
A Church-Style Intermediate Language for MLF

Didier Rémy
INRIA

http://gallium.inria.fr/~remy

Boris Yakobowski
CNRS - Université Paris Diderot (Paris 7)

http://www.yakobowski.org

Abstract
MLF is a type system that seamlessly mergesML-style implicit but
second-class polymorphism with SystemF explicit first-class poly-
morphism. We presentxMLF, a Church-style version ofMLF with
full type information that can easily be maintained during reduc-
tion. All parameters of functions are explicitly typed and both type
abstraction and type instantiation are explicit. However,type in-
stantiation inxMLF is more general than type application in Sys-
temF. We equipxMLF with a small-step reduction semantics that
allows reduction in any context and show that this relation is conflu-
ent and type preserving. We also show that both subject reduction
and progress hold for weak-reduction strategies, including call-by-
value with the value-restriction. We exhibit a type preserving en-
coding ofMLF into xMLF, which ensures type soundness for the
most general version ofMLF. We observe thatxMLF is a calculus
of retyping functions at the type level.

Categories and Subject DescriptorsF.3.3 [Logics and Mean-
ings of Programs]: Studies of Program Constructs—Type struc-
ture; D.3.3 [Programming Languages]: Language Constructs and
Features—Polymorphism

General Terms Design, Languages, Theory

Keywords MLF, SystemF, Types, Type Generalization, Type In-
stantiation, Retyping functions, Type Soundness, Binders.

Introduction
MLF (Le Botlan and Rémy 2003, 2007; Rémy and Yakobowski
2008) is a type system that seamlessly mergesML-style implicit
but second-class polymorphism with SystemF explicit first-class
polymorphism. This is done by enriching SystemF types. Indeed,
maybe surprisingly, SystemF is not well-suited for partial type
inference, as illustrated by the following example. Assumethat a
function, saychoice, of type∀ (α) α → α → α and the identity
function id, of type∀ (β) β → β, have been defined. How can the
applicationchoice to id be typed in SystemF? Shouldchoice be ap-
plied to the type∀ (β) β → β of the identity that is itself kept poly-
morphic? Or should it be applied to the monomorphic typeγ → γ,
with the identity being applied toγ (whereγ is bound in a type
abstraction in front of the application)? Unfortunately, these alter-
natives have incompatible types, respectively(∀ (α) α → α) →

[Copyright notice will appear here once ’preprint’ option is removed.]

(∀ (α) α → α) and∀ (γ) (γ → γ) → (γ → γ): none is an in-
stance of the other. Hence, in SystemF, one is forced to irreversibly
choose between one of the two explicitly typed terms.

However, a type inference system cannot choose between the
two, as this would sacrifice completeness and be somehow arbi-
trary. This is whyMLFenriches types with instance-bounded poly-
morphism, which allows to write more expressive types that factor
out in a single type all typechecking alternatives in such cases as the
example ofchoice. Now, the type∀ (α > τ) α→ α, which should
be read “α → α whereα is any instance ofτ ”, can be assigned
to choice id, and the two previous alternatives can be recovereda
posterioriby choosing different instances forα.

iMLF and eMLF Currently, the languageMLF comes with a
Curry-style versioniMLF, where no type information is needed,
and a type-inference versioneMLF, that requires partial type infor-
mation (Le Botlan and Rémy 2007). However,eMLF is not quite
in Church’s style, since a large amount of type information is still
inferred, and partial type information cannot be easily maintained
during reduction. Hence, whileeMLF is a good surface language,
it is not a good candidate for use as an internal language during
the compilation process, where some simple program transforma-
tions, and perhaps some reduction steps, are being performed. This
has been a problem for the adoption ofMLF in the Haskell com-
munity (Peyton Jones 2003), as the Haskell compilation chain uses
an internal explicitly typed language, especially, but notonly, for
evidence translation due to the use of qualified types (Jones1994).

This is also an obstacle to proving subject reduction, whichdoes
not hold ineMLF. In a way, this is unavoidable in a language with
non-trivial partial type inference. Indeed, type annotations cannot
be completely dropped, but must at least be transformed and reor-
ganized during reduction. Still, one could expect thateMLFmay be
equipped with reduction rules for type annotations. This has actu-
ally been considered in the original presentation ofMLF, but only
with limited success. The reduction kept track of annotation sites
during reduction; this showed, in particular, that no new annotation
site needs to be introduced during reduction. Unfortunately, the ex-
act form of annotations could not be maintained during reduction,
by lack of an appropriate language to describe their computation.
As a result, it has only been shown that some type derivation can
be rebuilt after the reduction of a well-typed program, but without
exhibiting an algorithm to compute them during reduction.

Independently, Rémy and Yakobowski (2008) have introduced
graphic constraints, both to simplify the presentation ofMLF and
improve its type inference algorithm. This also lead to a simpler,
slightly more expressive definition ofMLF.

xMLF In this paper, we present a Church-style version ofMLF,
called xMLF, which contains full type information. In fact, type
checking becomes a simple and local verification process—bycon-
trast with type inference ineMLF, which is based on unification.
In xMLF, type abstraction, type instantiation, and all parameters

1 2009/7/15

http://gallium.inria.fr/~remy
http://www.yakobowski.org

of functions are explicit, as in SystemF. However, type instan-
tiation is more general and more atomic than type application in
SystemF: we use explicit type instantiation expressions, that are
actually proof evidences for the type instance relations inMLF.

In addition to the usualβ-reduction, we give a series of reduc-
tion rules for simplifying type instantiations. These rules are con-
fluent when allowed in any context. Moreover, reduction preserves
typings, and is sufficient to reduce all typable expressionsto a value
when used in either a call-by-value or call-by-name setting. This es-
tablishes the soundness ofMLF for a call-by-name semantics for the
first time. Notably,xMLF is a conservative extension of SystemF.

To verify that, as expected,xMLF can be used as an inter-
nal language foreMLF, we exhibit a type-preserving type-erasure-
preserving translation fromeMLF to xMLF. This translation is based
on typing derivations and thus performed after type inference.
Technically, it is based on presolutions of type inference problems
in the graphic constraint framework ofMLF. An important corol-
lary is the type soundness ofeMLF—in its most expressive1 ver-
sion (Rémy and Yakobowski 2008). Therefore,xMLFcould also be
used as an internal language for (and ensure the type soundness
of) HML—another less expressive but simpler surface language for
iMLF that has been recently proposed (Leijen 2009).

Besides these practical issues,xMLF might be interesting in its
own right: type instantiations change the types of terms in ways
that have some similarities, but also important differences, with
retyping functions in the languageFη—the closure ofF by η-
expansion. In particular, type instantiations operate entirely at the
level of types and not at the level of terms, hence, by construction,
they do not carry any computational content.

Outline Perhaps surprisingly, but quite interestingly. the diffi-
culty in defining an internal language forMLF is not reflected in
the internal language itself, which, we believe, remains simple and
easy to understand, but rather in the translation fromeMLF to xMLF,
which is complicated by many administrative details. Hence, we
presentxMLF first and study its meta-theoretical properties inde-
pendently ofeMLF. More precisely, the paper is organized as fol-
lows. We presentxMLF, its syntax and its static and dynamic se-
mantics in§1. We study its main properties, including type sound-
ness for different evaluations strategies in§2. The elaboration of
eMLF programs intoxMLF is addressed in§3. We discuss possible
improvements and variations, as well as related and future works at
the end of the paper§4. All proofs are omitted, but can be found in
(Yakobowski 2008, Chapters 14 & 15).

1. The calculus
1.1 Types, instantiations, terms, and typing environments

All the syntactic definitions ofxMLF can be found in Figure 1.
We assume given a countable collection of variables ranged over
by lettersα, β, γ, andδ. As usual, types include type variables
and arrow types. Other type constructors will be added later—
straightforwardly, as the arrow constructor receives no special treat-
ment. Types also include a bottom type⊥ that corresponds to the
SystemF type∀α.α. Finally, a type may also be a form of bounded
quantification∀ (α > τ) τ ′, calledflexiblequantification, that gen-
eralizes the∀α.τ form of SystemF. (We may simply write∀ (α) τ ′

when the boundτ is⊥.) Intuitively, ∀ (α > τ) τ ′ restricts the vari-
ableα to range only over instances ofτ . The variableα is bound
in τ ′ but not inτ .

1 So far, type-soundness has only been proved for the original, but slightly
weaker variant ofMLF (Le Botlan 2004) and for the shallow, recast version
of MLF (Le Botlan and Rémy 2007).

α, β, γ, δ Type variables
τ ::= Types

| α Type variable
| τ → τ Arrow type
| ∀ (α > τ) τ Flexible quantification
| ⊥ Bottom type

φ ::= Instantiations
| τ Bottom
| !α Abstract
| ∀ (>φ) Inside
| ∀ (α >) φ Under
| N Quantifier elimination
| O Quantifier introduction
| φ; φ Composition
| 1 Identity

x, y, z Term variables
a ::= Terms

| x Variable
| λ(x : τ) a Function
| a a Application
| Λ(α > τ) a Type abstraction
| a φ Type instantiation
| let x = a in a Let-binding

Γ ::= Environments
| ∅ Empty environment
| Γ, α > τ Type variable
| Γ, x : τ Term variable

Figure 1. Grammar of types, instantiations, and terms

In Church-style SystemF, type instantiation inside terms is sim-
ply type application, of the forma τ . By contrast, type instantiation
aφ in xMLF details every intermediate instantiation step, so that it
can be checked locally. Intuitively, theinstantiationφ transforms a
type τ into another typeτ ′ that is an instance ofτ . In a way,φ is
a witness for the instance relation that holds betweenτ andτ ′. It
is therefore easier to understand instantiations altogether with their
static semantics, which will be explained in the next section.

Terms ofxMLF are those of theλ-calculus enriched withlet
constructs, with two small differences. Type instantiation a φ gen-
eralizes SystemF type application. Type abstractions are extended
with an instance boundτ and writtenΛ(α>τ) a. The type variable
α is bound ina, but not inτ . We abbreviateΛ(α>⊥) a asΛ(α) a,
which simulates the type abstraction formΛα. a of SystemF.

As usual, type environments assign types to program variables.
However, instead of just listing type variables, as is the case in
SystemF, type variables are also assigned a bound in a binding
of the formα > τ .

