitients:

e For each instantiation edgeof the formg ====3» n, an instan-
tiation @ (e) is inserted to transform the type of the translation
of the expressioh corresponding tg into the type ofn. It can
be computed from the proof thatis solved iny, i.e. from the
instantiation witness foz. Details are given in3.4.

For each flexible binding =—— ¢, a type abstraction («,, >
7) Is inserted in front of the translation of the expression
corresponding tgy, 7., being the type of the node. Indeed,
such an edge corresponds to some polymorphismtiat must
be introduced at the level gf. We use the notatioff\(g) to
refer to all such quantifications at the level @f which will
be precisely defined if3.4. (Rigid bindings, which are only
useful to make type inference decidable, are inlined duttieg
translation. Hence they do not give rise to type quantificeti)

The translation is given in Figufd 7. Whérns a A-bound variable
y (1), its translation is itself, as th@-nodey is always monomor-
phic. For the other cases, the translation is of the fgiyty) ',
g being theG-node forb. Indeed, inMLF and unlike inML, gen-
eralization is as useful for applications and abstractam$orlet-
bound expressions. A variabte(2) bound by soméet z = b1 in
b expression is instantiated ldy(e) to transform the type ofb1]
into the type of this occurrence of according to the edge.. Cor-
respondingly, in the translation &ft z = b; in b2 (5), the transla-
tion of b, is bound taz uninstantiated, since each occurrence iof
[b2] will potentially pick a different instance, while the trdaton
of b2 is instantiated according to the edge In the translation of
an abstraction\(y) b (3), we annotate by its type in the presolu-
tion (writtenS(y) and defined il34) and coercgb] to the its type
inside the abstraction according to the edg€&inally, the transla-

tion of an application (4) is the application of the translas, each
of which is instantiated according to its constraint edge.
The translation is type-erasure preserving by constroctio

LEMMA 7. Given a desugared terty we have[[b]] = [b].

Example The presolutiony, in Figure[® is translated to the term
A@) A(B 2V (6) 6 — a) Mz : a) (A(Y) Ay :) (1)) (1)
which has typ& () V (82V (§) 6 — a) a — . Notice the three
type quantifications fory, 5 and~ that correspond to the flexible
edges of the same name. The instantiatipis the translation of.

3.3 From presolutions to rigid presolutions

Some presolutions are not suited for translation, for tvasoms.

Firstly, the following nodes, which may be flexibly bound to
a G-node, must not result in a type quantification (as this would
generate useless bindings, or even incorrect ones):

1. the nodgg1) in the translation of abstractions (3);
2. the noden in the translation of an application (4);
3. the nodgg1) whenever bound op;

4. any node bound on @-node but not reachable fromGnode
by following only structure edges.

It is important that these nodes are retained and that taiirig
remain flexibleduring type inference when some of the constraints
might not have yet been solved. However, their bindings nmay b
made rigidafter type inferencei.e. in presolutions, without actu-
ally loosing any expressiveness, as we shall see below. Asudtr
these nodes will be inlined during the translation irkaLF.

Secondly, type equivalence &MLF is larger than inxMLF.
Hence, some instance operations allowe@NLF do not have a
counterpart ikMLF. In particulareMLF allows instance operations
on inert nodes. However, when the binding path of an inerienod
n contains a rigid binding, the translation ofinto xMLF cannot
be instantiated ixMLF. Indeed, while type instantiation xMLF
can operate under flexible bounds using inside-instaatiatirigid
nodes oeMLF are inlined and thus unreachableddLF. <>

For example, the flexible binding edge in the type
next, which is leaving from an inert node, may bé=>
weakened inteMLF, leading to two equivalent types
whose translationgV (o > int) @« — «) — int
and(int — int) — int are not equivalent ixMLF (and actually
incomparable). Indeed, since type applications are exjpligMLF,
a term of the former type must instantiate its argument leefor
applying it, while a term of the latter type can apply its argnt
directly. This is quite similar to the difference betweere thwo
SystemF types(V («) int — int) — int and(int — int) — int.