As usual, we assume that typing environments do not bind twice
the same variable. We writedom(Γ) for the set of all term and
type variables that are bound byΓ. All the free type variables
appearing in a type of the environmentΓ must be bound earlier
in Γ. Formally, writing ftv(τ) for the set of type variables that
appear free inτ , the relationftv(τ) ⊆ dom(Γ) must hold to form
environmentsΓ, α>τ, Γ′ andΓ, x : τ, Γ′. All environments in this
paper implicitly verify both well-formedness hypotheses.

We identify types, instantiations, and terms up to the renaming
of bound variables. The capture-avoiding substitution of avariable
v inside an expressions by an expressions′ is writtens{v ← s′}.

1.2 Instantiations

Instantiationsφ are defined in Figure 1. Their typing, described in
Figure 2, aretype instancejudgments of the formΓ ⊢ φ : τ ≤ τ ′,

2 2009/7/15

INST-BOT

Γ ⊢ τ : ⊥ ≤ τ

INST-UNDER
Γ, α > τ ⊢ φ : τ1 ≤ τ2

Γ ⊢ ∀ (α >) φ : ∀ (α > τ) τ1 ≤ ∀ (α > τ) τ2

INST-ABSTR
α > τ ∈ Γ

Γ ⊢ !α : τ ≤ α

INST-INSIDE
Γ ⊢ φ : τ1 ≤ τ2

Γ ⊢ ∀ (> φ) : ∀ (α > τ1) τ ≤ ∀ (α > τ2) τ

INST-INTRO
α /∈ ftv(τ)

Γ ⊢ O : τ ≤ ∀ (α >⊥) τ

INST-COMP
Γ ⊢ φ1 : τ1 ≤ τ2

Γ ⊢ φ2 : τ2 ≤ τ3

Γ ⊢ φ1; φ2 : τ1 ≤ τ3

INST-ELIM

Γ ⊢ N : ∀ (α > τ) τ ′ ≤ τ ′{α← τ}

INST-ID

Γ ⊢ 1 : τ ≤ τ

Figure 2. Type instance

stating that in environmentΓ, the instantiationφ transforms the
typeτ into the typeτ ′.

Thebottominstantiationτ expresses that (any) typeτ is an in-
stance of the bottom type. Theabstractinstantiation!α, which as-
sumes that the hypothesisα > τ is in the environment, abstracts
the boundτ of α as the type variableα. The inside instantia-
tion ∀ (> φ) appliesφ to the boundτ ′ of a flexible quantification
∀ (α′ > τ ′) τ . Conversely, theunder instantiation∀ (α >) φ ap-
pliesφ to the typeτ under the quantification. The type variableα
is bound inφ; the environment in the premise of the rule INST-
UNDER is increased accordingly. Thequantifier introductionO2

introduces a fresh trivial quantification∀ (α >⊥). Conversely, the
quantifier eliminationN eliminates the bound of a type of the form
∀ (α>τ) τ ′ by substitutingτ for α in τ ′. This amounts to definitely
choosing the present boundτ for α, while the bound before the ap-
plication could be further instantiated by some inside instantiation.
The compositionφ; φ′ witnesses the transitivity of type instance,
while theidentity instantiation1 witnesses reflexivity.

Example Let τmin, τcmp, andτand be the types (for example, of
the parametric minimum and comparison functions and the con-
junction of boolean formulas) defined as follows:

τmin , ∀ (α >⊥) α→ α→ α

τcmp , ∀ (α >⊥) α→ α→ bool

τand , bool→ bool→ bool

Let φ be the instantiation∀ (> bool); N. Then,⊢ φ : τmin ≤ τand

and⊢ φ : τcmp ≤ τand hold. LetτK be the type∀ (α>⊥) ∀ (β>⊥)
α → β → α (e.g. of the λ-term λ(x) λ(y) x) and φ′ be the
instantiation3 ∀ (α >) (∀ (>α); N). Then,φ′ : τK ≤ τmin.

Type application As above, we often instantiate a quantification
over⊥ and immediately substitute the result. Moreover, this pattern
corresponds to the System-F unique instantiation form. Therefore,
we define〈τ 〉 as syntactic sugar for(∀ (> τ); N). The instantia-
tionsφ andφ′ can then be abbreviated as〈bool〉 and∀ (α >) 〈α〉.
More generally, we write〈φ〉 for the computation(∀ (>φ); N).

Properties of instantiations Since instantiations make all steps in
the instance relation explicit, their typing is deterministic.

LEMMA 1. If Γ ⊢ φ : τ ≤ τ1 andΓ′ ⊢ φ : τ ≤ τ2, thenτ1 = τ2.

2 The choice ofO is only by symmetry with the elimination formN
described next, and has no connection at all with linear logic.
3 Notice that the occurrence ofα in the inside instantiation is bound by the
under instantiation.

τ (!α) = α ⊥ τ = τ τ 1 = τ

τ O = ∀ (α >⊥) τ α /∈ ftv(τ)
τ (φ1; φ2) = (τ φ1) φ2

(∀ (α > τ) τ ′) N = τ ′{α← τ}
(∀ (α > τ) τ ′) (∀ (>φ)) = ∀ (α > τ φ) τ ′

(∀ (α > τ) τ ′) (∀ (α >) φ) = ∀ (α > τ) (τ ′ φ)

Figure 3. Type instantiation (on types)

VAR
x : τ ∈ Γ

Γ ⊢ x : τ

LET
Γ ⊢ a : τ Γ, x : τ ⊢ a′ : τ ′

Γ ⊢ let x = a in a′ : τ ′

ABS
Γ, x : τ ⊢ a : τ ′

Γ ⊢ λ(x : τ) a : τ → τ ′

APP
Γ ⊢ a1 : τ2 → τ1 Γ ⊢ a2 : τ2

Γ ⊢ a1 a2 : τ1

TABS
Γ, α > τ ′ ⊢ a : τ α /∈ ftv(Γ)

Γ ⊢ Λ(α > τ ′) a : ∀ (α > τ ′) τ

TAPP
Γ ⊢ a : τ Γ ⊢ φ : τ ≤ τ ′

Γ ⊢ aφ : τ ′

Figure 4. Typing rules forxMLF

The use ofΓ′ instead ofΓ may be surprising. However,Γ does not
contribute to the instance relation, except in the side condition of
rule INST-ABSTR. Hence, the type instance relation defines a par-
tial function, calledtype instantiation4, that given an instantiation
φ and a typeτ , returns (if it exists) the unique typeτ φ such that
⊢ φ : τ ≤ τ φ. An inductive definition of this function is given in
Figure 3. Type instantiation is complete for type instance:

LEMMA 2. If Γ ⊢ φ : τ ≤ τ ′, thenτ φ = τ ′.

However, the fact thatτ φ may be defined and equal toτ ′ does
not imply thatΓ ⊢ φ : τ ≤ τ ′ holds for someΓ. Indeed, type
instantiation does not check the premise of rule INST-ABSTR. This
is intentional, as it avoids parametrizing type instantiation over the
type environment. This means that type instantiation is notsound
in general. This is never a problem, however, since we only use
type instantiation originating from well-typed terms for which there
always exists some contextΓ such thatΓ ⊢ φ : τ ≤ τ ′.

We say that typesτ andτ ′ are equivalent inΓ if there existφ
andφ′ such thatΓ ⊢ φ : τ ≤ τ ′ andΓ ⊢ φ′ : τ ′ ≤ τ . Although
types ofxMLF are syntacticallythe same as the types ofiMLF—
the Curry-style version ofMLF (Le Botlan and Rémy 2007)—they
are richer, because type equivalence inxMLF is finer than type
equivalence iniMLF, as will be explained in Section 4.1.

1.3 Typing rules for xMLF

Typing rules are defined in Figure 4. Compared with SystemF,
the novelties are, unsurprisingly, type abstraction and type instan-
tiation. The typing of a type abstractionΛ(α > τ) a extends the
typing environment with the type variableα bound byτ . The typ-
ing of a type instantiationa φ resembles the typing of a coercion,
as it just requires the instantiationφ to transform the type ofa to
the type of the result. Of course, it has the full power of the type
application rule of SystemF. For example, the type instantiation
a 〈τ 〉 has typeτ ′{α ← τ} provided the terma has type∀ (α) τ .
As in SystemF, a well-typed closed term has a unique type—in
fact, a unique typing derivation.

A let-binding let x = a1 in a2 cannot entirely be treated as
an abstraction for an immediate application(λ(x : τ1) a2) a1

4 There should never be any ambiguity with the operationa φ on expres-
sions; moreover, both operations have strong similarities

3 2009/7/15

(λ(x : τ) a1) a2 −→ a1{x← a2} (β)
let x = a2 in a1 −→ a1{x← a2} (βlet)

a1 −→ a (ι-ID)
a (φ; φ′) −→ a φ (φ′) (ι-SEQ)
aO −→ Λ(α >⊥) a

α /∈ ftv(τ) (ι-INTRO)

(Λ(α > τ) a)N −→ a{!α← 1}{α← τ} (ι-ELIM)
(Λ(α > τ) a) (∀ (α >) φ) −→ Λ(α > τ) (aφ) (ι-UNDER)
(Λ(α > τ) a) (∀ (> φ)) −→ Λ(α > τ φ)

a{!α← φ; !α} (ι-INSIDE)

E[a] −→ E[a′] if a −→ a′ (CONTEXT)

Figure 5. Reduction rules

because the former does not require a type annotation onx why
the latter does. This is nothing new, and the same as in SystemF
extended with let-bindings. (Notice however thatτ1, which is the
type ofa1, is fully determined bya1 and could be synthesized by a
typechecker.)

Example Let id stand for the identityΛ(α > ⊥) λ(x : α) x
andτid for the type∀ (α > ⊥) α → α. We have⊢ id : τid. The
function choice mentioned in the introduction, may be defined as
Λ(β > ⊥) λ(x : β) λ(y : β) x. It has type∀ (β > ⊥) β →
β → β. The application ofchoice to id, which we refer to below
aschoice id, may be defined asΛ(β > τid) choice 〈β〉 (id (!β))
and has type∀ (β > τid) β → β. The termchoice id may also be
given weaker types by type instantiation. For example,choice id N
has type(∀ (α>⊥) α→ α)→ (∀ (α>⊥) α→ α) as in System
F, while choice id (O;∀ (γ >) (∀ (> 〈γ〉); N)) has theML type
∀ (γ >⊥) (γ → γ)→ γ → γ.

1.4 Reduction

The semantics of the calculus is given by a small-step reduction
semantics. We let reduction occur in any context, includingunder
abstractions. That is, the evaluation contexts are all single-hole
contexts, given by the grammar:

E ::= [·] | E φ | λ(x : τ) E | Λ(α > τ) E
| E a | a E | let x = E in a | let x = a in E

The reduction rules are described in Figure 5. As usual, basic
reduction steps containβ-reduction, with the two variants(β) and
(βlet). Other basic reduction rules, related to the reduction of type
instantiations and calledι-steps, are described below. The one-step
reduction is closed under the context rule. We write−→β and−→ι

for the two subrelations of−→ that contains only CONTEXT and
β-steps orι-step, respectively. Finally, the reduction is the reflexive
and transitive closure−→→ of the one-step reduction relation.

Reduction of type instantiation Type instantiation redexes are all
of the formaφ. The first three rules do not constrain the form ofa.
The identity type instantiation is just dropped (Ruleι-ID). A type
instantiation composition is replaced by the successive correspond-
ing type instantiations (Ruleι-SEQ). Rule ι-INTRO introduces a
new type abstraction in front ofa; we assume that the bound vari-
ableα is fresh ina. The other three rules require the type instan-
tiation to be applied to a type abstractionΛ(α > τ) a. Rule ι-
UNDER propagates the type instantiation under the bound, inside
the bodya. By contrast, Ruleι-INSIDE propagates the type instan-
tiation φ inside the bound, replacingτ by τ φ. However, as the
bound ofα has changed, the domain of the type instantiations!α is
no moreτ , butτ φ. Hence, in order to maintain well-typedness, all
the occurrences of the instantiation!α in a must be simultaneously

replaced5 by the instantiation(φ; !α). For instance, ifa is the term

Λ(α > τ) λ(x : α→ α) λ(y : ⊥) y (α→ α) (z (!α))

then, the type instantiationa (∀ (>φ)) reduces to:

Λ(α > τ φ) λ(x : α→ α) λ(y : ⊥) y (α→ α) (z (φ; !α))

Rule ι-ELIM eliminates the type abstraction, replacing all the oc-
currences ofα insidea by the boundτ . All the occurrences of!α
insideτ (used to instantiateτ into α) become vacuous and must be
replaced by the identity instantiation. For example, reusing the term
a above,aN reduces toλ(x : τ → τ) λ(y : ⊥) y (τ → τ) (z 1).

Notice that type instantiationsa τ anda (!α) are irreducible.

Examples of reduction Let us reuse the termchoice id defined in
§1.3 asΛ(β > τid) choice 〈β〉 (id (!β)). Remember that〈τ 〉 stands
for the System-F type applicationτ and expands to(∀ (> τ); N).
Therefore, the type instantiationchoice 〈β〉 reduces to the term
λ(x : β) λ(y : β) x by ι-SEQ, ι-INSIDE andι-ELIM . Hence, the
term choice id reduces by these rules, CONTEXT, and(β) to the
expressionΛ(β > τid) λ(y : β) id (!β).

Below are three specialized versions ofchoice id (remember
that∀ (α) τ andΛ(α) a are abbreviations for∀ (α > ⊥) τ and
Λ(α >⊥) a). In this case, all type instantiations are eliminated by
reduction (but this not always the case in general).

choice id 〈〈int〉〉 : (int→ int)→ (int→ int)
−→→ λ(y : int→ int) (λ(x : int) x)

choice id N : (∀ (α) α→ α)→ (∀ (α) α→ α)
−→→ λ(y : ∀ (α) α→ α) (Λ(α) λ(x : α) x)

choice id (O;∀ (γ >) (∀ (> 〈γ〉); N))
: ∀ (γ) (γ → γ)→ (γ → γ)
−→→ Λ(γ) λ(y : γ → γ) (λ(x : γ) x)

1.5 SystemF as a subsystem ofxMLF

SystemF can be seen as a subset ofxMLF, using the following
syntactic restrictions: all quantifications are of the form∀ (α) τ
and⊥ is not a valid type anymore (however, as in SystemF,
∀ (α) α is); all type abstractions are of the formΛ(α) a; and all
type instantiations are of the forma 〈τ 〉.

The derived typing rule forΛ(α) a anda 〈τ 〉 are exactly the
System-F typing rules for type abstraction and type application.
Hence, typechecking in this restriction ofxMLF corresponds to
typechecking in SystemF.

Moreover, the reduction in this restriction also corresponds to
reduction in SystemF. Indeed, a reducible type application is
necessarily of the form(Λ(α) a) 〈τ 〉 and can always be reduced
to a{α← τ} as follows:

(Λ(α) a) 〈τ 〉 = (Λ(α >⊥) a) (∀ (> τ); N) (1)

−→ (Λ(α >⊥) a) (∀ (> τ)) (N) (2)

−→ (Λ(α >⊥τ) a{!α← τ ; !α}) (N) (3)

= (Λ(α > τ) a) (N) (4)

−→ a{!α← 1}{α← τ} (5)

= a{α← τ} (6)

Step (1) is by definition; step (2) is byι-SEQ; step (3) is by
ι-INSIDE, step (5) is byι-ELIM and steps (4) and (6) by type
instantiation and by assumption asa is a term of SystemF, thus
in which !α does not appear.

2. Properties of reduction
The reduction has been defined so that the type erasure of a re-
duction sequence inxMLF is a reduction sequence in the untyped

5 Here, the instantiation!α is seen as atomic.

4 2009/7/15

λ-calculus (Barendregt 1984). Formally, the type erasure ofa term
a of xMLF is the untypedλ-term⌈a⌉ defined inductively by

⌈x⌉ = x
⌈aφ⌉ = ⌈a⌉
⌈a1 a2⌉ = ⌈a1⌉ ⌈a2⌉

⌈let x = a1 in a2⌉ = let x = ⌈a1⌉ in ⌈a2⌉
⌈λ(x : τ) a⌉ = λ(x) ⌈a⌉
⌈Λ(α > τ) a⌉ = ⌈a⌉

It is immediate to verify that two terms related byι-reduction have
the same type erasure. Moreover, ifa β-reduces toa′, then the type
erasure ofa β-reduces to the type erasure ofa′ in one step in the
untypedλ-calculus.

2.1 Subject reduction

In this section, we show that reduction ofxMLF, which can occur in
any context, preserves typings. As usual, this relies on weakening
and substitution lemmas, which hold for both instance and typing
judgments.

LEMMA 3 (Weakening).Assume thatΓ, Γ′, Γ′′ is well-formed.
If Γ, Γ′′ ⊢ φ : τ1 ≤ τ2, thenΓ, Γ′, Γ′′ ⊢ φ : τ1 ≤ τ2.
If Γ, Γ′′ ⊢ a : τ ′, thenΓ, Γ′, Γ′′ ⊢ a : τ ′.

LEMMA 4 (Term substitution).Assume thatΓ ⊢ a′ : τ ′ holds.
If Γ, x : τ ′, Γ′ ⊢ φ : τ1 ≤ τ2 thenΓ, Γ′ ⊢ φ : τ1 ≤ τ2.
If Γ, x : τ ′, Γ′ ⊢ a : τ , thenΓ, Γ′ ⊢ a{x← a′} : τ

The next lemma, which expresses that we can substitute an instance
bound inside judgments, ensures the correctness of Ruleι-ELIM .

LEMMA 5 (Bound substitution). Letϕ andθ be respectively the
substitutions{α← τ} and{!α← 1}{α← τ}.
If Γ, α > τ, Γ′ ⊢ φ : τ1 ≤ τ2 thenΓ, Γ′ϕ ⊢ φθ : τ1ϕ ≤ τ2ϕ.
If Γ, α > τ, Γ′ ⊢ a : τ ′ thenΓ, Γ′ϕ ⊢ aθ : τ ′ϕ.

Finally, the following lemma ensures that an instance boundcan be
instantiated, proving in turn the correctness of the ruleι-INSIDE.

LEMMA 6 (Narrowing).Assume thatΓ ⊢ φ : τ ≤ τ ′ holds. Letθ
be{!α← φ; !α}.
If Γ, α > τ, Γ′ ⊢ φ′ : τ1 ≤ τ2 thenΓ, α > τ ′, Γ′ ⊢ φ′θ : τ1 ≤ τ2.
If Γ, α > τ, Γ′ ⊢ a : τ ′′ thenΓ, α > τ ′, Γ′ ⊢ aθ : τ ′′

Subject reduction is an easy consequence of all these results.

THEOREM1 (Subject reduction).If Γ ⊢ a : τ anda −→ a′ then,
Γ ⊢ a′ : τ .

2.2 Confluence

As expected, reduction is confluent.

THEOREM2. The relation−→β is confluent. The relations−→ι

and−→ are confluent on the terms well-typed in some context.

This result is proved using the standard technique of parallel re-
ductions (Barendregt 1984). Thusβ-reduction andι-reduction are
independent; this allows for instance to performι-reductions under
λ-abstractions as far as possible while keeping a weak evaluation
strategy forβ-reduction.

The restriction to well-typed terms for the confluence ofι-
reduction is due to two things. First, the ruleι-INSIDE is not
applicable to ill-typed terms in whichτ φ cannot be computed
(for example(Λ(α > int) a)N). Second,τ φ can sometimes be
computed, even thoughΓ ⊢ φ : τ ≤ τ ′ never holds (for example
if φ is !α and τ is not the bound ofα in Γ). Hence, type errors
may be either revealed or silently reduced and perhaps eliminated,
depending on the reduction path. As an example, consider theterm

(

Λ(α > ∀ (γ) γ)
(

(Λ(β > int) x) (∀ (> !α))
))

(∀ (> N))

It is ill-typed in any context, because!α coerces a term of type
∀ (γ) γ into one of typeα, but !α is here indirectly applied to a
term of typeint. If we reduce the outermost type instantiation first,

we are stuck withΛ(α>⊥)
(

(Λ(β>int) x) (∀ (>N; !α))
)

, which
is irreducible since the type instantiationint (N; !α) is undefined.