The difference in type equivalence does not meanxhdi is
less expressive thaMLF: inert nodes can always be weakened in
presolutions oeMLF. Moreover, we do not lose expressiveness by

2009/7/15

T(n) 2 V(Q(n) x(n) (R((n1)),...R((np)))

wherep is the arity ofx(n)
R~ 2 {70 o
Q(n) £ (apmy) = T(m) .. apm,) = T(ny))

whereny, ...nx are all nodes flexibly bound te, ordered

V(Q(n)) S((nl)) if nisaG-node
Sn) =< an if n flexibly bound to aG-node
T(n) otherwise

Figure 9. Mapping nodes oéMLF to types ofeMLF

doing so, since this transformation commutes with otheratpms
used to solve presolutions.

We callrigid a presolution that respects the conditions given at
the beginning of this section and in which inert nodes ariliyg
bound. The following lemma ensures that rigid-presolugioan be
used in place of presolutions without affecting the set dfitsans,
up to weakening of inert nodes.

LEMMA 8. Given a presolutiory, of a constrainty, there exists

a rigid presolutiony;, of x (derived fromy, by weakening some
nodes), in which terms have the same types ag modulo the

weakening of inert nodes.

This also suggests that we could have restricted ourseivegid
presolution in the first place, since principal presolusiaran be
turned into rigid ones in a principal manner. However, rigiés-
olutions are only useful for the translation eMLF into xMLF
and useless, if not harmful, for type inference purposesdihp
edges can only be rigidified—without loosing solutions—eall
the constraint edges under them have been solved. This @npos
synchronization in the constraint resolution. Therefave, prefer
to stay with the more flexible definition of presolutions &WLF
(thus avoiding unnecessary complications in the definitifaeLF,
which is exposed to the user) and only consider rigid pregnias
a first step of the translation intvILF.

In the remainder of this section, we abstract over a rigicpre
lution x and an instantiation edgeof the formg ====9 d.

3.4 Details of the translation

Ordering binders and nodes In eMLF, two binding edges reach-
ing the same node are unordered. It is actually a useful profuer
type inference not to distinguish between two types that gifs
fer by the order of their quantifiers. However, adjacent dians
do not commute ixMLF. While they could be explicitly reordered
by type instantiation, it is much better to get them in théntigr-
der by construction as far as possible (as described belowg\er,
reordering of quantifiers will still be necessary in someess

The simplest way to achieve this is to assume a total ordefing
of all nodes ofy. Of course,< cannot be arbitrary, as it should
also ensure the well-scopedness of syntactic typescif— n’ or
n’ >=— n, thenn’ < n must hold. We choose
the leftmost-lowermost ordering of nodes fer: if
ni,...,n, are bound ton, we first translate the;
which is lowest in the type, or leftmost if the are not
ordered byo—. This means that the type next is always translated
asV (o) V(B) a — B, notasv (8) V(a) a« — B.

Translating types Every node ofy can be translated to amMLF
type. Moreover, the translation is unique when using theiong
of the previous section. We follow the translationedLF types of
(Yakobowski 2008), except for inert nodes which are inlined

Each node: of y is mapped to atyp&(n) of xMLF as described
in Figure[®. We assume that every nadén x is in bijection with
a type variablea,,. The translation uses the auxiliary functions
Q(n) to build a sequence of type quantifications (one for each node
flexibly bound ton), R(n) to inline n when it is rigid, andZ(n)
to build the bound of type variables i@(n). The functionS(n)
distinguishes two special cases: wheis aG-node, it is translated
by introducing the sequence of type quantificatighg:) followed
by the translation ofn1); whenn is a regular node itself bound to
aG-node, itis translated inta,,, which is always used in a context
wherea, is bound. OtherwiseS(n) is 7(n).

The notationA\(g) used in Figurdd8 can now be defined as
A(Q(g)) . We also writeS(x) for the translatiorS(()) of the root
G-node of the whole constraint.

From instantiation witnesses to type instantiationsThe main
part of the translation is the computation of the type intdions
from the instantiation witnesses. Letbe the root node of the
expansion iny©. By construction, an instantiation witne§sfor

e mapsx° to x. In fact, becaus€ must leavey unchanged, the
sequencé) may be decomposed into subsequences of the form:
(1) Graft(o, n) or Weaken(n) with n in Z(r);

(2) Merge (n, m) with n andm in Z(r), andm < n;

(3) Raise(n) with n =t 7;

(4) a sequencéRaise(n))* ; Merge(n,m), with n. € Z(r) and

m ¢ Z(r). We write this sequencRaiseMerge(n, m) and see

it as an atomic operation.

An operationRaiseMerge(n, m) lets n leaves the interior of-
and be merged with some node of x bound abover. All other
operations occur inside the interiorafThe grouping of operations
in RaiseMerge(n, m) helps translating the subparts of instantiation
witnesses that operate outsideZdf-) into type instantiations.

Furthermore, sincg is a rigid presolution, we may also assume
that 6) an operationVeaken (n) appears after all the other opera-
tions on a node below. This ensures tha®? does not perform any
operation under a rigidly bound node, which would not be ezpr
ible as arxMLF instantiation, as explained §&3.

We call normalizedan instantiation witness that verifies the
conditions (1)—(4) and (5) above. Normalized withessesagsy
exist. A constructive proof of this fact is given in_(Yakohsky
2008).

Instantiation contexts In order to relate graphic nodes axiLF
bounds, we introduce one-hadfestantiation contextdefined by the
following grammar:C == {-} | V(=C) | V(a>) C. We write
C{¢} for the replacement of the hole by the instantiation
Consider a node:, and a noden flexibly transitively bound
to n. Given our use of< to order nodes, there exists a unique
instantiation contexf;;, that can be used to descend in front of the
quantification corresponding @ in 7(n). For presolutions, and to
avoid a-conversion related issues, we build instantiation castex
using variables whose names are based on the nodes thegé&ave
For example, consider the constrajnt in Figure[®. The trans-
lation 7(()) of the root G-node isV (a)) V(8 > V(§) 6 —

a) a — (. With the convention above, we ha@%i1> ={}

Clhyy =V (aqyy =) {FandCfl,,, =V (aay >) V(> {}).

Translating normalized derivations into instantiationsLet us
describe the translation of a normalized witnessy6fC y into
anxMLF instantiation. We generalize the problem by translating a
normalized witness) of ¢ C x where¢ is such tha® C & C .
Inside x¢ and &, we letr be the root of the expansion (insige

r is merged withd). The translation of T x must withess the
judgmentl’y + Z¢(r) < 7T, (r) whereI'y is the typing context
for the noded. The translation of2, written ®.(Q2), is defined

2009/7/15

For a sequence of instructions:

() = 1
e (w; Q) = Pe(w); Py ()
For an operatiow on a rigid noden:
O (w) = 1
For an operation on the flexible root of the expansion
o, (Graft(o,7)) = 7(o)
. (RaiseMerge(r,m)) = lam
O, (Weaken(r)) = 1

For an operation on a flexible node different from the root:

De(Graft(o,n)) = CL{Y(>T(0))}
. (RaiseMerge(n,m)) = Cp{{lam)}
De(Merge(n,m)) = Cif(lam)}
O, (Weaken(n)) = Cr{&}
De(Raise(n) = Ch{;V (> Te(n));

V(Bn 2) C{(!6n) }}

wherem = min<{m | n >—>———<mAn < m}

Figure 10. Translating normalized instance operations

by induction onQ as described in Figulel0. The functidr
is overloaded to act on both an instance derivation and desing
operation.

The translation of an instance derivation is defined recalgi
the translation of an empty derivation is the identity insi@tion1;
otherwise (2 is of the form(w; Q") and we return the composition
of the translation of the operatian followed by the translation of
the instance derivatiof?’ applied to the constraint(¢).