Conversely, if we reduce the innermost type instantiation first,
the faulty type instantiation disappears and we obtain the term
(

Λ(α > ∀ (γ) γ) Λ(β > α) x
)

(∀ (> N)), which further reduces
to the normal formΛ(α >⊥) Λ(β > α) x.

The fact that ill-typed terms may not be confluent is not new: for
instance, this is already the case withη-reduction in SystemF. We
believe this is not a serious issue. In practice, this means that type-
checking should be performed before any program simplification,
which is usually the case anyway.

2.3 Strong normalization

We conjecture, but have not checked, that all reduction sequences
are finite inxMLF.

2.4 Accommodating weak reduction strategies and constants

In order to show that the calculus may also be used as the core of a
programming language, we now introduce constants and restricts
the semantics to a weak evaluation strategy. We will show that
subject reduction and progress hold for the main two forms of
weak-reduction strategies, namely call-by-value and call-by-name.

We let the letterc range over constants. Each constant comes
with its arity |c|. The dynamic semantics of constants must be pro-
vided by primitive reduction rules, calledδ-rules. However, these
are usually of a certain form. To characterizeδ-rules (and values),
we partition constants intoconstructorsandprimitives, ranged over
by lettersC andf , respectively. The difference between the two
lies in their semantics: primitives (such as+) are reduced when
fully applied, while constructors (such ascons) are irreducible and
typically eliminated when passed as argument to primitives.

In order to classify constructed values, we assume given a col-
lection of type constructorsκ, together with their arities|κ|. We
extend types with constructed typesκ (τ1, . . . τ|κ|). We write α
for a sequence of variablesα1, . . . αk and ∀ (α) τ for the type
∀ (α1) . . .∀ (αk) τ . The static semantics of constants is given by
an initial typing environmentΓ0 that assigns to every constantc a
type τ of the form∀ (α) τ1 → . . . τn → τ0, whereτ0 is a con-
structed type whenever the constantc is a constructor.

We distinguish a subset of terms, called values and writtenv.
Values are term abstractions, type abstractions, full or partial ap-
plications of constructors, or partial applications of primitives. We
use an auxiliary letterw to characterize the arguments of functions,
which differ for call-by-value and call-by-name strategies. In val-
ues, an application of a constantc can involve a series of type in-
stantiations, but only evaluated ones and before all other arguments.
Moreover, whenc is a primitive the application may only be partial.
Evaluated instantiationsθ may be quantifier eliminations or either
inside or under (general) instantiations. In particular,a τ anda (!α)
arenevervalues. The grammar for values and evaluated instantia-
tions is as follows:

v ::= λ(x : τ) a
| Λ(α : τ) a
| C θ1 . . . θk w1 . . . wn n ≤ |C|
| f θ1 . . . θk w1 . . . wn n < |f |

θ ::= ∀ (> φ) | ∀ (α>) φ | N

Finally, we assume thatδ-rules are of the formf θ1 . . .
θk w1 . . . w|f | −→f a (that is,δ-rules may only reduce fully ap-
plied primitives).

In addition to this general setting, we make further assumptions
to relate the static and dynamic semantics of constants.

SUBJECT REDUCTION: δ-reduction preserves typings. That is, for
any typing contextΓ such thatΓ ⊢ a : τ anda −→f a′, the
judgmentΓ ⊢ a′ : τ holds.

5 2009/7/15

PROGRESS: Well-typed, full applications of primitives can be re-
duced. That is, for any terma of the form f θ1 . . . θk

w1 . . . wn verifying Γ0 ⊢ a : τ , there exists a terma′ such
thata −→f a′.

Call-by-value reduction We now specialize the previous frame-
work to a call-by-value semantics. In this case, arguments of appli-
cations in values are themselves restricted to values,i.e.w is taken
equal tov. Rules(β) and(βlet) are limited to the substitution of val-
ues, that is, to reductions of the form(λ(x : τ) a) v −→ a{x ←
v} and let x = v in a −→ a{x ← v}. Rulesι-ID, ι-COMP and
ι-INTRO are also restricted so that they only apply to values (e.g.a
is textually replaced byv in each of these rules). Finally, we restrict
rule CONTEXT to call-by-value contexts, which are of the form

Ev ::= [·] | Ev a | v Ev | Ev φ | let x = Ev in a

We write −→→v the resulting reduction relation. It follows from
the above restrictions that the reduction is deterministic. Moreover,
sinceδ-reduction is supposed to preserve typings, it is immediate
by Theorem 1 that−→→v also preserves typings.

Crucially, progress holds for call-by-value. In combination with
subject-reduction, this ensures that the evaluation of well-typed
terms “cannot go wrong”.

THEOREM3. If Γ0 ⊢ a : τ , then eithera is a value or there exists
a′ such thata −→→v a′.

Call-by-value reduction and the value restrictionThe value-
restriction (Wright and Felleisen 1994) is the most standard way
to add side effects in a call-by-value language. It is thus important
to verify that it can be transposed toxMLF.

Typically, thevalue restrictionamounts to restricting type gen-
eralization to non-expansive expressions, which contain at least
value-forms,i.e. values and term variables, as well as their type-
instantiations. Hence, we obtain the following (revised) grammar
for expansive expressionsb and for non-expansive expressionsu.

b ::= u | b b | let x = u in b
u ::= x | λ(x : τ) b | Λ(α : τ) u | u φ

| C θ1 . . . θk u1 . . . un n ≤ |C|
| f θ1 . . . θk u1 . . . un n < |f |

As usual, we restrict let-bound expressions to be non-expansive,
since they implicitly contain a type generalization. Notice that,
although type instantiations are restricted to non-expansive ex-
pressions, this is not a limitation:b φ can always be written as
(λ(x : τ) x φ) b, whereτ is the type ofa, and similarly for appli-
cations of constants to expansive expressions.

THEOREM4. Expansive and non-expansive expressions are closed
by call-by-value reduction.

COROLLARY 1. Subject reduction holds with the value restriction.

It is then routine work to extend the semantics with a global store
to model side effects and verify type soundness for this extension.

Call-by-name reduction

For call-by-name reduction semantics, we can actually increase the
set of values, which may now contain applications of constants to
arbitrary expressions; that is, we takea for w. The ι-reduction is
restricted as for call-by-value. However, evaluation contexts are
now of the grammatical form:En ::= [·] | En a | En φ. We
write−→→n the resulting reduction relation. As for call-by-value, it
is deterministic by definition and it preserves typings. It may also
always progress.

THEOREM5. If Γ0 ⊢ a : τ , then eithera is a value or there exists
a′ such thata −→→n a′.

σ0 →

→

⊥

α

→

⊥

β

→

σ1

→

→

⊥

→

⊥

σ2 →

→

→

⊥

→

χe G

→

⊥

G

g

→

⊥

→

n

→

⊥ ⊥

→

m

⊥

e
u

Figure 6. Types, constraints, and expansion

3. Elaboration of graphical eMLF into xMLF

In this section, we study the translation of the graphical version of
eMLF (Rémy and Yakobowski 2008; Yakobowski 2008) intoxMLF.
The graphical version ofeMLF is more general than the syntactic
versions, and better suited for type inference; hence our choice. A
full presentation of graphicaleMLF is however out of the scope of
this paper; we only remind the essential points in this section.

3.1 An overview of graphicaleMLF

Graphic types Types of graphicaleMLF are graphs, designated
with letterσ, composed of the superposition of a term-dag, repre-
senting the structure of the type, and of a binding tree encoding the
binding information.

Term-dags are just dag representations of usual tree-like types,
where at least all occurrences of the same variable must be shared,
and inner nodes representing identical subtypes may also beshared.
We writeσ(n) for the constructor at noden. Variables are anony-
mous, and represented by the pseudo-constructor⊥. Term-dag
edges are writtenn i◦−→ m, wherei is an integer that ranges be-
tween1 and the arity ofσ(n); we also use the notation〈ni〉 to
designatem, the root node being simply noted〈〉. In the drawings,
edges are drawn with plain lines, oriented downwards. We leave i
implicit, as outgoing edges are always drawn from left to right.

The binding tree is an upside-down tree with an edgen ⋄≻−→ m
leaving from each noden different from the root, and going to some
nodem (upper in the term-dag) at whichn is bound. Binding edges
may be either flexible or rigid, which is represented by labeling the
edge with a flag⋄ that is either> or =, respectively. (On drawings,
these flags are represented by dotted or dashed lines, respectively.)

Example Consider the graphic typeσ0 of Figure 6. The nodes
〈11〉 and〈22〉 are variables (namesα andβ are here to help reading
the figure, but they are not part of the graphic type). Paths11 and12
lead to the same node, which can therefore be called〈11〉 or 〈12〉
indifferently. The edge〈22〉 >≻−→ 〈2〉 is a flexible binding edge (the
rightmost lowermost one), while〈1〉 =≻−→ 〈〉 is a rigid binding edge
(the leftmost uppermost one) and〈1〉 2◦−→ 〈12〉 is a structure edge.

Binding edges express polymorphism. Typically, a rigid edge
means that polymorphism is required, as for example the typeof
an argument that is used polymorphically. By contrast, a flexible
edge means that polymorphism is available (as with flexible quan-
tification in xMLF) but not required. For example,σ0 is the type
of a function whose argument must be at least as polymorphic as
∀ (α) α → α, and whose result has type∀ (β) β → β, or any in-
stance of it. In other words, iff is a function of typeσ0, the result
of an application off can be used in place of the successor function
of typeint→ int, butf cannot be passed the successor function as
argument.

Rigid bounds arise from type annotations: in the absence of
type annotations (and types with rigid bounds in the typing envi-

6 2009/7/15

ronment), polymorphism is offered, but is never requested,and the
principal types of expressions only use flexible bounds.