The translation of an operation on a rigid node is the idgntit
instantiationl, as rigid bounds are inlined. Inert nodes have been
weakened into rigid ones and locked nodes do not allow icstan
Hence, the remaining and interesting part of the transiaisoa
(single) operation applied to an instantiable node.

The translation of an instance operationrdmvhenr is flexible)
is handled especially, as follows. The grafting of a typds
translated to the instantiation—wherer is the translation ot
into xMLF. A raise-merge of- with m is translated tda,,: it must
be the last operation of the derivatiéh and «,, must be bound
in the typing environment';; hence we may abstract the type of
r undera,,. The weakening of is translated td.: it must be the
next-to-the-last operation in the derivatifnbefore the merging of
r with a rigidly bound node, and there is actually nothing tiberet
in xMLF, as the type of itself is unchanged—only its binding flag
in the expansion is.

In the remaining cases, the operation is applied to an itiatza
noden. Since the derivation is normalized ands not rigid,n» must
be transitively flexibly bound te. Therefore, there exists an instan-
tiation contexiC;, to reach the bound ef,, in 7¢(r). The grafting
of atypeo atn is translated t@;, {V (> 7(0)) } that transforms the
bound_L of o, into 7(o). The merging ok with a nodem is trans-
lated toC;, {(!am)}, which first abstracts the bound ef, under
the namex,,, and immediately eliminates the quantification (we as-
sumem < n). The translation is the same for a raise-mergeplut
is bound in the typing environment instead ofgx(r). The weak-
ening ofn is translated t@,, {V (> &)}. Finally, the translation of
the raising ofn is of the formCy, {’®; V (= T, (n)); ¢ }. We first in-
sert a fresh quantification, bound by the typgn), insideZ¢(r).
The difficulty consists in finding the node: in front of which
to insert this quantification, so as to respect the orderigtgvben
bounds. Notice that the s¢tn | n =—>—«——< m An < m}
contains at least the bound of hence its minimummn is well-
defined. Then, the instantiatiah equal toV (3, =) C*{(!6»)}

10

aliases the bound of to the quantification just introduced and
eliminates the resulting quantification. The net resulthef whole
type instantiation is that the type ofis introduced one level-higher
than it previously was.

Reordering quantifiers It remains to define the no-
tation ® (e) used in Figurgl7. We le be a normal-
ized witness fore. Unfortunately, we cannot simply
used,.(Q2), as, in some cases, the tyfig- (r) of g
in the expansion does not correspondi@), regard-
less of our use oK. This can easily be seen in th @)

example next, in whicks(g) isV (8) V (o) a — :

as we start by translating the flexible nodes boundgorhere
(g12), before translatinggl); however, the expansion af has
typeV(a) V(8) a — B: the quantifiers appear in the opposite
order. We believe that this difficulty is actually inherent élab-
orating terms for languages with second-order polymorphis
which second-order polymorphism can be kept local (as hare f
(g11)), or be introduced by generalization (as fgrl2)). Thank-
fully, 7y« (r) andS(g) may differ only by a reordering of quanti-
fiers. InxMLF, we can explicitly reorder them through the use of
instantiations such as

BiV(ZTa); BV (27); V(B2) V(>) ((la); (18))
which commutesy and 3 in the typeV (o > 7o) V(8 = 18) 7.

We write ¥(g) the instantiation that transforn&(g) into Zye (r).
Then, we defing (e) asX(g); P, (£2).

a(6)

Translating annotated terms As mentioned irfi3l, expressions
such agb : o) andA(y : o) b are actually syntactic sugar, fer b
and\(y) let y = ko y in b, respectively. The translatiof(.)

of the type of the coercion functior, in xMLF is V (o > T(0))
7(o) — «. Interestingly, coercion functions need not be primitive
in xMLF—unlike ineMLF. Letid,. be the expression(a) A(3 >

a) Mz :) (x(18)). Then, definek, asid.(7(o)). Notice
that k. behaves as the identity function, as expected. Moreover,
coercion functions can always be eliminated by reductiderdhe
elaboration of the presolution, so that they have no runtios.

3.5 Soundness of the translation

THEOREMSB. Letb be an eLF term, x a rigid presolution forb.
The translatior] b] of y is well-typed in MLF, of typeS(x).

Our translation preserves the type-erasure of programsihaT).
Hence, the soundness aiMLF also implies the soundness of
eMLF—which had previously only been proved for the syntactic
versions ofMLF, but not for the most general, graphical version.

4. Discussion
4.1 Expressiveness ofMLF

The elaboration oBMLF into xMLF shows thaxMLF is at least
as expressive asMLF. However, and perhaps surprisingly, the
converse is not true. That is, there exist programMiF that
cannot be typed irMLF. While, this is mostly irrelevant when
using MLF as an internal language feMLF, the question is still
interesting from a theoretical point of view, as understagatMLF
on its own,i.e. independently of the type inference constraints of
eMLF, could perhaps suggest other useful extensiond/tf

For the sake of simplicity, we explain the difference betwee
xMLF and iMLF the Curry-style version oMLF (which has the
same expressiveness alLF). Although syntactically identical,
the types okMLF and of syntactiéMLF differ in their interpretation
of alias boundsj.e. quantifications of the forn¥ (8 > «) 7.
Consider, for example, the two typesandr,y defined a¥ (a>7)

2009/7/15

V(B=a)B — aandV (a>7) a — a. IniMLF, alias bounds can
be expanded and, andr4 are equivalent. Roughly, the set of their
instances (stripped of toplevel quantifiers{is — 7' | 7 < 7'}.

In contrast, the set of instanceswfis larger inxM LF and at least
asuperset ofr” — 7' | = < 7' < 7"}, This level of generality
cannot be expressed iMLF. Interestingly, graphic types disallow
alias bounds entirely, as they cannot even be expressed.

The current treatment of alias boundsxiLF is quite natural
in a Church-style presentation. Surprisingly, it is alsoer than
treating them as ireMLF. A restriction of xMLF without alias
bounds that is closed under reduction and in closer correfpwe
with iMLF can still be defined a posteriori, by constraining the
formation of terms, but the definition is contrived and unmak

Instead of restrictingMLF to match the expressiveness bfLF,

a fair question is whether the treatment of alias boundsdcbel
enhanced inMLF—andeMLF—to match the one imMLF without
compromising type inference. This is worth further invgation.

4.2 Elaboration for other presentations ofMLF

We have described the elaboration for the graphical, intplier-
sion of MLF, since this is the most appropriate version for perform-
ing type inference. There are four presentationdvitf depend-
ing on whether types are presented graphically or syntttiand
whether annotations are explicieNLF) or implicit (iMLF). Our
elaboration can be easily adapted to the three other pedg®eTd,
with only minor differences, discussed below.

The graphical explicit version dfILF is obtained by allowing
the inverse of instance operations, but only on inert odrighdes.
As a result of enlarging the instance relation, type infeesbe-
comes undecidable iMLF. Still, the graphical framework aMLF
applies to this variant, and a presolutiongldLF is also a presolu-
tion iniMLF.

Interestingly, presolutions aMLF can also be elaborated into
xMLF, as the difference betweaMLF andiMLF lies in operations
on inert and rigid nodes which are inlined xMLF. The elabora-
tion proceeds as foeMLF, by weakening presolutions into rigid
ones, so that all inert nodes become rigid and will be inlingte
main difference lies in normalized derivations of instatitin edges
(§834), which may contain new forms of operationsinLF. How-
ever, those operations only occur on rigid nodes and aresdtdd
into identity type instantiations.

Translating syntactic versions dLF (whether implicit or ex-
plicit) into xMLF might seem trivial at a cursory glance. However,
this is not the case at all, and special care must also be taken
cause of the mismatch between type instandd ifi andxMLF.