For the purpose of defining type instance, we distinguish four
kinds of nodes. Nodes on which no variable is transitively flexibly
bound are calledinert, as they neither hold nor control polymor-
phism. All other nodes hold or control polymorphism and are clas-
sified as follows. Nodes whose binding path is flexible up to the root
are calledinstantiable; they can be freely instantiated as described
next (inxMLF these nodes would correspond to parts of types that
could be transformed by a suitable instantiation expression). Nodes
whose binding edge is rigid are calledrestricted; they can only be
transformed in a restricted way (inxMLF these nodes would cor-
respond to polymorphic types occurring under some arrow type).
Nodes whose binding edge is flexible but whose binding path up
to the root contains a rigid edge are calledlocked; they cannot be
transformed in any way (inxMLF these nodes would correspond to
polymorphic types occurring in the bound of quantifiers themselves
under some arrow type and not instantiation can transform them).

Type instance The instancerelation on graphic types, written⊑,
is defined as the composition of four atomic operations: grafting,
merging, raising and weakening. Grafting and merging are the
usual instance transformations on first-order term-dags and do not
change the binding tree. Conversely, weakening and raisingonly
change the binding tree. Weakening transforms a flexible edge into
a rigid one. Raising lets one binding edge slide over anotherone.
Moreover, grafting is disallowed on restricted nodes and the four
operations are disallowed on locked nodes.

Example (continued) In σ1, the node〈2〉 is inert,〈111〉 is locked,
〈21〉 is instantiable and〈1〉 is restricted. The graphic typeσ2 is
an instance ofσ1, obtained by raising the node〈11〉, grafting then
weakening〈22〉, and finally merging〈11〉 and〈21〉.

Type constraints Type constraints generalize graphic types by
adding new forms of edges, called constraint edges. These can be
eitherunification edges or instantiation edges . Instantia-
tion edges are oriented. They relate special nodes, used to represent
type schemes and calledG-nodes, to regular nodes. An example of
a constraintχe is shown on the right-hand side of Figure 6.

The instance on type constraints is exactly as on graphic types—
constraint edges are just preserved.

A type constraint is solved when all of its constraint edges are
solved. A unification edge is solved when it relates a node to itself
(thus, a unification edge forces the nodes it relates to be merged).
An instantiation edgee of the form g n of a constraintχ
is solved when, informally,n is an instance of the type scheme
represented byg, or formally, when the expansion ofe in χ is an
instance ofχ, as described below.

A solved instance of a constraint is called apresolution. It still
contains all the nodes of the original constraint, many of which
may have become irrelevant for describing the resulting type. A
solution of a constraint is, roughly, a presolution in whichsuch
nodes have been removed. We need not define solutions formally
since the translation uses presolutions directly.

Expansion Consider an instantiation edgee defined asg n
in a constraintχ. We define anexpansionoperation that enforces
the constraint represented bye. The expansion ofe in χ, written
χe, is the constraintχ extended with both a copy of the type
scheme represented byg and a unification edge betweenn and
the root of the copy. The copy is bound at the same node asn.
Technically, we define theinterior of g, written I(g) as all the
nodes transitively bound tog. The expansion operation copies all
the nodes structurally strictly underg and in the interior ofg.
Intuitively, those nodes are generic at the level ofg. Conversely,
the nodes underg that are not in the interior ofg are not generic at

χ λ(x) λ(y) x

→

⊥ λ(y) x

→

⊥ x

⊥

⊥

⊥

χp G

→

G

→

⊥

γ

G

⊥α

→

β

⊥

e

χe
p G

→

G

→

⊥ G

⊥

→

⊥

→

⊥

Figure 8. Typing constraints forλ(x) λ(y) x.

the level ofg and are not copied by the expansion (but are instead
shared with the original).6

By construction, an instantiation edgee is solved if and only if
χ is an instance ofχe. We call instantiation witnessan instance
derivation ofχe ⊑ χ for a solved instantiation edgee.

Example Let us consider the expansionχe of Figure 6. The origi-
nal constraintχ can be obtained fromχe by removing the rightmost
highlighted nodes, as well as the resulting dangling edges.The in-
terior of g is composed of the nodes in the leftmost box. Hence the
copied nodes are〈g1〉 and 〈g11〉, but not 〈g12〉, which is not in
I(g). The root of the expansionm is the copy of〈g1〉. It is bound
to the binder ofn and connected ton by the unification edgeu.

In this example,χ is an instance ofχe, as witnessed by the
following operations: graft∀ (α) ∀ (β) α → β under 〈m1〉;
raise〈m11〉 twice, and merge it with〈n11〉; weaken〈m1〉 andm;
finally, mergen andm. Hence, the edgee (andχ itself) is solved.

From λ-terms to typing constraints Terms ofeMLF are the par-
tially annotatedλ-terms generated by the following grammar

b ::= x | λ(x) b | λ(x : σ) b | b b | let x = b in b | (b : σ)

Source terms are translated into type constraints in a compositional
manner. Every occurrence of a subexpressionb is associated to a
distinct G-node in the constraint, which we label withb for read-
ability; however it should be understood that different occurrences
of equal subexpressionsb are mapped to different nodes. We let
y and z stand forλ-bound and let-bound variables, respectively.
Constraint generation is described on the bottom of Figure 7, for
the expressions described by the left-hand sides of the equalities at
the top of the figure. The unification edgeuy in (1) is linked to its
corresponding variable nodey generated in (3) by the translation of
the abstraction bindingy. The instantiation edgeez in (2) is com-
ing from theG-node labeledb1 generated in (5) by the translation
of the let expression bindingz.

The constructionsλ(x : σ) b and(b : σ) are actually syntactic
sugar, forλ(x) let x = κσ x in b andκσ b respectively, where
κσ is a coercion function. Both constructs are desugared before the
translation into constraints.

Example The typing constraintχ for the termλ(x) λ(y) x is
described on the left-hand side of Figure 8. One of its presolutions
χp is drawn on the middle (We have dropped the mapping of
expressions toG-node for conciseness, and labeled some binding
edges that will appear in thexMLF translation.) Notice that this is
not the most general presolution, as the arrow nodes bound atG-
nodes have been made rigid, but an equivalent rigid presolution, as
explained in§3.3, that is ready for translation intoxMLF.

6 Readers familiar with (Rémy and Yakobowski 2008) may notice a slight
change in terminology, as in this work we use the term “expansion” instead
of “propagation”, and we solve frontier unification edges onthe fly.

7 2009/7/15

J y K =(1) y J z K =(2) /)(g) z (Φ(ez)) J λ(y) b K =(3) /)(g) λ(y : S(y)) J b K (Φ(e))

J b1 b2 K =(4) /)(g) J b1 K (Φ(e1)) (J b2 K (Φ(e2))) J let z = b1 in b2 K =(5) /)(g) let z = J b1 K in J b2 K (Φ(e2))

(1)
g y

⊥uy

(2)
g z

⊥ez

(3) g λ(y) b

→

⊥ y b ⊥e

(4) g b1 b2

b1

b2

→

n

⊥ ⊥

e1

e2

(5) g let z = b1 in b2

b1 b2 ⊥e2

Figure 7. Constraint generation and translation of presolutions

While type inference is out of the scope of this work—
see (Rémy and Yakobowski 2008), we may however easilycheck
thatχp is indeed a presolution,i.e. that both instantiation edges are
solved. Consider for example the edgee. We must verify thatχp

is an instance of the expansionχe
p drawn on the right-hand side,

that is, exhibit a sequence of atomic instance operations that trans-
forms χe

p into χp. Here, the obvious solution is just to merge the
two nodes related by the unification edge.

3.2 An overview of the translation toxMLF

The translation of aneMLF termb to xMLF is based on a presolution
χ of the typing constraint forb. Typing constraints have principal
presolutions. However, any presolution—not merely the principal
one, which is the one returned by type inference—can be translated.
Since presolutions are instances of the original constraint, and type
instance preserves bothG-nodes and instantiation edges, we can
refer to the original nodes and edges in Figure 7 when definingthe
translation. The translation is inductively defined on the structure
of terms, reading auxiliary information on the corresponding nodes
in the presolution to build the type of function parameters,type
abstractions, and type instantiations. There are two key ingredients:

• For each instantiation edgee of the formg n, an instan-
tiation Φ(e) is inserted to transform the type of the translation
of the expressionb corresponding tog into the type ofn. It can
be computed from the proof thate is solved inχ, i.e. from the
instantiation witness fore. Details are given in§3.4.

• For each flexible bindingn ≻−→ g, a type abstractionΛ(αn >
τn) is inserted in front of the translation of the expressionb
corresponding tog, τn being the type of the noden. Indeed,
such an edge corresponds to some polymorphism inn that must
be introduced at the level ofg. We use the notation/)(g) to
refer to all such quantifications at the level ofg, which will
be precisely defined in§3.4. (Rigid bindings, which are only
useful to make type inference decidable, are inlined duringthe
translation. Hence they do not give rise to type quantifications.)

The translation is given in Figure 7. Whenb is aλ-bound variable
y (1), its translation is itself, as theG-nodey is always monomor-
phic. For the other cases, the translation is of the form/)(g) b′,
g being theG-node forb. Indeed, inMLF and unlike inML, gen-
eralization is as useful for applications and abstractionsas forlet-
bound expressions. A variablez (2) bound by somelet z = b1 in
b2 expression is instantiated byΦ(ez) to transform the type of[[b1]]
into the type of this occurrence ofz, according to the edgeez . Cor-
respondingly, in the translation oflet z = b1 in b2 (5), the transla-
tion of b1 is bound toz uninstantiated, since each occurrence ofz in
[[b2]] will potentially pick a different instance, while the translation
of b2 is instantiated according to the edgee2. In the translation of
an abstractionλ(y) b (3), we annotatey by its type in the presolu-
tion (writtenS(y) and defined in§3.4) and coerce[[b]] to the its type
inside the abstraction according to the edgee. Finally, the transla-

tion of an application (4) is the application of the translations, each
of which is instantiated according to its constraint edge.

The translation is type-erasure preserving by construction.

LEMMA 7. Given a desugared termb, we have⌈J b K⌉ = ⌈b⌉.

Example The presolutionχp in Figure 8 is translated to the term
Λ(α) Λ(β > ∀ (δ) δ → α) λ(x : α) (Λ(γ) λ(y : γ) (x1)) (!γ)
which has type∀ (α) ∀ (β>∀ (δ) δ → α) α→ β. Notice the three
type quantifications forα, β andγ that correspond to the flexible
edges of the same name. The instantiation!γ is the translation ofe.