As for graphs, all rigid (in the case @MLF) and inert types
must be inlined, and types must be put in canonical form @hése
instance on some total ordering of bound variables). Th@dsv
the need for any form of equivalence or abstraction at platese
it is not allowed inxMLF. Furthermore, alias bounds must also be
inlined so as to preserve their intended semantiddiff ().

HML needs not use rigid bounds at all. For the reasons developed
above, we do not expect the elaborationHdL to be significantly
simpler than foiMLF or eMLF. However, its proofs of correctness
might be simpler than the proof of correctness &iLF and it-

self simpler than the one faMLF—since intuitively, the smaller

the type equivalence, the simpler the proof of correctnélsrna-
tively, programs oHML could be elaborated indirectly by translat-
ing them intoeMLF, then intoxMLF.

4.3 Related works

Besides the several papers that describe variarltsLbf there are
actually few related works.

Leilen and L 6h[(2005) have studied the extensiomvif with
qualified types, and as a subcase, the translatialdf without
qualified types into Systei. However, in order to handle type in-
stantiations, a term of typeV (a>>7') 7 is elaborated as a function
of typeV (o) (1. — a) — 7«, wherer, is a runtime representa-
tion of 7. The first argument is auntime coercionwhich bears
strong similarities with our instantiations. However, anmpiortant
difference is that their coercions are at the level of tenvis|e our
instantiations are at the level of types. In particulahailigh co-
ercion functions should not change the semantics, thicarite-
sult has not be proved so far, while in our settings the tyjastere
semantics comes for free by construction. The incidenceoef-c
cion functions in a call-by-value language with side effdstalso
unclear. Perhaps, a closer connection between their coefenc-
tions and our instantiations could be established and wsedtt-
ally prove that their coercions do not alter the semanticavéier,
even if such a result could be proved, coercions should el
remain at the type level, as in our setting, than be interthixgh
terms, as in their proposal.

Interestingly, while their translation and ours work onyelif-
ferent inputs—syntactic typing derivations in their cagephic
presolutions in ours—there are strong similarities betwe two.
The resemblance is even closer with the improved translate
cently proposed by _Leijen (2007), in which rigid binding® én-
lined during the translation. As another example, we botiooa
cally order quantifiers inside types. (However, our motivas are
slightly different. We strive to reduce the number of quiietire-
orderings, thus order all the quantifiers. Leijen uses onlyeak
canonical form, sufficient to obtain well-typed terms. Tb@n re-
sult in some reorderings that are not present in our transijt

4.4 Future works

The demand for an internal language fatF was first made in the
context of using theMLF type system for the Haskell language.
We expectMLF to better accommodate qualified types tiebiF
since at least no evidence function would be needed for flexib
polymorphism. However, this remains to be verified.

While graphical type inference has been designed to keep max
imal sharing of types during inference so as to have good-prac
tical complexity, our elaboration implementation readskbdags

Once these precautions are carefully taken, the main part of as trees and undo all the sharing carefully maintained durin

the translation is however slightly simpler than in the driapl
case, because instance derivations, which are the coantep
instantiation witnesses, are closer to type instantiatioaMLF.
In particular, the ordering of quantifiers has already beleosen
in syntacticeMLF derivations. However, this merely moves the
task of consistently ordering quantifiers from the transtafin the
graphical case) to type inference (in the syntactic case).

A similar translation should also be applicable to the laggu
HML—an interesting variant ofLF proposed by _Leijén (20D9)
that is even more explicit thaeMLF, but uses the simpler types

ference. Even with today’s fast machines, this might be alpro
when writing large, automatically generated programs. déerit
would be worth maintaining the sharing during the tranelatper-
haps by adding type definitions xd1LF.

It was somewhat of a surprise to realize thLF types are
actually more expressive thaMLF ones, because of a different
interpretation of alias bounds. While the interpretatidnxmLF
seems quite natural in an explicitly typed context, and iaict
similar to the interpretation of subtype boundsFg, the eMLF
interpretation also seemed the obvious choice in the coofaype

of iMLF: at the price of adding extra annotations in source terms, inference. We have left for future work the question of wieette

11

2009/7/15

additional power brought by theMLF could be returned back to
eMLF while retaining type inference.