3.3 From presolutions to rigid presolutions

Some presolutions are not suited for translation, for two reasons.
Firstly, the following nodes, which may be flexibly bound to

a G-node, must not result in a type quantification (as this would
generate useless bindings, or even incorrect ones):

1. the node〈g1〉 in the translation of abstractions (3);

2. the noden in the translation of an application (4);

3. the node〈g1〉 whenever bound ong;

4. any node bound on aG-node but not reachable from aG-node
by following only structure edges.

It is important that these nodes are retained and that their binding
remain flexibleduring type inference when some of the constraints
might not have yet been solved. However, their bindings may be
made rigidafter type inference,i.e. in presolutions, without actu-
ally loosing any expressiveness, as we shall see below. As a result,
these nodes will be inlined during the translation intoxMLF.

Secondly, type equivalence ineMLF is larger than inxMLF.
Hence, some instance operations allowed ineMLF do not have a
counterpart inxMLF. In particular,eMLFallows instance operations
on inert nodes. However, when the binding path of an inert node
n contains a rigid binding, the translation ofn into xMLF cannot
be instantiated inxMLF. Indeed, while type instantiation inxMLF

can operate under flexible bounds using inside-instantiations, rigid
nodes ofeMLFare inlined and thus unreachable inxMLF. →

→

int

int

For example, the flexible binding edge in the type
next, which is leaving from an inert node, may be
weakened intoeMLF, leading to two equivalent types
whose translations(∀ (α > int) α → α) → int

and(int → int) → int are not equivalent inxMLF (and actually
incomparable). Indeed, since type applications are explicit in xMLF,
a term of the former type must instantiate its argument before
applying it, while a term of the latter type can apply its argument
directly. This is quite similar to the difference between the two
SystemF types(∀ (α) int→ int)→ int and(int→ int)→ int.

The difference in type equivalence does not mean thatxMLF is
less expressive thaneMLF: inert nodes can always be weakened in
presolutions ofeMLF. Moreover, we do not lose expressiveness by

8 2009/7/15

T(n) , ∀ (Q(n)) χ(n) (R(〈n 1〉), . . .R(〈n p〉))
wherep is the arity ofχ(n)

R(n) ,

{

T(n) if n is rigid
αn otherwise

Q(n) , (α〈n1〉 > T(n1) . . . α〈nk〉 > T(nk))
wheren1, . . .nk are all nodes flexibly bound ton, ordered

S(n) ,

∀ (Q(n)) S(〈n 1〉) if n is aG-node
αn if n flexibly bound to aG-node
T(n) otherwise

Figure 9. Mapping nodes ofeMLF to types ofeMLF

doing so, since this transformation commutes with other operations
used to solve presolutions.

We call rigid a presolution that respects the conditions given at
the beginning of this section and in which inert nodes are rigidly
bound. The following lemma ensures that rigid-presolutions can be
used in place of presolutions without affecting the set of solutions,
up to weakening of inert nodes.

LEMMA 8. Given a presolutionχp of a constraintχ, there exists
a rigid presolutionχ′

p of χ (derived fromχp by weakening some
nodes), in which terms have the same types as inχ modulo the
weakening of inert nodes.

This also suggests that we could have restricted ourselves to rigid
presolution in the first place, since principal presolutions can be
turned into rigid ones in a principal manner. However, rigidpres-
olutions are only useful for the translation ofeMLF into xMLF

and useless, if not harmful, for type inference purposes: binding
edges can only be rigidified—without loosing solutions—after all
the constraint edges under them have been solved. This imposes
synchronization in the constraint resolution. Therefore,we prefer
to stay with the more flexible definition of presolutions foreMLF

(thus avoiding unnecessary complications in the definitionof eMLF,
which is exposed to the user) and only consider rigid presolution as
a first step of the translation intoxMLF.

In the remainder of this section, we abstract over a rigid preso-
lution χ and an instantiation edgee of the formg d.

3.4 Details of the translation

Ordering binders and nodes In eMLF, two binding edges reach-
ing the same node are unordered. It is actually a useful property for
type inference not to distinguish between two types that just dif-
fer by the order of their quantifiers. However, adjacent quantifiers
do not commute inxMLF. While they could be explicitly reordered
by type instantiation, it is much better to get them in the right or-
der by construction as far as possible (as described below however,
reordering of quantifiers will still be necessary in some cases).

The simplest way to achieve this is to assume a total ordering≺
of all nodes ofχ. Of course,≺ cannot be arbitrary, as it should
also ensure the well-scopedness of syntactic types: ifn ◦−→ n′ or

→

⊥ ⊥

n′ ≻−→ n, then n′ ≺ n must hold. We choose
the leftmost-lowermost ordering of nodes for≺: if
n1, . . . , nk are bound ton, we first translate theni

which is lowest in the type, or leftmost if theni are not
ordered by◦−→. This means that the type next is always translated
as∀ (α) ∀ (β) α→ β, not as∀ (β) ∀ (α) α→ β.

Translating types Every node ofχ can be translated to anxMLF

type. Moreover, the translation is unique when using the ordering
of the previous section. We follow the translation ofeMLF types of
(Yakobowski 2008), except for inert nodes which are inlined.

Each noden of χ is mapped to a typeS(n) of xMLFas described
in Figure 9. We assume that every noden in χ is in bijection with
a type variableαn. The translation uses the auxiliary functions
Q(n) to build a sequence of type quantifications (one for each node
flexibly bound ton), R(n) to inline n when it is rigid, andT(n)
to build the bound of type variables inQ(n). The functionS(n)
distinguishes two special cases: whenn is aG-node, it is translated
by introducing the sequence of type quantificationsQ(n) followed
by the translation of〈n1〉; whenn is a regular node itself bound to
aG-node, it is translated intoαn, which is always used in a context
whereαn is bound. Otherwise,S(n) is T(n).

The notation/)(g) used in Figure 8 can now be defined as
Λ(Q(g)) . We also writeS(χ) for the translationS(〈〉) of the root
G-node of the whole constraint.

From instantiation witnesses to type instantiationsThe main
part of the translation is the computation of the type instantiations
from the instantiation witnesses. Letr be the root node of the
expansion inχe. By construction, an instantiation witnessΩ for
e mapsχe to χ. In fact, becauseΩ must leaveχ unchanged, the
sequenceΩ may be decomposed into subsequences of the form:
(1) Graft(σ, n) or Weaken(n) with n in I(r);

(2) Merge(n, m) with n andm in I(r), andm ≺ n;

(3) Raise(n) with n +≻−→≻−→ r;

(4) a sequence(Raise(n))k ; Merge(n, m), with n ∈ I(r) and
m /∈ I(r). We write this sequenceRaiseMerge(n, m) and see
it as an atomic operation.

An operationRaiseMerge(n, m) lets n leaves the interior ofr
and be merged with some nodem of χ bound abover. All other
operations occur inside the interior ofr. The grouping of operations
in RaiseMerge(n, m) helps translating the subparts of instantiation
witnesses that operate outside ofI(r) into type instantiations.

Furthermore, sinceχ is a rigid presolution, we may also assume
that (5) an operationWeaken(n) appears after all the other opera-
tions on a node belown. This ensures thatΩ does not perform any
operation under a rigidly bound node, which would not be express-
ible as anxMLF instantiation, as explained in§3.3.

We call normalizedan instantiation witness that verifies the
conditions (1)–(4) and (5) above. Normalized witnesses always
exist. A constructive proof of this fact is given in (Yakobowski
2008).

Instantiation contexts In order to relate graphic nodes andxMLF

bounds, we introduce one-holeinstantiation contextsdefined by the
following grammar:C ::= {·} | ∀ (> C) | ∀ (α >) C. We write
C{φ} for the replacement of the hole by the instantiationφ.

Consider a noden, and a nodem flexibly transitively bound
to n. Given our use of≺ to order nodes, there exists a unique
instantiation contextCn

m that can be used to descend in front of the
quantification corresponding tom in T(n). For presolutions, and to
avoid α-conversion related issues, we build instantiation contexts
using variables whose names are based on the nodes they traverse.

For example, consider the constraintχp in Figure 8. The trans-
lation T(〈〉) of the root G-node is∀ (α) ∀ (β > ∀ (δ) δ →

α) α → β. With the convention above, we haveC〈〉〈11〉 = {·},

C
〈〉
〈12〉 = ∀ (α〈11〉 >) {·} andC〈〉〈121〉 = ∀ (α〈11〉 >) ∀ (> {·}).

Translating normalized derivations into instantiationsLet us
describe the translation of a normalized witness ofχe ⊑ χ into
anxMLF instantiation. We generalize the problem by translating a
normalized witnessΩ of ξ ⊑ χ whereξ is such thatχe ⊑ ξ ⊑ χ.
Insideχe andξ, we let r be the root of the expansion (insideχ,
r is merged withd). The translation ofξ ⊑ χ must witness the
judgmentΓd ⊢ Tξ(r) ≤ Tχ(r) whereΓd is the typing context
for the noded. The translation ofΩ, written Φξ(Ω), is defined

9 2009/7/15

For a sequence of instructions:
Φξ() = 1

Φξ(ω; Ω′) = Φξ(ω); Φω(ξ)(Ω
′)

For an operationω on a rigid noden:
Φξ(ω) = 1

For an operation on the flexible root of the expansionr:
Φξ(Graft(σ, r)) = T(σ)

Φξ(RaiseMerge(r,m)) = !αm

Φξ(Weaken(r)) = 1
For an operation on a flexible node different from the root:

Φξ(Graft(σ, n)) = Cr
n{∀ (>T(σ))}

Φξ(RaiseMerge(n, m)) = Cr
n{〈!αm〉}

Φξ(Merge(n, m)) = Cr
n{〈!αm〉}

Φξ(Weaken(n)) = Cr
n{N}

Φξ(Raise(n)) = Cr
m{O;∀ (>Tξ(n));
∀ (βn >) Cm

n {〈!βn〉}}
wherem = min≺{m | n ≻−→≻−→←−≺ m ∧ n ≺ m}

Figure 10. Translating normalized instance operations

by induction onΩ as described in Figure 10. The functionΦξ

is overloaded to act on both an instance derivation and a single
operation.

The translation of an instance derivation is defined recursively:
the translation of an empty derivation is the identity instantiation1;
otherwise,Ω is of the form(ω; Ω′) and we return the composition
of the translation of the operationω followed by the translation of
the instance derivationΩ′ applied to the constraintω(ξ).

The translation of an operation on a rigid node is the identity
instantiation1, as rigid bounds are inlined. Inert nodes have been
weakened into rigid ones and locked nodes do not allow instance.
Hence, the remaining and interesting part of the translation is a
(single) operation applied to an instantiable node.

The translation of an instance operation onr (whenr is flexible)
is handled especially, as follows. The grafting of a typeσ is
translated to the instantiationτ—whereτ is the translation ofσ
into xMLF. A raise-merge ofr with m is translated to!αn: it must
be the last operation of the derivationΩ andαm must be bound
in the typing environmentΓd; hence we may abstract the type of
r underαm. The weakening ofr is translated to1: it must be the
next-to-the-last operation in the derivationΩ, before the merging of
r with a rigidly bound node, and there is actually nothing to reflect
in xMLF, as the type ofr itself is unchanged—only its binding flag
in the expansion is.

In the remaining cases, the operation is applied to an instantiable
noden. Since the derivation is normalized andn is not rigid,n must
be transitively flexibly bound tor. Therefore, there exists an instan-
tiation contextCr

n to reach the bound ofαn in Tξ(r). The grafting
of a typeσ atn is translated toCr

n{∀ (>T(σ))} that transforms the
bound⊥ of αn intoT(σ). The merging ofn with a nodem is trans-
lated toCr

n{〈!αm〉}, which first abstracts the bound ofαn under
the nameαm and immediately eliminates the quantification (we as-
sumem ≺ n). The translation is the same for a raise-merge, butαm

is bound in the typing environment instead of inTξ(r). The weak-
ening ofn is translated toCr

n{∀ (>N)}. Finally, the translation of
the raising ofn is of the formCr

m{O; ∀ (>Tχ(n)); φ}. We first in-
sert a fresh quantification, bound by the typeTξ(n), insideTξ(r).
The difficulty consists in finding the nodem in front of which
to insert this quantification, so as to respect the ordering between
bounds. Notice that the set{m | n ≻−→≻−→←−≺ m ∧ n ≺ m}
contains at least the bound ofn, hence its minimumm is well-
defined. Then, the instantiationφ equal to∀ (βn >) Cm

n {〈!βn〉}

aliases the bound ofn to the quantification just introduced and
eliminates the resulting quantification. The net result of the whole
type instantiation is that the type ofn is introduced one level-higher
than it previously was.

g G

→

⊥ ⊥

Reordering quantifiers It remains to define the no-
tationΦ(e) used in Figure 7. We letΩ be a normal-
ized witness fore. Unfortunately, we cannot simply
useΦχe(Ω), as, in some cases, the typeTχe(r) of g
in the expansion does not correspond toS(g), regard-
less of our use of≺. This can easily be seen in the
example next, in whichS(g) is ∀ (β) ∀ (α) α → β:
as we start by translating the flexible nodes bound ong, here
〈g12〉, before translating〈g1〉; however, the expansion ofg has
type ∀ (α) ∀ (β) α → β: the quantifiers appear in the opposite
order. We believe that this difficulty is actually inherent to elab-
orating terms for languages with second-order polymorphism, in
which second-order polymorphism can be kept local (as here for
〈g11〉), or be introduced by generalization (as for〈g12〉). Thank-
fully, Tχe(r) andS(g) may differ only by a reordering of quanti-
fiers. In xMLF, we can explicitly reorder them through the use of
instantiations such as

O;∀ (> τα); O;∀ (> τβ); ∀ (β >) ∀ (α >)
(

〈!α〉; 〈!β〉
)

which commutesα andβ in the type∀ (α > τα) ∀ (β > τβ) τ .
We writeΣ(g) the instantiation that transformsS(g) into Tχe(r).
Then, we defineΦ(e) asΣ(g); Φχe(Ω).

Translating annotated terms As mentioned in§3.1, expressions
such as(b : σ) andλ(y : σ) b are actually syntactic sugar, forκσ b
andλ(y) let y = κσ y in b, respectively. The translationT(κσ)
of the type of the coercion functionκσ in xMLF is ∀ (α > T(σ))
T(σ) → α. Interestingly, coercion functions need not be primitive
in xMLF—unlike in eMLF. Let idκ be the expressionΛ(α) Λ(β >
α) λ(x : α) (x (!β)). Then, defineκσ as idκ〈T(σ)〉. Notice
that κσ behaves as the identity function, as expected. Moreover,
coercion functions can always be eliminated by reduction after the
elaboration of the presolution, so that they have no runtimecost.

3.5 Soundness of the translation

THEOREM6. Let b be an eMLF term,χ a rigid presolution forb.
The translationJ b K of χ is well-typed in xMLF, of typeS(χ).

Our translation preserves the type-erasure of programs (Lemma 7).
Hence, the soundness ofxMLF also implies the soundness of
eMLF—which had previously only been proved for the syntactic
versions ofMLF, but not for the most general, graphical version.

4. Discussion
4.1 Expressiveness ofxMLF

The elaboration ofeMLF into xMLF shows thatxMLF is at least
as expressive aseMLF. However, and perhaps surprisingly, the
converse is not true. That is, there exist programs ofxMLF that
cannot be typed inMLF. While, this is mostly irrelevant when
usingMLF as an internal language foreMLF, the question is still
interesting from a theoretical point of view, as understanding xMLF

on its own,i.e. independently of the type inference constraints of
eMLF, could perhaps suggest other useful extensions ofxMLF.

For the sake of simplicity, we explain the difference between
xMLF and iMLF the Curry-style version ofMLF (which has the
same expressiveness aseMLF). Although syntactically identical,
the types ofxMLFand of syntacticiMLFdiffer in their interpretation
of alias bounds,i.e. quantifications of the form∀ (β > α) τ .
Consider, for example, the two typesτ0 andτid defined as∀ (α>τ)

10 2009/7/15

∀ (β>α) β → α and∀ (α>τ) α→ α. In iMLF, alias bounds can
be expanded andτ0 andτid are equivalent. Roughly, the set of their
instances (stripped of toplevel quantifiers) is{τ ′ → τ ′ | τ ≤ τ ′}.
In contrast, the set of instances ofτ0 is larger inxMLF and at least
a superset of{τ ′′ → τ ′ | τ ≤ τ ′ ≤ τ ′′}. This level of generality
cannot be expressed iniMLF. Interestingly, graphic types disallow
alias bounds entirely, as they cannot even be expressed.

The current treatment of alias bounds inxMLF is quite natural
in a Church-style presentation. Surprisingly, it is also simpler than
treating them as ineMLF. A restriction of xMLF without alias
bounds that is closed under reduction and in closer correspondence
with iMLF can still be defined a posteriori, by constraining the
formation of terms, but the definition is contrived and unnatural.

Instead of restrictingxMLF to match the expressiveness ofiMLF,
a fair question is whether the treatment of alias bounds could be
enhanced iniMLF—andeMLF—to match the one inxMLF without
compromising type inference. This is worth further investigation.

4.2 Elaboration for other presentations ofMLF

We have described the elaboration for the graphical, implicit ver-
sion ofMLF, since this is the most appropriate version for perform-
ing type inference. There are four presentations ofMLF depend-
ing on whether types are presented graphically or syntactically and
whether annotations are explicit (eMLF) or implicit (iMLF). Our
elaboration can be easily adapted to the three other presentations,
with only minor differences, discussed below.

The graphical explicit version ofMLF is obtained by allowing
the inverse of instance operations, but only on inert or rigid nodes.
As a result of enlarging the instance relation, type inference be-
comes undecidable iniMLF. Still, the graphical framework ofeMLF

applies to this variant, and a presolution ineMLF is also a presolu-
tion in iMLF.

Interestingly, presolutions ofiMLF can also be elaborated into
xMLF, as the difference betweeneMLF andiMLF lies in operations
on inert and rigid nodes which are inlined inxMLF. The elabora-
tion proceeds as foreMLF, by weakening presolutions into rigid
ones, so that all inert nodes become rigid and will be inlined. The
main difference lies in normalized derivations of instantiation edges
(§3.4), which may contain new forms of operations iniMLF. How-
ever, those operations only occur on rigid nodes and are elaborated
into identity type instantiations.

Translating syntactic versions ofMLF (whether implicit or ex-
plicit) into xMLF might seem trivial at a cursory glance. However,
this is not the case at all, and special care must also be takenbe-
cause of the mismatch between type instance inMLFandxMLF.

As for graphs, all rigid (in the case ofeMLF) and inert types
must be inlined, and types must be put in canonical form (based for
instance on some total ordering of bound variables). This avoids
the need for any form of equivalence or abstraction at placeswhere
it is not allowed inxMLF. Furthermore, alias bounds must also be
inlined so as to preserve their intended semantics inMLF (§4.1).

Once these precautions are carefully taken, the main part of
the translation is however slightly simpler than in the graphical
case, because instance derivations, which are the counterpart of
instantiation witnesses, are closer to type instantiationin xMLF.
In particular, the ordering of quantifiers has already been chosen
in syntacticeMLF derivations. However, this merely moves the
task of consistently ordering quantifiers from the translation (in the
graphical case) to type inference (in the syntactic case).

A similar translation should also be applicable to the language
HML—an interesting variant ofMLF proposed by Leijen (2009)
that is even more explicit thaneMLF, but uses the simpler types
of iMLF: at the price of adding extra annotations in source terms,

HML needs not use rigid bounds at all. For the reasons developed
above, we do not expect the elaboration forHML to be significantly
simpler than foriMLF or eMLF. However, its proofs of correctness
might be simpler than the proof of correctness foreMLF and it-
self simpler than the one foriMLF—since intuitively, the smaller
the type equivalence, the simpler the proof of correctness.Alterna-
tively, programs ofHML could be elaborated indirectly by translat-
ing them intoeMLF, then intoxMLF.

4.3 Related works

Besides the several papers that describe variants ofMLF, there are
actually few related works.