Type instantiation, which changes the type of an expression

without changing its meaning, goes far beyond type apjtinat
in SystemF and resembles retyping functions in SystEfi—the
closure off by n-conversionl(Mitchelll 1988). Those functions can
be seen either at the level of terms, as expressions of Sylstem
that Bn-reduces to the identity, or at the level of types aype

typedness, and the calculus is sound for both call-by-vehaecall-
by-name semantics.

We have described a translation of partially typedLF pro-
grams into fully typedkMLF ones. The translation preserves well-
typedness and the type erasure of terms, which ensures phe ty
soundness aMLF. We have shown thatMLF can be used as an in-
ternal language foMLF, with either call-by-value or call-by-name
semantics, and also for the many restrictionsif that have been

conversionSome loose parallel can be made between the encoding proposed, includingiML.

of MLF in SystemF by [Leilen and L6h [(2005) using term-level
coercions (which should hopefully be semantics presejvargl
xMLF which uses type-level instantiations (which are semantics
preserving by construction). Additionally, perhap8 could be
extended with a form of abstraction over retyping functiamsich

as type abstractioti (o« > 7) in xMLF amounts to abstract over the
instantiation« of typer — «.

Regarding type soundness, it is also worth noticing that the
proof of subject reduction ixMLF does not subsume, but com-
plements, the one in the original presentationMifF. The latter
does not explain how to transform type annotations, but shbat
annotation sites need not be introduced (only transforrdedhg
reduction. BecauseMLF has full type information, it cannot say
anything about type information that could be left impliaitd in-
ferred. Thus, given a term xMLF, can we rebuild a term ifVILF
with minimal type annotations? While this should be easyeitrer
quest all subterms to have identical types, it is not so dfeae
only care about typability.

The semantics okMLF allows reduction (and elimination) of
type instantiations: ¢ through (-reduction but does not operate
reduction (and simplification) of instantiatiopsalone. It would be
possible to define a notion of reduction on instantiations— ¢’
(such that, for instancey, (= ¢1; ¢2) — V(= ¢1);V (= ¢2), Or
conversely?) and extend the reduction of terms with a comtsge
a¢p — a¢ wheneverp — ¢’. This might be interesting for
more economical representations of instantiation. Howevés
unclear whether there exists an interesting form of reducthat
is both Church-Rosser and large enough for optimizatiopgses.
Perhaps, one should rather consider instantiation tramsfitons
that preserve observational equivalence, which woulddeaere
freedom in the way one instantiation could be replaced byhamo

Less ambitious is to directly generate smaller type ing#ions
when translatingMLF presolutions intacMLF, by carefully select-
ing the instantiation witness to translate—as there uguadists
more than one witness for a given instantiation edge. Thislenms
to using type derivations equivalence éviLF instead of obser-
vational equivalence imMLF. Ideally, the latter should suffice. In
practice, using just the former or the two combined mightibe s
pler.

ExtendingxMLF to allow higher-order polymorphism is an-
other interesting research direction for the future. Suclexten-
sion is already under investigation for the type infereneesion
eMLF (Herm¥ 2009).

Conclusion

We have completed thiiLF trilogy by introducing the Church-
style versionxMLF, that was still desperately missing for type-
aware compilation and from a theoretical point of view. Thig-o
inal type-inference versioeMLF, which requires partial type an-
notations but does not tell how to track them during redumtio
now lies between the Curry-style presentatibtiF that ignores all
type information ancMLF that maintains it during reduction. We
have shown thaxMLF is well-behaved: reduction preserves well-

12

Hopefully, this will help the adoption ofMLF and maintain a
powerful form of type inference in modern programming laages
that will necessarily feature first-class polymorphism.