Leijen and Löh (2005) have studied the extension ofMLF with
qualified types, and as a subcase, the translation ofMLF without
qualified types into SystemF. However, in order to handle type in-
stantiations, a terma of type∀ (α>τ ′) τ is elaborated as a function
of type∀ (α) (τ ′

⋆ → α) → τ⋆, whereτ⋆ is a runtime representa-
tion of τ . The first argument is aruntime coercion, which bears
strong similarities with our instantiations. However, an important
difference is that their coercions are at the level of terms,while our
instantiations are at the level of types. In particular, although co-
ercion functions should not change the semantics, this critical re-
sult has not be proved so far, while in our settings the type-erasure
semantics comes for free by construction. The incidence of coer-
cion functions in a call-by-value language with side effects is also
unclear. Perhaps, a closer connection between their coercion func-
tions and our instantiations could be established and used to actu-
ally prove that their coercions do not alter the semantics. However,
even if such a result could be proved, coercions should preferably
remain at the type level, as in our setting, than be intermixed with
terms, as in their proposal.

Interestingly, while their translation and ours work on very dif-
ferent inputs—syntactic typing derivations in their case,graphic
presolutions in ours—there are strong similarities between the two.
The resemblance is even closer with the improved translation re-
cently proposed by Leijen (2007), in which rigid bindings are in-
lined during the translation. As another example, we both canoni-
cally order quantifiers inside types. (However, our motivations are
slightly different. We strive to reduce the number of quantifier re-
orderings, thus order all the quantifiers. Leijen uses only aweak
canonical form, sufficient to obtain well-typed terms. Thiscan re-
sult in some reorderings that are not present in our translation.)

4.4 Future works

The demand for an internal language forMLFwas first made in the
context of using theeMLF type system for the Haskell language.
We expectxMLF to better accommodate qualified types thaneMLF

since at least no evidence function would be needed for flexible
polymorphism. However, this remains to be verified.

While graphical type inference has been designed to keep max-
imal sharing of types during inference so as to have good prac-
tical complexity, our elaboration implementation reads back dags
as trees and undo all the sharing carefully maintained during in-
ference. Even with today’s fast machines, this might be a problem
when writing large, automatically generated programs. Hence, it
would be worth maintaining the sharing during the translation, per-
haps by adding type definitions toxMLF.

It was somewhat of a surprise to realize thatxMLF types are
actually more expressive thaniMLF ones, because of a different
interpretation of alias bounds. While the interpretation of xMLF

seems quite natural in an explicitly typed context, and is infact
similar to the interpretation of subtype bounds inF<:, the eMLF

interpretation also seemed the obvious choice in the context of type
inference. We have left for future work the question of whether the

11 2009/7/15

additional power brought by thexMLF could be returned back to
eMLFwhile retaining type inference.

Type instantiation, which changes the type of an expression
without changing its meaning, goes far beyond type application
in SystemF and resembles retyping functions in SystemFη—the
closure ofF by η-conversion (Mitchell 1988). Those functions can
be seen either at the level of terms, as expressions of SystemF
that βη-reduces to the identity, or at the level of types as atype
conversion. Some loose parallel can be made between the encoding
of MLF in SystemF by Leijen and Löh (2005) using term-level
coercions (which should hopefully be semantics preserving) and
xMLF which uses type-level instantiations (which are semantics
preserving by construction). Additionally, perhapsFη could be
extended with a form of abstraction over retyping functions, much
as type abstraction∀ (α > τ) in xMLFamounts to abstract over the
instantiation!α of typeτ → α.

Regarding type soundness, it is also worth noticing that the
proof of subject reduction inxMLF does not subsume, but com-
plements, the one in the original presentation ofMLF. The latter
does not explain how to transform type annotations, but shows that
annotation sites need not be introduced (only transformed)during
reduction. BecausexMLF has full type information, it cannot say
anything about type information that could be left implicitand in-
ferred. Thus, given a term inxMLF, can we rebuild a term iniMLF

with minimal type annotations? While this should be easy it we re-
quest all subterms to have identical types, it is not so clearif we
only care about typability.

The semantics ofxMLF allows reduction (and elimination) of
type instantiationsa φ through ι-reduction but does not operate
reduction (and simplification) of instantiationsφ alone. It would be
possible to define a notion of reduction on instantiationsφ −→ φ′

(such that, for instance,∀ (> φ1; φ2) −→ ∀ (> φ1);∀ (> φ2), or
conversely?) and extend the reduction of terms with a context rule
aφ −→ aφ′ wheneverφ −→ φ′. This might be interesting for
more economical representations of instantiation. However, it is
unclear whether there exists an interesting form of reduction that
is both Church-Rosser and large enough for optimization purposes.
Perhaps, one should rather consider instantiation transformations
that preserve observational equivalence, which would leave more
freedom in the way one instantiation could be replaced by another.

Less ambitious is to directly generate smaller type instantiations
when translatingeMLFpresolutions intoxMLF, by carefully select-
ing the instantiation witness to translate—as there usually exists
more than one witness for a given instantiation edge. This amounts
to using type derivations equivalence ineMLF instead of obser-
vational equivalence inxMLF. Ideally, the latter should suffice. In
practice, using just the former or the two combined might be sim-
pler.

ExtendingxMLF to allow higher-order polymorphism is an-
other interesting research direction for the future. Such an exten-
sion is already under investigation for the type inference version
eMLF (Herms 2009).

Conclusion
We have completed theMLF trilogy by introducing the Church-
style versionxMLF, that was still desperately missing for type-
aware compilation and from a theoretical point of view. The orig-
inal type-inference versioneMLF, which requires partial type an-
notations but does not tell how to track them during reduction,
now lies between the Curry-style presentationiMLF that ignores all
type information andxMLF that maintains it during reduction. We
have shown thatxMLF is well-behaved: reduction preserves well-

typedness, and the calculus is sound for both call-by-valueand call-
by-name semantics.

We have described a translation of partially typedeMLF pro-
grams into fully typedxMLF ones. The translation preserves well-
typedness and the type erasure of terms, which ensures the type
soundness ofeMLF. We have shown thatxMLFcan be used as an in-
ternal language forMLF, with either call-by-value or call-by-name
semantics, and also for the many restrictions ofMLF that have been
proposed, includingHML.

Hopefully, this will help the adoption ofMLF and maintain a
powerful form of type inference in modern programming languages
that will necessarily feature first-class polymorphism.

Independently, the idea of enriching type applications to richer
forms of type transformations might also be useful in other con-
texts.

References
Henk P. Barendregt.The Lambda Calculus: Its Syntax and Seman-

tics. North-Holland, 1984. ISBN 0-444-86748-1.

⊲ Paolo Herms. Partial Type Inference with Higher-Order Types.
Master’s thesis, University of Pisa and INRIA, 2009. To appear.

⊲ Mark P. Jones. A theory of qualified types.Sci. Comput. Program.,
22(3):231–256, 1994.

⊲ Didier Le Botlan. MLF : An extension of ML with second-order
polymorphism and implicit instantiation.PhD thesis, Ecole
Polytechnique, June 2004. english version.

⊲ Didier Le Botlan and Didier Rémy. MLF: Raising ML to the power
of System-F. InProceedings of the Eighth ACM SIGPLAN
International Conference on Functional Programming, pages
27–38, August 2003.

⊲ Didier Le Botlan and Didier Rémy. Recasting MLF. Research
Report 6228, INRIA, Rocquencourt, BP 105, 78 153 Le Chesnay
Cedex, France, June 2007.

⊲ Daan Leijen. A type directed translation of MLF to System F.
In The International Conference on Functional Programming
(ICFP’07). ACM Press, October 2007.

⊲ Daan Leijen. Flexible types: robust type inference for first-class
polymorphism. InProceedings of the 36th annual ACM Sym-
posium on Principles of Programming Languages (POPL’09),
pages 66–77, New York, NY, USA, 2009. ACM.

⊲ Daan Leijen and Andres Löh. Qualified types for MLF. InICFP
’05: Proceedings of the tenth ACM SIGPLAN international con-
ference on Functional programming, pages 144–155, New York,
NY, USA, September 2005. ACM Press. ISBN 1-59593-064-7.

John C. Mitchell. Polymorphic type inference and containment.
Information and Computation, 2/3(76):211–249, 1988.

Simon Peyton Jones.Haskell 98 Language and Libraries: The
Revised Report. Cambridge University Press, May 2003. ISBN
0521826144.

⊲ Didier Rémy and Boris Yakobowski. From ML to MLF: Graphic
type constraints with efficient type inference. InThe 13th ACM
SIGPLAN International Conference on Functional Program-
ming (ICFP’08), pages 63–74, Victoria, BC, Canada, September
2008.

⊲ Andrew K. Wright and Matthias Felleisen. A syntactic approach to
type soundness.Information and Computation, 1994.

⊲ Boris Yakobowski.Graphical types and constraints: second-order
polymorphism and inference. PhD thesis, University of Paris 7,
December 2008.

12 2009/7/15

http://pauillac.inria.fr/~remy/mlf/Herms@master2009:mlf-omega.pdf
http://www.springerlink.com/content/y034678123475137/
http://wwwdgeinew.insa-toulouse.fr/~lebotlan/
http://pauillac.inria.fr/~remy/mlf/icfp.pdf
https://hal.inria.fr/inria-00156628
http://research.microsoft.com/users/daan/download/papers/mlftof.pdf
ftp://ftp.research.microsoft.com/pub/tr/TR-2008-55.pdf
http://murl.microsoft.com/users/daan/download/papers/qmlf.pdf
http://gallium.inria.fr/~remy/mlf/mlf-icfp08.pdf
http://www.cs.rice.edu/CS/PLT/Publications/Scheme/ic94-wf.ps.gz
http://www.yakobowski.org/phd-dissertation.html

	The calculus
	Types, instantiations, terms, and typing environments
	Instantiations
	Typing rules for Fsup
	Reduction
	System F as a subsystem of xMLF

	Properties of reduction
	Subject reduction
	Confluence
	Strong normalization
	Accommodating weak reduction strategies and constants

	Elaboration of graphical eMLF into xMLF
	An overview of graphical eMLF
	An overview of the translation to xMLF
	From presolutions to rigid presolutions
	Details of the translation
	Soundness of the translation

	Discussion
	Expressiveness of xMLF
	Elaboration for other presentations of MLF
	Related works
	Future works