Independently, the idea of enriching type applicationddbar
forms of type transformations might also be useful in othamn-c
texts.

References

Henk P. BarendregfThe Lambda Calculus: Its Syntax and Seman-
tics. North-Holland, 1984. ISBN 0-444-86748-1.

Paolo Herms. Partial Type Inference with Higher-Order B/pe
Master’s thesis, University of Pisa and INRIA, 2009. To ape

Mark P. Jones. A theory of qualified typeSci. Comput. Program.
22(3):231-256, 1994.

Didier Le Botlan. MLF : An extension of ML with second-order
polymorphism and implicit instantiation. PhD thesis, Ecole
Polytechnique, June 2004. english version.

Didier Le Botlan and Didier Rémy. MLF: Raising ML to the powe
of System-F. InProceedings of the Eighth ACM SIGPLAN
International Conference on Functional Programmirgages
27-38, August 2003.

Didier Le Botlan and Didier Remy. Recasting MLF. Research
Report 6228, INRIA, Rocquencourt, BP 105, 78 153 Le Chesnay
Cedex, France, June 2007.

Daan Leijen. A type directed translation of MLF to System F.
In The International Conference on Functional Programming
(ICFP’07). ACM Press, October 2007.

Daan Leijen. Flexible types: robust type inference for falsiss
polymorphism. InProceedings of the 36th annual ACM Sym-
posium on Principles of Programming Languages (POPL’'09)
pages 66—77, New York, NY, USA, 2009. ACM.

Daan Leijen and Andres Loh. Qualified types for MLF. |IGFP
'05: Proceedings of the tenth ACM SIGPLAN international-con
ference on Functional programmingages 144-155, New York,
NY, USA, September 2005. ACM Press. ISBN 1-59593-064-7.

John C. Mitchell. Polymorphic type inference and containtne
Information and Computatiqr2/3(76):211-249, 1988.

Simon Peyton JonesHaskell 98 Language and Libraries: The
Revised ReportCambridge University Press, May 2003. ISBN
0521826144.

Didier Rémy and Boris Yakobowski. From ML to MLF: Graphic
type constraints with efficient type inference. The 13th ACM
SIGPLAN International Conference on Functional Program-
ming (ICFP’08) pages 63—74, Victoria, BC, Canada, September
2008.

Andrew K. Wright and Matthias Felleisen. A syntactic apmtoéo
type soundnesdnformation and Computatiqri994.

Boris Yakobowski.Graphical types and constraints: second-order
polymorphism and inferencd”hD thesis, University of Paris 7,
December 2008.

2009/7/15

http://pauillac.inria.fr/~remy/mlf/Herms@master2009:mlf-omega.pdf
http://www.springerlink.com/content/y034678123475137/
http://wwwdgeinew.insa-toulouse.fr/~lebotlan/
http://pauillac.inria.fr/~remy/mlf/icfp.pdf
https://hal.inria.fr/inria-00156628
http://research.microsoft.com/users/daan/download/papers/mlftof.pdf
ftp://ftp.research.microsoft.com/pub/tr/TR-2008-55.pdf
http://murl.microsoft.com/users/daan/download/papers/qmlf.pdf
http://gallium.inria.fr/~remy/mlf/mlf-icfp08.pdf
http://www.cs.rice.edu/CS/PLT/Publications/Scheme/ic94-wf.ps.gz
http://www.yakobowski.org/phd-dissertation.html

	The calculus
	Types, instantiations, terms, and typing environments
	Instantiations
	Typing rules for Fsup
	Reduction
	System F as a subsystem of xMLF

	Properties of reduction
	Subject reduction
	Confluence
	Strong normalization
	Accommodating weak reduction strategies and constants

	Elaboration of graphical eMLF into xMLF
	An overview of graphical eMLF
	An overview of the translation to xMLF
	From presolutions to rigid presolutions
	Details of the translation
	Soundness of the translation

	Discussion
	Expressiveness of xMLF
	Elaboration for other presentations of MLF
	Related works
	Future works

